Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-2 (of 2 Records) |
Query Trace: Kamile Rasheed J[original query] |
---|
Reply to Gonzales-Luna et al
Gargis AS , Karlsson M , Kamile Rasheed J , Kent AG , McKay SL , Paulick AL , Anderson KF , Adamczyk M , Campbell D , Korhonen LC , McAllister G , Vlachos N , Halpin AL , Lutgring JD , Guh AY , Clifford McDonald L , Elkins CA . Clin Infect Dis 2023 76 (11) 2039-2041 We thank Gonzales-Luna and colleagues [1] for their comments. We agree that laboratories must have access to accurate and standardized methods for antimicrobial susceptibility testing (AST) results to be clinically meaningful. The reference method for performing Clostridioides difficile AST is agar dilution according to Clinical and Laboratory Standards Institute (CLSI) guidelines [2]. The CLSI method for performing AST for anaerobic bacteria recommends that 5 μg/mL of hemin be incorporated into agar dilution plates and that the hemin stock solution should be protected from light and stored at 4°C–8°C for no longer than 1 month [2]. The susceptibility testing done by Gargis et al [3] was performed according to these guidelines, and the hemin stock solution was protected from light. | | Nevertheless, we read with interest the research in recent years [4–6] related to heme-dependent metronidazole resistance, including the reported association between isolates characterized as heme dependent and metronidazole resistant and the presence of a T to G mutation (PnimBG) in the −10 promoter region of the nitroimidazole reductase gene, nimB [5]. While Olaitan et al [5] found that not all heme-dependent metronidazole-resistant isolates contained the PnimBG mutation, Olaitan et al [5] indicate that most do; therefore, the presence of PnimBG may be predictive of resistance. We determined that the nimB mutation was present in 20% of our study isolates (116 of 593), of which 99% (115 of 116) belonged to RT027 (Table 1). The remaining isolate was RT014, the only RT014 isolate containing the PnimBG mutation among the 65 evaluated. |
Evaluation of the biotyper MALDI-TOF MS system for identification of Staphylococcus species
Zhu W , Sieradzki K , Albrecht V , McAllister S , Lin W , Stuchlik O , Limbago B , Pohl J , Kamile Rasheed J . J Microbiol Methods 2015 117 14-17 The Bruker Biotyper MALDI-TOF MS (Biotyper) system, with a modified 30minute formic acid extraction method, was evaluated by its ability to identify 216 clinical Staphylococcus isolates from the CDC reference collection comprising 23 species previously identified by conventional biochemical tests. 16S rDNA sequence analysis was used to resolve discrepancies. Of these, 209 (96.8%) isolates were correctly identified: 177 (84.7%) isolates had scores ≥2.0, while 32 (15.3%) had scores between 1.70 and 1.99. The Biotyper identification was inconsistent with the biochemical identification for seven (3.2%) isolates, but the Biotyper identifications were confirmed by 16S rDNA analysis. The distribution of low scores was strongly species-dependent, e.g. only 5% of Staphylococcus epidermidis and 4.8% of Staphylococcus aureus isolates scored below 2.0, while 100% of Staphylococcus cohnii, 75% of Staphylococcus sciuri, and 60% of Staphylococcus caprae produced low but accurate Biotyper scores. Our results demonstrate that the Biotyper can reliably identify Staphylococcus species with greater accuracy than conventional biochemicals. Broadening of the reference database by inclusion of additional examples of under-represented species could further optimize Biotyper results. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure