Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-30 (of 33 Records) |
Query Trace: Kainulainen M[original query] |
---|
A public, cross-reactive glycoprotein epitope confounds Ebola virus serology
Kainulainen MH , Harmon JR , Karaaslan E , Kyondo J , Whitesell A , Twongyeirwe S , Malenfant JH , Baluku J , Kofman A , Bergeron É , Waltenburg MA , Nyakarahuka L , Balinandi S , Cossaboom CM , Choi MJ , Shoemaker TR , Montgomery JM , Spiropoulou CF . J Med Virol 2024 96 (10) e29946 Ebola disease (EBOD) in humans is a severe disease caused by at least four related viruses in the genus Orthoebolavirus, most often by the eponymous Ebola virus. Due to human-to-human transmission and incomplete success in treating cases despite promising therapeutic development, EBOD is a high priority in public health research. Yet despite almost 50 years since EBOD was first described, the sources of these viruses remain undefined and much remains to be understood about the disease epidemiology and virus emergence and spread. One important approach to improve our understanding is detection of antibodies that can reveal past human infections. However, serosurveys routinely describe seroprevalences that imply infection rates much higher than those clinically observed. Proposed hypotheses to explain this difference include existence of common but less pathogenic strains or relatives of these viruses, misidentification of EBOD as something else, and a higher proportion of subclinical infections than currently appreciated. The work presented here maps B-cell epitopes in the spike protein of Ebola virus and describes a single epitope that is cross-reactive with an antigen seemingly unrelated to orthoebolaviruses. Antibodies against this epitope appear to explain most of the unexpected reactivity towards the spike, arguing against common but unidentified infections in the population. Importantly, antibodies of cross-reactive donors from within and outside the known EBOD geographic range bound the same epitope. In light of this finding, it is plausible that epitope mapping enables broadly applicable specificity improvements in the field of serology. |
Knowledge, attitudes, and practices and long-term immune response after rVSVΔG-ZEBOV-GP Ebola vaccination in healthcare workers in high-risk districts in Uganda
Waltenburg MA , Kainulainen MH , Whitesell A , Nyakarahuka L , Baluku J , Kyondo J , Twongyeirwe S , Harmon J , Mulei S , Tumusiime A , Bergeron E , Haberling DL , Klena JD , Spiropoulou C , Montgomery JM , Lutwama JJ , Makumbi I , Driwale A , Muruta A , Balinandi S , Shoemaker T , Cossaboom CM . Vaccine 2024 BACKGROUND: The rVSVΔG-ZEBOV-GP Ebola vaccine (rVSV-ZEBOV) has been used in response to Ebola disease outbreaks caused by Ebola virus (EBOV). Understanding Ebola knowledge, attitudes, and practices (KAP) and the long-term immune response following rVSV-ZEBOV are critical to inform recommendations on future use. METHODS: We administered surveys and collected blood samples from healthcare workers (HCWs) from seven Ugandan healthcare facilities. Questionnaires collected information on demographic characteristics and KAP related to Ebola and vaccination. IgG ELISA, virus neutralization, and interferon gamma ELISpot measured immunological responses against EBOV glycoprotein (GP). RESULTS: Overall, 37 % (210/565) of HCWs reported receiving any Ebola vaccination. Knowledge that rVSV-ZEBOV only protects against EBOV was low among vaccinated (32 %; 62/192) and unvaccinated (7 %; 14/200) HCWs. Most vaccinated (91 %; 192/210) and unvaccinated (92 %; 326/355) HCWs wanted to receive a booster or initial dose of rVSV-ZEBOV, respectively. Median time from rVSV-ZEBOV vaccination to sample collection was 37.7 months (IQR: 30.5, 38.3). IgG antibodies against EBOV GP were detected in 95 % (61/64) of HCWs with vaccination cards and in 84 % (162/194) of HCWs who reported receiving a vaccination. Geometric mean titer among seropositive vaccinees was 0.066 IU/mL (95 % CI: 0.058-0.076). CONCLUSION: As Uganda has experienced outbreaks of Sudan virus and Bundibugyo virus, for which rVSV-ZEBOV does not protect against, our findings underscore the importance of continued education and risk communication to HCWs on Ebola and other viral hemorrhagic fevers. IgG antibodies against EBOV GP were detected in most vaccinated HCWs in Uganda 2─4 years after vaccination; however, the duration and correlates of protection warrant further investigation. |
Epidemiologic and genomic evidence for zoonotic transmission of SARS-CoV-2 among people and animals on a Michigan mink farm, United States, 2020
Ghai RR , Straily A , Wineland N , Calogero J , Stobierski MG , Signs K , Blievernicht M , Torres-Mendoza Y , Waltenburg MA , Condrey JA , Blankenship HM , Riner D , Barr N , Schalow M , Goodrich J , Collins C , Ahmad A , Metz JM , Herzegh O , Straka K , Arsnoe DM , Duffiney AG , Shriner SA , Kainulainen MH , Carpenter A , Whitehill F , Wendling NM , Stoddard RA , Retchless AC , Uehara A , Tao Y , Li Y , Zhang J , Tong S , Barton Behravesh C . Viruses 2023 15 (12) Farmed mink are one of few animals in which infection with SARS-CoV-2 has resulted in sustained transmission among a population and spillback from mink to people. In September 2020, mink on a Michigan farm exhibited increased morbidity and mortality rates due to confirmed SARS-CoV-2 infection. We conducted an epidemiologic investigation to identify the source of initial mink exposure, assess the degree of spread within the facility's overall mink population, and evaluate the risk of further viral spread on the farm and in surrounding wildlife habitats. Three farm employees reported symptoms consistent with COVID-19 the same day that increased mortality rates were observed among the mink herd. One of these individuals, and another asymptomatic employee, tested positive for SARS-CoV-2 by real-time reverse transcription PCR (RT-qPCR) 9 days later. All but one mink sampled on the farm were positive for SARS-CoV-2 based on nucleic acid detection from at least one oral, nasal, or rectal swab tested by RT-qPCR (99%). Sequence analysis showed high degrees of similarity between sequences from mink and the two positive farm employees. Epidemiologic and genomic data, including the presence of F486L and N501T mutations believed to arise through mink adaptation, support the hypothesis that the two employees with SARS-CoV-2 nucleic acid detection contracted COVID-19 from mink. However, the specific source of virus introduction onto the farm was not identified. Three companion animals living with mink farm employees and 31 wild animals of six species sampled in the surrounding area were negative for SARS-CoV-2 by RT-qPCR. Results from this investigation support the necessity of a One Health approach to manage the zoonotic spread of SARS-CoV-2 and underscores the critical need for multifaceted public health approaches to prevent the introduction and spread of respiratory viruses on mink farms. |
Recombinant Sudan virus and evaluation of humoral cross-reactivity between Ebola and Sudan virus glycoproteins after infection or rVSV-ΔG-ZEBOV-GP vaccination
Kainulainen MH , Harmon JR , Whitesell AN , Bergeron E , Karaaslan E , Cossaboom CM , Malenfant JH , Kofman A , Montgomery JM , Choi MJ , Albariño CG , Spiropoulou CF . Emerg Microbes Infect 2023 12 (2) 2265660 Ebola disease outbreaks are major public health events because of human-to-human transmission and high mortality. These outbreaks are most often caused by Ebola virus, but at least three related viruses can also cause the disease. In 2022, Sudan virus re-emerged causing more than 160 confirmed and probable cases. This report describes generation of a recombinant Sudan virus and demonstrates its utility by quantifying antibody cross-reactivity between Ebola and Sudan virus glycoproteins after human infection or vaccination with a licensed Ebola virus vaccine. |
Molecular characterization of the 2022 Sudan virus disease outbreak in Uganda
Balinandi S , Whitmer S , Mulei S , Nassuna C , Pimundu G , Muyigi T , Kainulainen M , Shedroff E , Krapiunaya I , Scholte F , Nyakarahuka L , Tumusiime A , Kyondo J , Baluku J , Kiconco J , Harris JR , Ario AR , Kagirita A , Bosa HK , Ssewanyana I , Nabadda S , Mwebesa HG , Aceng JR , Atwine D , Lutwama JJ , Shoemaker TR , Montgomery JM , Kaleebu P , Klena JD . J Virol 2023 97 (10) e0059023 Uganda experienced five Ebola disease outbreaks caused by Bundibugyo virus (n = 1) and Sudan virus (SUDV) (n = 4) from 2000 to 2021. On 20 September 2022, Uganda declared a fifth Sudan virus disease outbreak in the Mubende district, resulting in 142 confirmed and 22 probable cases by the end of the outbreak declaration on 11 January 2023. The earliest identified cases, through retrospective case investigations, had onset in early August 2022. From the 142 confirmed cases, we performed unbiased (Illumina) and SUDV-amplicon-specific (Minion) high-throughput sequencing to obtain 120 SUDV genome-and coding-complete sequences, representing 95.4% (104/109) of SVD-confirmed individuals within a sequence-able range (Ct ≤30) and 10 genome sequences outside of this range and 6 duplicate genome sequences. A comparison of the nucleotide genetic relatedness for the newly emerged Mubende variant indicated that it was most closely related to the Nakisamata SUDV sequence from 2011, represented a likely new zoonotic spillover event, and exhibited an inter- and intra-outbreak substitution rate consistent with previous outbreaks. The most recent common ancestor for the Mubende variant was estimated to have occurred in October and November 2021. The Mubende variant glycoprotein amino acid sequences exhibited 99.7% similarity altogether and a maximum of 96.1% glycoprotein similarity compared to historical SUDV strains from 1976. Integrating the genetic sequence and epidemiological data into the response activities generated a broad overview of the outbreak, allowing for quick fact-checking of epidemiological connections between the identified patients. IMPORTANCE Ebola disease (EBOD) is a public health threat with a high case fatality rate. Most EBOD outbreaks have occurred in remote locations, but the 2013-2016 Western Africa outbreak demonstrated how devastating EBOD can be when it reaches an urban population. Here, the 2022 Sudan virus disease (SVD) outbreak in Mubende District, Uganda, is summarized, and the genetic relatedness of the new variant is evaluated. The Mubende variant exhibited 96% amino acid similarity with historic SUDV sequences from the 1970s and a high degree of conservation throughout the outbreak, which was important for ongoing diagnostics and highly promising for future therapy development. Genetic differences between viruses identified during the Mubende SVD outbreak were linked with epidemiological data to better interpret viral spread and contact tracing chains. This methodology should be used to better integrate discrete epidemiological and sequence data for future viral outbreaks. |
Vaccination with the Crimean-Congo hemorrhagic fever virus viral replicon vaccine induces NP-based T-cell activation and antibodies possessing Fc-mediated effector functions
Scholte FEM , Karaaslan E , O'Neal TJ , Sorvillo TE , Genzer SC , Welch SR , Coleman-McCray JD , Spengler JR , Kainulainen MH , Montgomery JM , Pegan SD , Bergeron E , Spiropoulou CF . Front Cell Infect Microbiol 2023 13 1233148 Crimean-Congo hemorrhagic fever virus (CCHFV; family Nairoviridae) is a tick-borne pathogen that frequently causes lethal disease in humans. CCHFV has a wide geographic distribution, and cases have been reported in Africa, Asia, the Middle East, and Europe. Availability of a safe and efficacious vaccine is critical for restricting outbreaks and preventing disease in endemic countries. We previously developed a virus-like replicon particle (VRP) vaccine that provides complete protection against homologous and heterologous lethal CCHFV challenge in mice after a single dose. However, the immune responses induced by this vaccine are not well characterized, and correlates of protection remain unknown. Here we comprehensively characterized the kinetics of cell-mediated and humoral immune responses in VRP-vaccinated mice, and demonstrate that they predominantly target the nucleoprotein (NP). NP antibodies are not associated with protection through neutralizing activity, but VRP vaccination results in NP antibodies possessing Fc-mediated antibody effector functions, such as complement activation (ADCD) and antibody-mediated cellular phagocytosis (ADCP). This suggests that Fc-mediated effector functions may contribute to this vaccine's efficacy. |
Single-dose mucosal replicon-particle vaccine protects against lethal Nipah virus infection up to 3 days after vaccination
Welch SR , Spengler JR , Genzer SC , Coleman-McCray JD , Harmon JR , Sorvillo TE , Scholte FEM , Rodriguez SE , O'Neal TJ , Ritter JM , Ficarra G , Davies KA , Kainulainen MH , Karaaslan E , Bergeron É , Goldsmith CS , Lo MK , Nichol ST , Montgomery JM , Spiropoulou CF . Sci Adv 2023 9 (31) eadh4057 Nipah virus (NiV) causes a highly lethal disease in humans who present with acute respiratory or neurological signs. No vaccines against NiV have been approved to date. Here, we report on the clinical impact of a novel NiV-derived nonspreading replicon particle lacking the fusion (F) protein gene (NiVΔF) as a vaccine in three small animal models of disease. A broad antibody response was detected that included immunoglobulin G (IgG) and IgA subtypes with demonstrable Fc-mediated effector function targeting multiple viral antigens. Single-dose intranasal vaccination up to 3 days before challenge prevented clinical signs and reduced virus levels in hamsters and immunocompromised mice; decreases were seen in tissues and mucosal secretions, critically decreasing potential for virus transmission. This virus replicon particle system provides a vital tool to the field and demonstrates utility as a highly efficacious and safe vaccine candidate that can be administered parenterally or mucosally to protect against lethal Nipah disease. |
Development of a neutralization assay using a vesicular stomatitis virus expressing Nipah virus glycoprotein and a fluorescent protein
Jain S , Lo MK , Kainulainen MH , Welch SR , Spengler JR , Satter SM , Rahman MZ , Hossain ME , Chiang CF , Klena JD , Bergeron É , Montgomery JM , Spiropoulou CF , Albariño CG . Virology 2023 587 109858 Nipah virus (NiV) is a highly pathogenic paramyxovirus with a high case fatality rate. Due to its high pathogenicity, pandemic potential, and lack of therapeutics or approved vaccines, its study requires biosafety level 4 (BSL4) containment. In this report, we developed a novel neutralization assay for use in biosafety level 2 laboratories. The assay uses a recombinant vesicular stomatitis virus expressing NiV glycoprotein and a fluorescent protein. The recombinant virus propagates as a replication-competent virus in a cell line constitutively expressing NiV fusion protein, but it is restricted to a single round of replication in wild-type cells. We used this system to evaluate the neutralization activity of monoclonal and polyclonal antibodies, plasma from NiV-infected hamsters, and serum from human patients. Therefore, this recombinant virus could be used as a surrogate for using pathogenic NiV and may constitute a powerful tool to develop therapeutics in low containment laboratories. |
Rapid Development of Neutralizing and Diagnostic SARS-COV-2 Mouse Monoclonal Antibodies (preprint)
Chapman AP , Tang X , Lee JR , Chida A , Mercer K , Wharton RE , Kainulainen M , Harcourt JL , Martines RB , Schroeder M , Zhao L , Bryksin A , Zhou B , Bergeron E , Bollweg BC , Tamin A , Thornburg N , Wentworth DE , Petway D , Bagarozzi DA Jr , Finn MG , Goldstein JM . bioRxiv 2020 2020.10.13.338095 The need for high-affinity, SARS-CoV-2-specific monoclonal antibodies (mAbs) is critical in the face of the global COVID-19 pandemic, as such reagents can have important diagnostic, research, and therapeutic applications. Of greatest interest is the ~300 amino acid receptor binding domain (RBD) within the S1 subunit of the spike protein because of its key interaction with the human angiotensin converting enzyme 2 (hACE2) receptor present on many cell types, especially lung epithelial cells. We report here the development and functional characterization of 29 nanomolar-affinity mouse SARS-CoV-2 mAbs created by an accelerated immunization and hybridoma screening process. Differing functions, including binding of diverse protein epitopes, viral neutralization, impact on RBD-hACE2 binding, and immunohistochemical staining of infected lung tissue, were correlated with variable gene usage and sequence.Competing Interest StatementThe authors have declared no competing interest. |
High-throughput quantitation of SARS-CoV-2 antibodies in a single-dilution homogeneous assay (preprint)
Kainulainen MH , Bergeron E , Chatterjee P , Chapman AP , Lee J , Chida A , Tang X , Wharton RE , Mercer KB , Petway M , Jenks HM , Flietstra TD , Schuh AJ , Satheshkumar PS , Chaitram JM , Owen SM , Finn MG , Goldstein JM , Montgomery JM , Spiropoulou CF . medRxiv 2020 2020.09.16.20195446 SARS-CoV-2 emerged in late 2019 and has since spread around the world, causing a pandemic of the respiratory disease COVID-19. Detecting antibodies against the virus is an essential tool for tracking infections and developing vaccines. Such tests, primarily utilizing the enzyme-linked immunosorbent assay (ELISA) principle, can be either qualitative (reporting positive/negative results) or quantitative (reporting a value representing the quantity of specific antibodies). Quantitation is vital for determining stability or decline of antibody titers in convalescence, efficacy of different vaccination regimens, and detection of asymptomatic infections. Quantitation typically requires two-step ELISA testing, in which samples are first screened in a qualitative assay and positive samples are subsequently analyzed as a dilution series. To overcome the throughput limitations of this approach, we developed a simpler and faster system that is highly automatable and achieves quantitation in a single-dilution screening format with sensitivity and specificity comparable to those of ELISA.One sentence summary Protein complementation enables mix-and-read SARS-CoV-2 serology that rivals sensitivity and specificity of ELISA but excels in throughput and quantitation.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis research was funded by the Centers for Disease Control and Prevention.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Residual specimen materials were used for diagnostics development under a protocol that was reviewed and approved by the CDC Institutional Review Board (See 45 C.F.R. part 46; 21 C.F.R. part 56)All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesNo external data links |
Differential neutralization and inhibition of SARS-CoV-2 variants by antibodies elicited by COVID-19 mRNA vaccines (preprint)
Wang L , Kainulainen MH , Jiang N , Di H , Bonenfant G , Mills L , Currier M , Shrivastava-Ranjan P , Calderon BM , Sheth M , Hossain J , Lin X , Lester S , Pusch E , Jones J , Cui D , Chatterjee P , Jenks HM , Morantz E , Larson G , Hatta M , Harcourt J , Tamin A , Li Y , Tao Y , Zhao K , Burroughs A , Wong T , Tong S , Barnes JR , Tenforde MW , Self WH , Shapiro NI , Exline MC , Files DC , Gibbs KW , Hager DN , Patel M , Laufer Halpin AS , Lee JS , Xie X , Shi PY , Davis CT , Spiropoulou CF , Thornburg NJ , Oberste MS , Dugan V , Wentworth DE , Zhou B , Batra D , Beck A , Caravas J , Cintron-Moret R , Cook PW , Gerhart J , Gulvik C , Hassell N , Howard D , Knipe K , Kondor RJ , Kovacs N , Lacek K , Mann BR , McMullan LK , Moser K , Paden CR , Martin BR , Schmerer M , Shepard S , Stanton R , Stark T , Sula E , Tymeckia K , Unoarumhi Y . bioRxiv 2021 30 The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of many new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccines. To ascertain and rank the risk of VOCs and VOIs, we analyzed their ability to escape from vaccine-induced antibodies. The variants showed differential reductions in neutralization and replication titers by post-vaccination sera. Although the Omicron variant showed the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retained moderate neutralizing activity against that variant. Therefore, vaccination remains the most effective strategy to combat the COVID-19 pandemic. |
One Health Investigation of SARS-CoV-2 in People and Animals on Multiple Mink Farms in Utah.
Cossaboom CM , Wendling NM , Lewis NM , Rettler H , Harvey RR , Amman BR , Towner JS , Spengler JR , Erickson R , Burnett C , Young EL , Oakeson K , Carpenter A , Kainulainen MH , Chatterjee P , Flint M , Uehara A , Li Y , Zhang J , Kelleher A , Lynch B , Retchless AC , Tong S , Ahmad A , Bunkley P , Godino C , Herzegh O , Drobeniuc J , Rooney J , Taylor D , Barton Behravesh C . Viruses 2022 15 (1) From July-November 2020, mink (Neogale vison) on 12 Utah farms experienced an increase in mortality rates due to confirmed SARS-CoV-2 infection. We conducted epidemiologic investigations on six farms to identify the source of virus introduction, track cross-species transmission, and assess viral evolution. Interviews were conducted and specimens were collected from persons living or working on participating farms and from multiple animal species. Swabs and sera were tested by SARS-CoV-2 real-time reverse transcription polymerase chain reaction (rRT-PCR) and serological assays, respectively. Whole genome sequencing was attempted for specimens with cycle threshold values <30. Evidence of SARS-CoV-2 infection was detected by rRT-PCR or serology in ≥1 person, farmed mink, dog, and/or feral cat on each farm. Sequence analysis showed high similarity between mink and human sequences on corresponding farms. On farms sampled at multiple time points, mink tested rRT-PCR positive up to 16 weeks post-onset of increased mortality. Workers likely introduced SARS-CoV-2 to mink, and mink transmitted SARS-CoV-2 to other animal species; mink-to-human transmission was not identified. Our findings provide critical evidence to support interventions to prevent and manage SARS-CoV-2 in people and animals on mink farms and emphasizes the importance of a One Health approach to address emerging zoonoses. |
Structural characterization of protective non-neutralizing antibodies targeting Crimean-Congo hemorrhagic fever virus
Durie IA , Tehrani ZR , Karaaslan E , Sorvillo TE , McGuire J , Golden JW , Welch SR , Kainulainen MH , Harmon JR , Mousa JJ , Gonzalez D , Enos S , Koksal I , Yilmaz G , Karakoc HN , Hamidi S , Albay C , Spengler JR , Spiropoulou CF , Garrison AR , Sajadi MM , Bergeron É , Pegan SD . Nat Commun 2022 13 (1) 7298 Crimean-Congo Hemorrhagic Fever Virus (CCHFV) causes a life-threatening disease with up to a 40% mortality rate. With no approved medical countermeasures, CCHFV is considered a public health priority agent. The non-neutralizing mouse monoclonal antibody (mAb) 13G8 targets CCHFV glycoprotein GP38 and protects mice from lethal CCHFV challenge when administered prophylactically or therapeutically. Here, we reveal the structures of GP38 bound with a human chimeric 13G8 mAb and a newly isolated CC5-17 mAb from a human survivor. These mAbs bind overlapping epitopes with a shifted angle. The broad-spectrum potential of c13G8 and CC5-17 and the practicality of using them against Aigai virus, a closely related nairovirus were examined. Binding studies demonstrate that the presence of non-conserved amino acids in Aigai virus corresponding region prevent CCHFV mAbs from binding Aigai virus GP38. This information, coupled with in vivo efficacy, paves the way for future mAb therapeutics effective against a wide swath of CCHFV strains. |
GPS Tracking of Free-Roaming Cats (Felis catus) on SARS-CoV-2-Infected Mink Farms in Utah.
Amman BR , Cossaboom CM , Wendling NM , Harvey RR , Rettler H , Taylor D , Kainulainen MH , Ahmad A , Bunkley P , Godino C , Tong S , Li Y , Uehara A , Kelleher A , Zhang J , Lynch B , Behravesh CB , Towner JS . Viruses 2022 14 (10) Zoonotic transmission of SARS-CoV-2 from infected humans to other animals has been documented around the world, most notably in mink farming operations in Europe and the United States. Outbreaks of SARS-CoV-2 on Utah mink farms began in late July 2020 and resulted in high mink mortality. An investigation of these outbreaks revealed active and past SARS-CoV-2 infections in free-roaming and in feral cats living on or near several mink farms. Cats were captured using live traps, were sampled, fitted with GPS collars, and released on the farms. GPS tracking of these cats show they made frequent visits to mink sheds, moved freely around the affected farms, and visited surrounding residential properties and neighborhoods on multiple occasions, making them potential low risk vectors of additional SARS-CoV-2 spread in local communities. |
Performance of SARS-CoV-2 Antigens in a Multiplex Bead Assay for Integrated Serological Surveillance of Neglected Tropical and Other Diseases.
Gwyn S , Abubakar A , Akinmulero O , Bergeron E , Blessing UN , Chaitram J , Coughlin MM , Dawurung AB , Dickson FN , Esiekpe M , Evbuomwan E , Greby SM , Iriemenam NC , Kainulainen MH , Naanpoen TA , Napoloen L , Odoh I , Okoye M , Olaleye T , Schuh AJ , Owen SM , Samuel A , Martin DL . Am J Trop Med Hyg 2022 107 (2) 260-7 Serosurveillance can provide estimates of population-level exposure to infectious pathogens and has been used extensively during the COVID-19 pandemic. Simultaneous, serological testing for multiple pathogens can be done using bead-based immunoassays to add value to disease-specific serosurveys. We conducted a validation of four SARS-CoV-2 antigens-full-length spike protein, two receptor binding domain proteins, and the nucleocapsid protein-on our existing multiplex bead assay (MBA) for enteric diseases, malaria, and vaccine preventable diseases. After determining the optimal conditions for coupling the antigens to microsphere beads, the sensitivity and specificity of the assay were determined on two instruments (Luminex-200 and MAGPIX) when testing singly (monoplex) versus combined (multiplex). Sensitivity was assessed using plasma from 87 real-time reverse transcription polymerase chain reaction (rRT-PCR) positive persons collected in March-May of 2020 and ranged from 94.3% to 96.6% for the different testing conditions. Specificity was assessed using 98 plasma specimens collected prior to December 2019 and plasma from 19 rRT-PCR negative persons and ranged from 97.4% to 100%. The positive percent agreement was 93.8% to 97.9% using 48 specimens collected > 21 days post-symptom onset, while the negative percent agreement was ≥ 99% for all antigens. Test performance was similar using monoplex or multiplex testing. Integrating SARS-CoV-2 serology with other diseases of public health interest could add significant value to public health programs that have suffered severe programmatic setbacks during the COVID-19 pandemic. |
Differential neutralization and inhibition of SARS-CoV-2 variants by antibodies elicited by COVID-19 mRNA vaccines.
Wang L , Kainulainen MH , Jiang N , Di H , Bonenfant G , Mills L , Currier M , Shrivastava-Ranjan P , Calderon BM , Sheth M , Mann BR , Hossain J , Lin X , Lester S , Pusch EA , Jones J , Cui D , Chatterjee P , Jenks MH , Morantz EK , Larson GP , Hatta M , Harcourt JL , Tamin A , Li Y , Tao Y , Zhao K , Lacek K , Burroughs A , Wang W , Wilson M , Wong T , Park SH , Tong S , Barnes JR , Tenforde MW , Self WH , Shapiro NI , Exline MC , Files DC , Gibbs KW , Hager DN , Patel M , Halpin AL , McMullan LK , Lee JS , Xia H , Xie X , Shi PY , Davis CT , Spiropoulou CF , Thornburg NJ , Oberste MS , Dugan VG , Wentworth DE , Zhou B . Nat Commun 2022 13 (1) 4350 The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccine-mediated protection from disease. To ascertain and rank the risk of VOCs and VOIs, we analyze the ability of 14 variants (614G, Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, Kappa, Lambda, Mu, and Omicron) to escape from mRNA vaccine-induced antibodies. The variants show differential reductions in neutralization and replication by post-vaccination sera. Although the Omicron variant (BA.1, BA.1.1, and BA.2) shows the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retain moderate neutralizing activity against that variant. Therefore, vaccination remains an effective strategy during the COVID-19 pandemic. |
Transmission of SARS-CoV-2 Delta variant (B.1.617.2) from a fully vaccinated human to a canine in Georgia, July 2021.
Wendling NM , Carpenter A , Liew A , Ghai RR , Gallardo-Romero N , Stoddard RA , Tao Y , Zhang J , Retchless AC , Ahmad A , Bunkley P , Godino C , Mauldin MR , Varela K , Ritter JM , Hennebelle J , Feldpausch A , Gabel J , Kainulainen MH , Herzegh O , Tong S , Spengler JR , Barton Behravesh C . Zoonoses Public Health 2022 69 (5) 587-592 SARS-CoV-2 infection has been described in a wide range of species, including domestic animals such as dogs and cats. Illness in dogs is usually self-limiting, and further diagnostics may not be pursued if clinical signs resolve or they respond to empirical treatment. As new variants emerge, the clinical presentation and role in transmission may vary in animals. This report highlights different clinical presentations and immunological responses in two SARS-CoV-2 Delta-variant-positive dogs with similar exposure to the same fully vaccinated human with a SARS-CoV-2 infection and emphasizes the need for active surveillance and additional One Health research on SARS-CoV-2 variant infections in companion animals and other species. |
Lassa virus replicon particle vaccine protects strain 13/N guinea pigs against challenge with geographically and genetically diverse viral strains.
Spengler JR , Kainulainen MH , Welch SR , Coleman-McCray JAD , Harmon JR , Condrey JA , Scholte FEM , Nichol ST , Montgomery JM , Albariño CG , Spiropoulou CF . J Infect Dis 2022 226 (9) 1545-1550 Lassa virus (LASV) causes mild to severe hemorrhagic fever disease in humans. Strain 13/N guinea pigs are highly susceptible to infection with LASV strain Josiah (clade IV), providing a critical model system for therapeutics and vaccine development. To develop additional models of disease, we detail the clinical course in guinea pigs infected with 5 geographically and genetically diverse LASV strains. Two of the developed models (LASV clades II and III) were then used to evaluate efficacy of a virus replicon particle (VRP) vaccine against heterologous LASV challenge, demonstrating complete protection against clinical disease after a single vaccination dose. |
Rapid establishment of a frontline field laboratory in response to an imported outbreak of Ebola virus disease in western Uganda, June 2019.
Schuh AJ , Kyondo J , Graziano J , Balinandi S , Kainulainen MH , Tumusiime A , Nyakarahuka L , Mulei S , Baluku J , Lonergan W , Mayer O , Masereka R , Masereka F , Businge E , Gatare A , Kabyanga L , Muhindo S , Mugabe R , Makumbi I , Kayiwa J , Wetaka MM , Brown V , Ojwang J , Nelson L , Millard M , Nichol ST , Montgomery JM , Taboy CH , Lutwama JJ , Klena JD . PLoS Negl Trop Dis 2021 15 (12) e0009967 The Democratic Republic of the Congo (DRC) declared an Ebola virus disease (EVD) outbreak in North Kivu in August 2018. By June 2019, the outbreak had spread to 26 health zones in northeastern DRC, causing >2,000 reported cases and >1,000 deaths. On June 10, 2019, three members of a Congolese family with EVD-like symptoms traveled to western Uganda's Kasese District to seek medical care. Shortly thereafter, the Viral Hemorrhagic Fever Surveillance and Laboratory Program (VHF program) at the Uganda Virus Research Institute (UVRI) confirmed that all three patients had EVD. The Ugandan Ministry of Health declared an outbreak of EVD in Uganda's Kasese District, notified the World Health Organization, and initiated a rapid response to contain the outbreak. As part of this response, UVRI and the United States Centers for Disease Control and Prevention, with the support of Uganda's Public Health Emergency Operations Center, the Kasese District Health Team, the Superintendent of Bwera General Hospital, the United States Department of Defense's Makerere University Walter Reed Project, and the United States Mission to Kampala's Global Health Security Technical Working Group, jointly established an Ebola Field Laboratory in Kasese District at Bwera General Hospital, proximal to an Ebola Treatment Unit (ETU). The laboratory consisted of a rapid containment kit for viral inactivation of patient specimens and a GeneXpert Instrument for performing Xpert Ebola assays. Laboratory staff tested 76 specimens from alert and suspect cases of EVD; the majority were admitted to the ETU (89.3%) and reported recent travel to the DRC (58.9%). Although no EVD cases were detected by the field laboratory, it played an important role in patient management and epidemiological surveillance by providing diagnostic results in <3 hours. The integration of the field laboratory into Uganda's National VHF Program also enabled patient specimens to be referred to Entebbe for confirmatory EBOV testing and testing for other hemorrhagic fever viruses that circulate in Uganda. |
High-throughput quantitation of SARS-CoV-2 antibodies in a single-dilution homogeneous assay.
Kainulainen MH , Bergeron E , Chatterjee P , Chapman AP , Lee J , Chida A , Tang X , Wharton RE , Mercer KB , Petway M , Jenks HM , Flietstra TD , Schuh AJ , Satheshkumar PS , Chaitram JM , Owen SM , McMullan LK , Flint M , Finn MG , Goldstein JM , Montgomery JM , Spiropoulou CF . Sci Rep 2021 11 (1) 12330 SARS-CoV-2 emerged in late 2019 and has since spread around the world, causing a pandemic of the respiratory disease COVID-19. Detecting antibodies against the virus is an essential tool for tracking infections and developing vaccines. Such tests, primarily utilizing the enzyme-linked immunosorbent assay (ELISA) principle, can be either qualitative (reporting positive/negative results) or quantitative (reporting a value representing the quantity of specific antibodies). Quantitation is vital for determining stability or decline of antibody titers in convalescence, efficacy of different vaccination regimens, and detection of asymptomatic infections. Quantitation typically requires two-step ELISA testing, in which samples are first screened in a qualitative assay and positive samples are subsequently analyzed as a dilution series. To overcome the throughput limitations of this approach, we developed a simpler and faster system that is highly automatable and achieves quantitation in a single-dilution screening format with sensitivity and specificity comparable to those of ELISA. |
Rapid development of neutralizing and diagnostic SARS-COV-2 mouse monoclonal antibodies.
Chapman AP , Tang X , Lee JR , Chida A , Mercer K , Wharton RE , Kainulainen M , Harcourt JL , Martines RB , Schroeder M , Zhao L , Bryksin A , Zhou B , Bergeron E , Bollweg BC , Tamin A , Thornburg N , Wentworth DE , Petway D , Bagarozzi DA Jr , Finn MG , Goldstein JM . Sci Rep 2021 11 (1) 9682 The need for high-affinity, SARS-CoV-2-specific monoclonal antibodies (mAbs) is critical in the face of the global COVID-19 pandemic, as such reagents can have important diagnostic, research, and therapeutic applications. Of greatest interest is the ~ 300 amino acid receptor binding domain (RBD) within the S1 subunit of the spike protein because of its key interaction with the human angiotensin converting enzyme 2 (hACE2) receptor present on many cell types, especially lung epithelial cells. We report here the development and functional characterization of 29 nM-affinity mouse SARS-CoV-2 mAbs created by an accelerated immunization and hybridoma screening process. Differing functions, including binding of diverse protein epitopes, viral neutralization, impact on RBD-hACE2 binding, and immunohistochemical staining of infected lung tissue, were correlated with variable gene usage and sequence. |
Lassa virus antigen distribution and inflammation in the ear of infected strain 13/N guinea pigs
Huynh T , Gary JM , Welch SR , Coleman-McCray J , Harmon JR , Kainulainen MH , Bollweg BC , Ritter JM , Shieh WJ , Nichol ST , Zaki SR , Spiropoulou CF , Spengler JR . Antiviral Res 2020 183 104928 Sudden sensorineuronal hearing loss (SNHL) is reported in approximately one-third of survivors of Lassa fever (LF) and remains the most prominent cause of Lassa virus- (LASV) associated morbidity in convalescence. Using a guinea pig model of LF, and incorporating animals from LASV vaccine trials, we investigated viral antigen distribution and histopathology in the ear of infected animals to elucidate the pathogenesis of hearing loss associated with LASV infection. Antigen was detected only in animals that succumbed to disease and was found within structures of the inner ear that are intimately associated with neural detection and/or translation of auditory stimuli and in adjacent vasculature. No inflammation or viral cytopathic changes were observed in the inner ear or surrounding structures in these animals. In contrast, no viral antigen was detected in the ear of surviving animals. However, all survivors that exhibited clinical signs of disease during the course of infection developed perivascular mononuclear inflammation within and adjacent to the ear, indicating an ongoing inflammatory response in these animals that may contribute to hearing loss. These data contribute to the knowledge of LASV pathogenesis in the auditory system, support an immune-mediated process resulting in LASV-associated hearing loss, and demonstrate that vaccination protecting animals from clinical disease can also prevent infection-associated auditory pathology. |
Lassa virus targeting of anterior uvea and endothelium of cornea and conjunctiva in eye of guinea pig model
Gary JM , Welch SR , Ritter JM , Coleman-McCray J , Huynh T , Kainulainen MH , Bollweg BC , Parihar V , Nichol ST , Zaki SR , Spiropoulou CF , Spengler JR . Emerg Infect Dis 2019 25 (5) 865-874 Lassa virus (LASV), a hemorrhagic fever virus endemic to West Africa, causes conjunctivitis in patients with acute disease. To examine ocular manifestations of LASV, we histologically examined eyes from infected guinea pigs. In fatal disease, LASV immunostaining was most prominent in the anterior uvea, especially in the filtration angle, ciliary body, and iris and in and around vessels in the bulbar conjunctiva and peripheral cornea, where it co-localized with an endothelial marker (platelet endothelial cell adhesion molecule). Antigen was primarily associated with infiltration of T-lymphocytes around vessels in the anterior uvea and with new vessel formation at the peripheral cornea. In animals that exhibited clinical signs but survived infection, eyes had little to no inflammation and no LASV immunostaining 6 weeks after infection. Overall, in this model, LASV antigen was restricted to the anterior uvea and was associated with mild chronic inflammation in animals with severe disease but was not detected in survivors. |
Protection from lethal Lassa disease can be achieved both before and after virus exposure by administration of single-cycle replicating Lassa virus replicon particles.
Kainulainen MH , Spengler JR , Welch SR , Coleman-McCray JD , Harmon JR , Scholte FEM , Goldsmith CS , Nichol ST , Albarino CG , Spiropoulou CF . J Infect Dis 2019 220 (8) 1281-1289 Lassa fever is a frequently severe human disease that is endemic to several countries in West Africa. To date, no licensed vaccines are available to prevent Lassa virus (LASV) infection, even though Lassa fever is thought to be an important disease contributing to mortality and both acute and chronic morbidity. We have previously described a vaccine candidate composed of single-cycle LASV replicon particles (VRPs) and a stable cell line for their production. Here, we refine the genetic composition of the VRPs and demonstrate the ability to reproducibly purify them with high yields. Studies in the guinea pig model confirm efficacy of the vaccine candidate, demonstrate that single-cycle replication is necessary for complete protection by the VRP vaccine, and show that post-exposure vaccination can confer protection from lethal outcome. |
Single-dose replicon particle vaccine provides complete protection against Crimean-Congo hemorrhagic fever virus in mice
Scholte FEM , Spengler JR , Welch SR , Harmon JR , Coleman-McCray JD , Freitas BT , Kainulainen MH , Pegan SD , Nichol ST , Bergeron E , Spiropoulou CF . Emerg Microbes Infect 2019 8 (1) 575-578 Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging tick-borne virus from the family Nairoviridae that frequently causes lethal disease in humans. CCHFV has a wide geographic distribution, and cases have been reported in Africa, Asia, the Middle East, and Europe. Recent autochthonous cases in Spain demonstrate the emergence of CCHFV in previously naïve regions [1]. CCHFV is considered a public health threat due to its epidemic potential, high case fatality rate, and lack of treatment options. Currently, no antivirals or licensed vaccines with proven efficacy are available. CCHFV was recently included on the World Health Organization Research and Development Blueprint list of infectious agents critically needing effective prophylaxis and therapeutics to prevent major outbreaks. Development of a safe and efficacious vaccine is critical for restricting future outbreaks and preventing disease in endemic countries. In an outbreak situation, a CCHFV vaccine should ideally confer maximal protection after administration of a single dose to rapidly protect at-risk populations. |
Antibody-mediated virus neutralization is not a universal mechanism of Marburg, Ebola or Sosuga virus clearance in Egyptian rousette bats
Schuh AJ , Amman BR , Sealy TK , Kainulainen MH , Chakrabarti AK , Guerrero LW , Nichol ST , Albarino CG , Towner JS . J Infect Dis 2018 219 (11) 1716-1721 Although bats are increasingly being recognized as natural reservoir hosts of emerging zoonotic viruses, little is known about how they control and clear virus infection in the absence of clinical disease. Here, we test >50 convalescent sera from Egyptian rousette bats (ERBs) experimentally primed or prime-boosted with Marburg virus, Ebola virus or Sosuga virus for the presence of virus-specific neutralizing antibodies using infectious reporter viruses. After serum neutralization testing, we conclude that antibody-mediated virus neutralization does not contribute significantly to the control and clearance of Marburg virus, Ebola virus or Sosuga virus infection in ERBs. |
The S Genome Segment Is Sufficient to Maintain Pathogenicity in Intra-Clade Lassa Virus Reassortants in a Guinea Pig Model.
Welch SR , Scholte FEM , Albarino CG , Kainulainen MH , Coleman-McCray JD , Guerrero LW , Chakrabarti AK , Klena JD , Nichol ST , Spengler JR , Spiropoulou CF . Front Cell Infect Microbiol 2018 8 240 Genome reassortment in Lassa virus (LASV) has been reported in nature, but phenotypic consequences of this phenomenon are not well described. Here we characterize, both in vitro and in vivo, reassortment between 2 LASV strains: the prototypic 1976 Josiah strain and a more recently isolated 2015 Liberian strain. In vitro analysis showed that although cis- and trans-acting elements of viral RNA synthesis were compatible between strains, reassortants demonstrated different levels of viral replication. These differences were also apparent in vivo, as reassortants varied in pathogenicity in the guinea pig model of LASV infection. The reassortant variant containing the Josiah S segment retained the virulence of the parental Josiah strain, but the reassortant variant containing the S segment of the Liberian isolate was highly attenuated compared to both parental strains. Contrary to observations in reassortants between LASV and other arenavirus species, which suggest that L segment-encoded factors are responsible for virulence, these studies highlight a role for S segment-encoded virulence factors in disease, and also suggest that inefficient interactions between proteins of heterologous strains may limit the prevalence of reassortant LASV variants in nature. |
Use of a scalable replicon-particle vaccine to protect against lethal Lassa virus infection in the guinea pig model
Kainulainen MH , Spengler JR , Welch SR , Coleman-McCray JD , Harmon JR , Klena JD , Nichol ST , Albarino CG , Spiropoulou CF . J Infect Dis 2018 217 (12) 1957-1966 Lassa fever is a viral zoonosis that can be transmitted from person to person, especially in the hospital setting. The disease is endemic to several countries in West Africa and can be a major contributor to morbidity and mortality in affected areas. There are no approved vaccines to prevent Lassa virus infection. In this work, we present a vaccine candidate that combines the scalability and efficacy benefits of a live vaccine with the safety benefits of single-cycle replication. The system consists of Lassa virus replicon particles devoid of the virus essential glycoprotein gene, and a cell line that expresses the glycoprotein products, enabling efficient vaccine propagation. Guinea pigs vaccinated with these particles showed no clinical reaction to the inoculum and were protected against fever, weight loss, and lethality after infection with Lassa virus. |
Rapid determination of ebolavirus infectivity in clinical samples using a novel reporter cell line
Kainulainen MH , Nichol ST , Albarino CG , Spiropoulou CF . J Infect Dis 2017 216 (11) 1380-1385 Modern ebolavirus diagnostics rely primarily on qRT-PCR, a sensitive method to detect viral genetic material in the acute phase of the disease. However, qRT-PCR does not confirm presence of infectious virus, presenting limitations in patient and outbreak management. Attempts to isolate infectious virus rely on in vivo or basic cell culture approaches, which prohibit rapid results and screening. Here we present a novel reporter cell line capable of detecting live ebolaviruses. These cells permit sensitive large-scale screening and titration of infectious virus in experimental and clinical samples, independent of ebolavirus species and variant. |
Ebola Virus Disease Diagnostics, Sierra Leone: Analysis of Real-time Reverse Transcription-Polymerase Chain Reaction Values for Clinical Blood and Oral Swab Specimens.
Erickson BR , Sealy TK , Flietstra T , Morgan L , Kargbo B , Matt-Lebby VE , Gibbons A , Chakrabarti AK , Graziano J , Presser L , Flint M , Bird BH , Brown S , Klena JD , Blau DM , Brault AC , Belser JA , Salzer JS , Schuh AJ , Lo M , Zivcec M , Priestley RA , Pyle M , Goodman C , Bearden S , Amman BR , Basile A , Bergeron E , Bowen MD , Dodd KA , Freeman MM , McMullan LK , Paddock CD , Russell BJ , Sanchez AJ , Towner JS , Wang D , Zemtsova GE , Stoddard RA , Turnsek M , Guerrero LW , Emery SL , Stovall J , Kainulainen MH , Perniciaro JL , Mijatovic-Rustempasic S , Shakirova G , Winter J , Sexton C , Liu F , Slater K , Anderson R , Andersen L , Chiang CF , Tzeng WP , Crowe SJ , Maenner MJ , Spiropoulou CF , Nichol ST , Stroher U . J Infect Dis 2016 214 S258-S262 During the Ebola virus outbreak of 2013-2016, the Viral Special Pathogens Branch field laboratory in Sierra Leone tested approximately 26 000 specimens between August 2014 and October 2015. Analysis of the B2M endogenous control Ct values showed its utility in monitoring specimen quality, comparing results with different specimen types, and interpretation of results. For live patients, blood is the most sensitive specimen type and oral swabs have little diagnostic utility. However, swabs are highly sensitive for diagnostic testing of corpses. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure