Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-30 (of 68 Records) |
Query Trace: Joyce A[original query] |
---|
Prevalence of cardiovascular events in a population-based registry of patients with systemic lupus erythematosus
Joyce DP , Berger JS , Guttmann A , Hasan G , Buyon JP , Belmont HM , Salmon J , Askanase A , Bathon J , Geraldino-Pardilla L , Ali Y , Ginzler EM , Putterman C , Gordon C , Helmick CG , Barbour KE , Gold HT , Parton H , Izmirly PM . Arthritis Res Ther 2024 26 (1) 160 BACKGROUND: The Manhattan Lupus Surveillance Program (MLSP), a population-based retrospective registry of patients with systemic lupus erythematosus (SLE), was used to investigate the prevalence of cardiovascular disease events (CVE) and compare rates among sex, age and race/ethnicity to population-based controls. METHODS: Patients with prevalent SLE in 2007 aged ≥ 20 years in the MLSP were included. CVE required documentation of a myocardial infarction or cerebrovascular accident. We calculated crude risk ratios and adjusted risk ratios (ARR) controlling for sex, age group, race and ethnicity, and years since diagnosis. Data from the 2009-2010 National Health and Nutrition Examination Survey (NHANES) and the 2013-2014 NYC Health and Nutrition Examination Survey (NYC HANES) were used to calculate expected CVE prevalence by multiplying NHANES and NYC HANES estimates by strata-specific counts of patients with SLE. Crude prevalence ratios (PRs) using national and NYC estimates and age standardized prevalence ratios (ASPRs) using national estimates were calculated. RESULTS: CVE occurred in 13.9% of 1,285 MLSP patients with SLE, and risk was increased among men (ARR:1.7, 95%CI:1.2-2.5) and older adults (age > 60 ARR:2.5, 95%CI:1.7-3.8). Compared with non-Hispanic Asian patients, CVE risk was elevated among Hispanic/Latino (ARR:3.1, 95%CI:1.4-7.0) and non-Hispanic Black (ARR:3.5, 95%CI1.6-7.9) patients as well as those identified as non-Hispanic and in another or multiple racial groups (ARR:4.2, 95%CI:1.1-15.8). Overall, CVE prevalence was higher among patients with SLE than nationally (ASPR:3.1, 95%CI:3.0-3.1) but did not differ by sex. Compared with national race and ethnicity-stratified estimates, CVE among patients with SLE was highest among Hispanics/Latinos (ASPR:4.3, 95%CI:4.2-4.4). CVE was also elevated among SLE registry patients compared with all NYC residents. Comparisons with age-stratified national estimates revealed PRs of 6.4 (95%CI:6.2-6.5) among patients aged 20-49 years and 2.2 (95%CI:2.1-2.2) among those ≥ 50 years. Male (11.3, 95%CI:10.5-12.1), Hispanic/Latino (10.9, 95%CI:10.5-11.4) and non-Hispanic Black (6.2, 95%CI:6.0-6.4) SLE patients aged 20-49 had the highest CVE prevalence ratios. CONCLUSIONS: These population-based estimates of CVE in a diverse registry of patients with SLE revealed increased rates among younger male, Hispanic/Latino and non-Hispanic Black patients. These findings reinforce the need to appropriately screen for CVD among all SLE patients but particularly among these high-risk patients. |
Of Those We Have Lost and Those Who Have Saved So Many Others
Chorba T . Emerg Infect Dis 2022 28 (7) 1537-9 Modernism is a term ascribed to styles and transformative movements in multiple cultural spheres—philosophy, music, art, architecture, and literature. In its essence, modernism has at its core experimentation, as a term usually applied to efforts and creations of the late 19th or early 20th century, but sometimes later, characterized by intentional departures from traditional forms. | | There are many well-known examples of modernist efforts in their respective spheres and periods. In biology, Charles Darwin questioned the concept of human uniqueness with the theory of evolution. In literature, the term modernist has been applied to European and American writers who created substantive departures from tradition, as was seen in the works of Fyodor Dostoyevsky, Gustave Flaubert, James Joyce, and William Carlos Williams. In music, modernism is a term ascribed to the period 1890–1930, and postmodernism is a term sometimes accorded to phenomena with modernist qualities but occurring after 1930; however, some critics use modernism to describe a movement of rebellion that continues, dependent on the musician’s attitude rather than the musician’s moment in time. Certainly, Ella Fitzgerald, Miles Davis, Bob Dylan, John Lennon, Charles Mingus, the Rolling Stones, and Neil Young created musical forms that featured modernist iconoclasm, stepping well beyond the early 20th century. In art, modernism is used as a broader categorization of several novel stylistic departures including realism, postimpressionism, fauvism, cubism, dadaism, surrealism, abstract expressionism, and minimalism, each with elements of deliberate experimentation and innovation. |
QuickStats: Percentage of women who smoked* cigarettes during pregnancy, by race and hispanic origin(†) - National Vital Statistics System, United States, 2016 and 2022
Martin Joyce A . MMWR Morb Mortal Wkly Rep 2023 72 (50) 1355 The percentage of women who smoked cigarettes at any time during pregnancy declined from 7.2% to 3.7% from 2016 to 2022. Smoking during pregnancy declined in each race and Hispanic-origin group during this period. Percentages declined from 16.7% to 11.0% among non-Hispanic American Indian or Alaska Native women, from 10.5% to 5.4% among non-Hispanic White women, from 6.0% to 3.1% among non-Hispanic Black or African American women, from 4.5% to 2.1% among non-Hispanic Native Hawaiian or other Pacific Islander women, from 1.8% to 1.0% among Hispanic or Latino women, and from 0.6% to 0.3% among non-Hispanic Asian women. |
Paxlovid Associated with Decreased Hospitalization Rate Among Adults with COVID-19 - United States, April-September 2022.
Shah MM , Joyce B , Plumb ID , Sahakian S , Feldstein LR , Barkley E , Paccione M , Deckert J , Sandmann D , Gerhart JL , Hagen MB . MMWR Morb Mortal Wkly Rep 2022 71 (48) 1531-1537 Nirmatrelvir-ritonavir (Paxlovid), an oral antiviral treatment, is authorized for adults with mild-to-moderate COVID-19 who are at increased risk for progression to severe illness. However, real-world evidence on the benefit of Paxlovid, according to vaccination status, age group, and underlying health conditions, is limited. To examine the benefit of Paxlovid in adults aged ≥18 years in the United States, a large electronic health record (EHR) data set (Cosmos(†)) was analyzed to assess the association between receiving a prescription for Paxlovid and hospitalization with a COVID-19 diagnosis in the ensuing 30 days. A Cox proportional hazards model was used to estimate this association, adjusted for demographic characteristics, geographic location, vaccination, previous infection, and number of underlying health conditions. Among 699,848 adults aged ≥18 years eligible for Paxlovid during April-August 2022, 28.4% received a Paxlovid prescription within 5 days of COVID-19 diagnosis. Being prescribed Paxlovid was associated with a lower hospitalization rate among the overall study population (adjusted hazard ratio [aHR] = 0.49), among those who had received ≥3 mRNA COVID-19 vaccines (aHR = 0.50), and across age groups (18-49 years: aHR = 0.59; 50-64 years: aHR = 0.40; and ≥65 years: aHR = 0.53). Paxlovid should be prescribed to eligible adults to reduce the risk of COVID-19-associated hospitalization. |
Chapare Hemorrhagic Fever and Virus Detection in Rodents in Bolivia in 2019.
LoayzaMafayle R , Morales-Betoulle ME , Romero C , Cossaboom CM , Whitmer S , AlvarezAguilera CE , AvilaArdaya C , CruzZambrana M , DvalosAnajia A , MendozaLoayza N , Montao AM , MoralesAlvis FL , RevolloGuzmn J , SasasMartnez S , AlarcnDeLaVega G , MedinaRamrez A , MolinaGutirrez JT , CornejoPinto AJ , SalasBacci R , Brignone J , Garcia J , Aez A , Mendez-Rico J , Luz K , Segales A , TorrezCruz KM , Valdivia-Cayoja A , Amman BR , Choi MJ , Erickson BR , Goldsmith C , Graziano JC , Joyce A , Klena JD , Leach A , Malenfant JH , Nichol ST , Patel K , Sealy T , Shoemaker T , Spiropoulou CF , Todres A , Towner JS , Montgomery JM . N Engl J Med 2022 386 (24) 2283-2294 ![]() ![]() BACKGROUND: In June 2019, the Bolivian Ministry of Health reported a cluster of cases of hemorrhagic fever that started in the municipality of Caranavi and expanded to La Paz. The cause of these cases was unknown. METHODS: We obtained samples for next-generation sequencing and virus isolation. Human and rodent specimens were tested by means of virus-specific real-time quantitative reverse-transcriptase-polymerase-chain-reaction assays, next-generation sequencing, and virus isolation. RESULTS: Nine cases of hemorrhagic fever were identified; four of the patients with this illness died. The etiologic agent was identified as Mammarenavirus Chapare mammarenavirus, or Chapare virus (CHAPV), which causes Chapare hemorrhagic fever (CHHF). Probable nosocomial transmission among health care workers was identified. Some patients with CHHF had neurologic manifestations, and those who survived had a prolonged recovery period. CHAPV RNA was detected in a variety of human body fluids (including blood; urine; nasopharyngeal, oropharyngeal, and bronchoalveolar-lavage fluid; conjunctiva; and semen) and in specimens obtained from captured small-eared pygmy rice rats (Oligoryzomys microtis). In survivors of CHHF, viral RNA was detected up to 170 days after symptom onset; CHAPV was isolated from a semen sample obtained 86 days after symptom onset. CONCLUSIONS: M. Chapare mammarenavirus was identified as the etiologic agent of CHHF. Both spillover from a zoonotic reservoir and possible person-to-person transmission were identified. This virus was detected in a rodent species, O. microtis. (Funded by the Bolivian Ministry of Health and others.). |
Use of Ebola vaccine: Expansion of recommendations of the Advisory Committee on Immunization Practices to include two additional populations - United States, 2021
Malenfant JH , Joyce A , Choi MJ , Cossaboom CM , Whitesell AN , Harcourt BH , Atmar RL , Villanueva JM , Bell BP , Hahn C , Loehr J , Davey RT , Sprecher A , Kraft CS , Shoemaker T , Montgomery JM , Helfand R , Damon IK , Frey SE , Chen WH . MMWR Morb Mortal Wkly Rep 2022 71 (8) 290-292 On December 19, 2019, the Food and Drug Administration (FDA) approved rVSVΔG-ZEBOV-GP Ebola vaccine (ERVEBO, Merck) for the prevention of Ebola virus disease (EVD) caused by infection with Ebola virus, species Zaire ebolavirus, in adults aged ≥18 years. In February 2020, the Advisory Committee on Immunization Practices (ACIP) recommended preexposure vaccination with ERVEBO for adults aged ≥18 years in the United States who are at highest risk for potential occupational exposure to Ebola virus because they are responding to an outbreak of EVD, work as health care personnel at federally designated Ebola treatment centers in the United States, or work as laboratorians or other staff members at biosafety level 4 facilities in the United States (1). |
First laboratory confirmation and sequencing of Zaire ebolavirus in Uganda following two independent introductions of cases from the 10th Ebola Outbreak in the Democratic Republic of the Congo, June 2019
Nyakarahuka L , Mulei S , Whitmer S , Jackson K , Tumusiime A , Schuh A , Baluku J , Joyce A , Ocom F , Tusiime JB , Montgomery JM , Balinandi S , Lutwama JJ , Klena JD , Shoemaker TR . PLoS Negl Trop Dis 2022 16 (2) e0010205 Uganda established a domestic Viral Hemorrhagic Fever (VHF) testing capacity in 2010 in response to the increasing occurrence of filovirus outbreaks. In July 2018, the neighboring Democratic Republic of Congo (DRC) experienced its 10th Ebola Virus Disease (EVD) outbreak and for the duration of the outbreak, the Ugandan Ministry of Health (MOH) initiated a national EVD preparedness stance. Almost one year later, on 10th June 2019, three family members who had contracted EVD in the DRC crossed into Uganda to seek medical treatment. Samples were collected from all the suspected cases using internationally established biosafety protocols and submitted for VHF diagnostic testing at Uganda Virus Research Institute. All samples were initially tested by RT-PCR for ebolaviruses, marburgviruses, Rift Valley fever (RVF) virus and Crimean-Congo hemorrhagic fever (CCHF) virus. Four people were identified as being positive for Zaire ebolavirus, marking the first report of Zaire ebolavirus in Uganda. In-country Next Generation Sequencing (NGS) and phylogenetic analysis was performed for the first time in Uganda, confirming the outbreak as imported from DRC at two different time point from different clades. This rapid response by the MoH, UVRI and partners led to the control of the outbreak and prevention of secondary virus transmission. |
Hantavirus Disease and COVID-19.
Joyce AK , Oliver TT , Kofman AD , Talker DL , Safaeian S , Peker Barclift D , Perricone AJ , D'Andrea SM , Whitesell AN , Yazzie D , Guarner J , Saleki M , Ingall GB , Choi MJ , Antone-Nez R . Am J Clin Pathol 2021 157 (3) 470-475 OBJECTIVES: Navajo Nation is disproportionately affected by hantavirus cardiopulmonary syndrome (HCPS), a severe respiratory disease that can quickly progress to respiratory failure and cardiogenic shock. The initial signs and symptoms of HCPS are indistinguishable from coronavirus disease 2019 (COVID-19). However, this distinction is critical, as the disease course differs greatly, with most patients with COVID-19 experiencing mild to moderate illness. We set out to determine if the evaluation of peripheral blood smears for five hematopathologic criteria previously identified as hallmarks of hantavirus infection, or "the hantavirus 5-point screen," could distinguish between COVID-19 and HCPS. METHODS: The hantavirus 5-point screen was performed on peripheral blood smears from 139 patients positive for COVID-19 seeking treatment from Tséhootsooí Medical Center and two Emory University hospitals. RESULTS: Of these 139 individuals, 136 (98%) received a score of 3/5 or below, indicating low suspicion for HCPS. While thrombocytopenia, one of the key signs of HCPS, was seen in the patients with COVID-19, it was generally mild and remained stable on repeat specimens collected 12 to 24 hours later. CONCLUSIONS: Given these findings, the 5-point screen remains a useful rapid screening tool for potential HCPS cases and may be useful to distinguish early HCPS from COVID-19 in HCPS endemic regions. |
Thermostability of measles and rubella vaccines in a microneedle patch
Joyce JC , Collins ML , Rota PA , Prausnitz MR . Adv Ther 2021 4 (10) Measles and rubella vaccinations are highly effective at reducing disease prevalence; however, logistic issues related to subcutaneous administration and vaccine wastage limit the extent of vaccination coverage. Microneedle (MN) patches can increase coverage by easing logistics through simplified administration and improved stability. This study demonstrates the thermostability of a bivalent measles and rubella vaccine MN patch. The data show that rubella vaccine stability requires pH buffering during drying; potassium phosphate buffer at neutral pH is optimal for both vaccines. Screening 43 excipients for their ability to retain potency during drying and storage yields sucrose-threonine-potassium phosphate buffer formulation at pH 7.5 as an optimal formulation. MN patches made with this formulation have no significant loss of vaccine titer after 1 month and remain within a one log10 titer loss cutoff after 3–4 months at 5, 25, and 40 °C. Finally, these patches are shown to be immunogenic in juvenile rhesus macaques. This work demonstrates the potential for MN patches for measles and rubella vaccination to be removed from the cold chain, which is expected to decrease vaccine cost and wastage, and increase vaccination coverage. This article is a U.S. Government work and is in the public domain in the USA. |
COVID-19 response by the Hopi Tribe: impact of systems improvement during the first wave on the second wave of the pandemic.
Humeyestewa D , Burke RM , Kaur H , Vicenti D , Jenkins R , Yatabe G , Hirschman J , Hamilton J , Fazekas K , Leslie G , Sehongva G , Honanie K , Tu'tsi E , Mayer O , Rose MA , Diallo Y , Damon S , Zilversmit Pao L , McCraw HM , Talawyma B , Herne M , Nuvangyaoma TL , Welch S , Balajee SA . BMJ Glob Health 2021 6 (5) The Hopi Tribe is a sovereign nation home to ~7500 Hopi persons living primarily in 12 remote villages. The Hopi Tribe, like many other American Indian nations, has been disproportionately affected by COVID-19. On 18 May 2020, a team from the US Centers for Disease Control and Prevention (CDC) was deployed on the request of the tribe in response to increases in COVID-19 cases. Collaborating with Hopi Health Care Center (the reservation's federally run Indian Health Service health facility) and CDC, the Hopi strengthened public health systems and response capacity from May to August including: (1) implementing routine COVID-19 surveillance reporting; (2) establishing the Hopi Incident Management Authority for rapid coordination and implementation of response activities across partners; (3) implementing a community surveillance programme to facilitate early case detection and educate communities on COVID-19 prevention; and (4) applying innovative communication strategies to encourage mask wearing, hand hygiene and physical distancing. These efforts, as well as community adherence to mitigation measures, helped to drive down cases in August. As cases increased in September-November, the improved capacity gained during the first wave of the pandemic enabled the Hopi leadership to have real-time awareness of the changing epidemiological landscape. This prompted rapid response coordination, swift scale up of health communications and redeployment of the community surveillance programme. The Hopi experience in strengthening their public health systems to better confront COVID-19 may be informative to other indigenous peoples as they also respond to COVID-19 within the context of disproportionate burden. |
CATMoS: Collaborative Acute Toxicity Modeling Suite.
Mansouri K , Karmaus AL , Fitzpatrick J , Patlewicz G , Pradeep P , Alberga D , Alepee N , Allen TEH , Allen D , Alves VM , Andrade CH , Auernhammer TR , Ballabio D , Bell S , Benfenati E , Bhattacharya S , Bastos JV , Boyd S , Brown JB , Capuzzi SJ , Chushak Y , Ciallella H , Clark AM , Consonni V , Daga PR , Ekins S , Farag S , Fedorov M , Fourches D , Gadaleta D , Gao F , Gearhart JM , Goh G , Goodman JM , Grisoni F , Grulke CM , Hartung T , Hirn M , Karpov P , Korotcov A , Lavado GJ , Lawless M , Li X , Luechtefeld T , Lunghini F , Mangiatordi GF , Marcou G , Marsh D , Martin T , Mauri A , Muratov EN , Myatt GJ , Nguyen DT , Nicolotti O , Note R , Pande P , Parks AK , Peryea T , Polash AH , Rallo R , Roncaglioni A , Rowlands C , Ruiz P , Russo DP , Sayed A , Sayre R , Sheils T , Siegel C , Silva AC , Simeonov A , Sosnin S , Southall N , Strickland J , Tang Y , Teppen B , Tetko IV , Thomas D , Tkachenko V , Todeschini R , Toma C , Tripodi I , Trisciuzzi D , Tropsha A , Varnek A , Vukovic K , Wang Z , Wang L , Waters KM , Wedlake AJ , Wijeyesakere SJ , Wilson D , Xiao Z , Yang H , Zahoranszky-Kohalmi G , Zakharov AV , Zhang FF , Zhang Z , Zhao T , Zhu H , Zorn KM , Casey W , Kleinstreuer NC . Environ Health Perspect 2021 129 (4) 47013 ![]() BACKGROUND: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests. In silico models built using existing data facilitate rapid acute toxicity predictions without using animals. OBJECTIVES: The U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Acute Toxicity Workgroup organized an international collaboration to develop in silico models for predicting acute oral toxicity based on five different end points: Lethal Dose 50 (LD50 value, U.S. Environmental Protection Agency hazard (four) categories, Globally Harmonized System for Classification and Labeling hazard (five) categories, very toxic chemicals [LD50 (LD50 ≤ 50 mg/kg)], and nontoxic chemicals (LD50 > 2,000 mg/kg). METHODS: An acute oral toxicity data inventory for 11,992 chemicals was compiled, split into training and evaluation sets, and made available to 35 participating international research groups that submitted a total of 139 predictive models. Predictions that fell within the applicability domains of the submitted models were evaluated using external validation sets. These were then combined into consensus models to leverage strengths of individual approaches. RESULTS: The resulting consensus predictions, which leverage the collective strengths of each individual model, form the Collaborative Acute Toxicity Modeling Suite (CATMoS). CATMoS demonstrated high performance in terms of accuracy and robustness when compared with in vivo results. DISCUSSION: CATMoS is being evaluated by regulatory agencies for its utility and applicability as a potential replacement for in vivo rat acute oral toxicity studies. CATMoS predictions for more than 800,000 chemicals have been made available via the National Toxicology Program's Integrated Chemical Environment tools and data sets (ice.ntp.niehs.nih.gov). The models are also implemented in a free, standalone, open-source tool, OPERA, which allows predictions of new and untested chemicals to be made. https://doi.org/10.1289/EHP8495. |
Seroprevalence of SARS-CoV-2 following the largest initial epidemic wave in the United States: Findings from New York City, May 13-July 21, 2020.
Pathela P , Crawley A , Weiss D , Maldin B , Cornell J , Purdin J , Schumacher PK , Marovich S , Li J , Daskalakis D . J Infect Dis 2021 224 (2) 196-206 BACKGROUND: New York City (NYC) was the U.S. epicenter of the Spring 2020 COVID-19 pandemic. We present seroprevalence of SARS-CoV-2 infection and correlates of seropositivity immediately after the first wave. METHODS: From a serosurvey of adult NYC residents (May 13-July 21, 2020), we calculated the prevalence of SARS-CoV-2 antibodies stratified by participant demographics, symptom history, health status, and employment industry. We used multivariable regression models to assess associations between participant characteristics and seropositivity. RESULTS: Seroprevalence among 45,367 participants was 23.6% (95% CI, 23.2%-24.0%). High seroprevalence (>30%) was observed among Black and Hispanic individuals, people from high poverty neighborhoods, and people in health care or essential worker industry sectors. COVID-19 symptom history was associated with seropositivity (adjusted relative risk=2.76; 95% CI, 2.65-2.88). Other risk factors included sex, age, race/ethnicity, residential area, employment sector, working outside the home, contact with a COVID-19 case, obesity, and increasing numbers of household members. CONCLUSIONS: Based on a large serosurvey in a single U.S. jurisdiction, we estimate that just under one-quarter of NYC adults were infected in the first few months of the COVID-19 epidemic. Given disparities in infection risk, effective interventions for at-risk groups are needed during ongoing transmission. |
Susceptibility of widely diverse influenza a viruses to PB2 polymerase inhibitor pimodivir.
Patel MC , Chesnokov A , Jones J , Mishin VP , De La Cruz JA , Nguyen HT , Zanders N , Wentworth DE , Davis TC , Gubareva LV . Antiviral Res 2021 188 105035 ![]() ![]() Pimodivir exerts an antiviral effect on the early stages of influenza A virus replication by inhibiting the cap-binding function of polymerase basic protein 2 (PB2). In this study, we used a combination of sequence analysis and phenotypic methods to evaluate pimodivir susceptibility of influenza A viruses collected from humans and other hosts. Screening PB2 sequences for substitutions previously associated with reduced pimodivir susceptibility revealed a very low frequency among seasonal viruses circulating in the U.S. during 2015-2020 (<0.01%; 3/11,934) and among non-seasonal viruses collected in various countries during the same period (0.2%; 18/8971). Pimodivir potently inhibited virus replication in two assays, a single-cycle HINT and a multi-cycle FRA, with IC(50) values in a nanomolar range. Median IC(50) values determined by HINT were similar for both subtypes of seasonal viruses, A (H1N1)pdm09 and A (H3N2), across three seasons. Human seasonal viruses with PB2 substitutions S324C, S324R, or N510K displayed a 27-317-fold reduced pimodivir susceptibility. In addition, pimodivir was effective at inhibiting replication of a diverse group of animal-origin viruses that have pandemic potential, including avian viruses of A (H5N6) and A (H7N9) subtypes. A rare PB2 substitution H357N was identified in an A (H4N2) subtype poultry virus that displayed >100-fold reduced pimodivir susceptibility. Our findings demonstrate a broad inhibitory activity of pimodivir and expand the existing knowledge of amino acid substitutions that can reduce susceptibility to this investigational antiviral. |
Use of Ebola vaccine: Recommendations of the Advisory Committee on Immunization Practices, United States, 2020
Choi MJ , Cossaboom CM , Whitesell AN , Dyal JW , Joyce A , Morgan RL , Campos-Outcalt D , Person M , Ervin E , Yu YC , Rollin PE , Harcourt BH , Atmar RL , Bell BP , Helfand R , Damon IK , Frey SE . MMWR Recomm Rep 2021 70 (1) 1-12 This report summarizes the recommendations of the Advisory Committee on Immunization Practices (ACIP) for use of the rVSVΔG-ZEBOV-GP Ebola vaccine (Ervebo) in the United States. The vaccine contains rice-derived recombinant human serum albumin and live attenuated recombinant vesicular stomatitis virus (VSV) in which the gene encoding the glycoprotein of VSV was replaced with the gene encoding the glycoprotein of Ebola virus species Zaire ebolavirus. Persons with a history of severe allergic reaction (e.g., anaphylaxis) to rice protein should not receive Ervebo. This is the first and only vaccine currently licensed by the Food and Drug Administration for the prevention of Ebola virus disease (EVD). These guidelines will be updated based on availability of new data or as new vaccines are licensed to protect against EVD.ACIP recommends preexposure vaccination with Ervebo for adults aged ≥18 years in the U.S. population who are at highest risk for potential occupational exposure to Ebola virus species Zaire ebolavirus because they are responding to an outbreak of EVD, work as health care personnel at federally designated Ebola treatment centers in the United States, or work as laboratorians or other staff at biosafety level 4 facilities in the United States. Recommendations for use of Ervebo in additional populations at risk for exposure and other settings will be considered and discussed by ACIP in the future. |
Notes from the Field: Development of an Enhanced Community-Focused COVID-19 Surveillance Program - Hopi Tribe, June‒July 2020.
Jenkins R , Burke RM , Hamilton J , Fazekas K , Humeyestewa D , Kaur H , Hirschman J , Honanie K , Herne M , Mayer O , Yatabe G , Balajee SA . MMWR Morb Mortal Wkly Rep 2020 69 (44) 1660-1661 The Hopi Tribe, a sovereign nation in northeastern Arizona, includes approximately 7,500 persons within 12 rural villages (1). During April 11–June 15, 2020, the Hopi Health Care Center (HHCC, an Indian Health Services facility) reported 136 cases of coronavirus disease 2019 (COVID-19) among Hopi residents; 27 (20%) patients required hospitalization (J Hirschman, MD, CDC, personal communication, June 2020). Contact tracing of Hopi COVID-19 cases identified delayed seeking of care and testing by persons experiencing COVID-19–compatible signs and symptoms*; inconsistent adherence to recommended mitigation measures,† such as mask-wearing and social distancing; and limited knowledge of the roles of testing, isolation, and quarantine procedures§ (2). Based on these findings, the Hopi Tribe Department of Health and Human Services (DHHS) collaborated with HHCC to develop a community-focused program to enhance COVID-19 surveillance and deliver systematic health communications to the communities. This report describes the surveillance program and findings from two field tests.¶ |
Detection and Characterization of Swine-origin Influenza A(H1N1) Pandemic 2009 Viruses in Humans Following Zoonotic Transmission.
Cook PW , Stark T , Jones J , Kondor R , Zanders N , Benfer J , Scott S , Jang Y , Janas-Martindale A , Lindstrom S , Blanton L , Schiltz J , Tell R , Griesser R , Shult P , Reisdorf E , Danz T , Fry A , Barnes J , Vincent A , Wentworth DE , Davis CT . J Virol 2020 95 (2) ![]() ![]() ![]() Human-to-swine transmission of seasonal influenza viruses has led to sustained human-like influenza viruses circulating in the United States swine population. While some reverse zoonotic-origin viruses adapt and become enzootic in swine, nascent reverse zoonoses may result in virus detections that are difficult to classify as 'swine-origin' or 'human-origin' due to the genetic similarity of circulating viruses. This is the case for human-origin influenza A(H1N1) pandemic 2009 (pdm09) viruses detected in pigs following numerous reverse zoonosis events since the 2009 pandemic. We report the identification of two human infections with A(H1N1)pdm09 viruses originating from swine hosts and classify them as 'swine-origin' variant influenza viruses based on phylogenetic analysis and sequence comparison methods. Phylogenetic analyses of viral genomes from two cases revealed these viruses were reassortants containing A(H1N1)pdm09 HA and NA genes with genetic combinations derived from the triple reassortant internal gene cassette. Follow-up investigations determined that one individual had direct exposure to swine in the week preceding illness onset, while another did not report swine exposure. The swine-origin A(H1N1) variant cases were resolved by full genome sequence comparison of the variant viruses to swine influenza genomes. However, if reassortment does not result in the acquisition of swine-associated genes and swine virus genomic sequences are not available from the exposure source future cases may not be discernible. We have developed a pipeline that performs maximum likelihood analyses, a k-mer-based set difference algorithm, and random forest algorithms to identify swine-associated sequences in the hemagglutinin gene to differentiate between human-origin and swine-origin A(H1N1)pdm09 viruses.IMPORTANCE Influenza virus infects a wide range of hosts resulting in illnesses that vary from asymptomatic cases to severe pneumonia and death. Viral transfer can occur between human and non-human hosts resulting in human and non-human origin viruses circulating in novel hosts. In this work, we have identified the first case of a swine-origin influenza A(H1N1)pdm09 virus resulting in a human infection. This shows that as these viruses not only circulate in swine hosts, but are continuing to evolve and distinguish themselves from previously circulating human-origin influenza viruses. The development of techniques for distinguishing human-origin and swine-origin viruses are necessary for the continued surveillance of influenza viruses. We show that unique genetic signatures can differentiate circulating swine-associated strains from circulating human-associated strains of influenza A(H1N1)pdm09, and these signatures can be used to enhance surveillance of swine-origin influenza. |
Extracting medication information from unstructured public health data: a demonstration on data from population-based and tertiary-based samples.
Chen R , Ho JC , Lin JS . BMC Med Res Methodol 2020 20 (1) 258 ![]() ![]() BACKGROUND: Unstructured data from clinical epidemiological studies can be valuable and easy to obtain. However, it requires further extraction and processing for data analysis. Doing this manually is labor-intensive, slow and subject to error. In this study, we propose an automation framework for extracting and processing unstructured data. METHODS: The proposed automation framework consisted of two natural language processing (NLP) based tools for unstructured text data for medications and reasons for medication use. We first checked spelling using a spell-check program trained on publicly available knowledge sources and then applied NLP techniques. We mapped medication names into generic names using vocabulary from publicly available knowledge sources. We used WHO's Anatomical Therapeutic Chemical (ATC) classification system to map generic medication names to medication classes. We processed the reasons for medication with the Lancaster stemmer method and then grouped and mapped to disease classes based on organ systems. Finally, we demonstrated this automation framework on two data sources for Mylagic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS): tertiary-based (n = 378) and population-based (n = 664) samples. RESULTS: A total of 8681 raw medication records were used for this demonstration. The 1266 distinct medication names (omitting supplements) were condensed to 89 ATC classification system categories. The 1432 distinct raw reasons for medication use were condensed to 65 categories via NLP. Compared to completion of the entire process manually, our automation process reduced the number of the terms requiring manual labor for mapping by 84.4% for medications and 59.4% for reasons for medication use. Additionally, this process improved the precision of the mapped results. CONCLUSIONS: Our automation framework demonstrates the usefulness of NLP strategies even when there is no established mapping database. For a less established database (e.g., reasons for medication use), the method is easily modifiable as new knowledge sources for mapping are introduced. The capability to condense large features into interpretable ones will be valuable for subsequent analytical studies involving techniques such as machine learning and data mining. |
Genetically and antigenically divergent influenza A(H9N2) viruses exhibit differential replication and transmission phenotypes in mammalian models.
Belser JA , Sun X , Brock N , Pappas C , Pulit-Penaloza JA , Zeng H , Jang Y , Jones J , Carney PJ , Chang J , Van Long N , Diep NT , Thor S , Di H , Yang G , Cook PW , Creager HM , Wang D , McFarland J , Van Dong P , Wentworth DE , Tumpey TM , Barnes JR , Stevens J , Davis CT , Maines TR . J Virol 2020 94 (17) ![]() Low pathogenicity avian influenza A(H9N2) viruses, enzootic in poultry populations in Asia, are associated with fewer confirmed human infections but higher rates of seropositivity compared to A(H5) or A(H7) subtype viruses. Co-circulation of A(H5) and A(H7) viruses leads to the generation of reassortant viruses bearing A(H9N2) internal genes with markers of mammalian adaptation, warranting continued surveillance in both avian and human populations. Here, we describe active surveillance efforts in live poultry markets in Vietnam in 2018 and compare representative viruses to G1 and Y280 lineage viruses that have infected humans. Receptor binding properties, pH thresholds for HA activation, in vitro replication in human respiratory tract cells, and in vivo mammalian pathogenicity and transmissibility were investigated. While A(H9N2) viruses from both poultry and humans exhibited features associated with mammalian adaptation, one human isolate from 2018, A/Anhui-Lujiang/39/2018, exhibited increased capacity for replication and transmission, demonstrating the pandemic potential of A(H9N2) viruses.IMPORTANCE A(H9N2) influenza viruses are widespread in poultry in many parts of the world, and for over twenty years, have sporadically jumped species barriers to cause human infection. As these viruses continue to diversify genetically and antigenically, it is critical to closely monitor viruses responsible for human infections, to ascertain if A(H9N2) viruses are acquiring properties that make them better suited to infect and spread among humans. In this study, we describe an active poultry surveillance system established in Vietnam to identify the scope of influenza viruses present in live bird markets and the threat they pose to human health. Assessment of a recent A(H9N2) virus isolated from an individual in China in 2018 is also reported and was found to exhibit properties of adaptation to humans and, importantly, show similarities to strains isolated from the live bird markets of Vietnam. |
Investigation of presumptive HIV transmission associated with hospitalization using nucleotide sequence analysis - New York, 2017
Anderson BJ , Clement E , Collura R , Gallucci A , Westheimer E , Braunstein S , Southwick K , Adams E , Lutterloh E , Gonzalez C , McDonald R , Jia H , Switzer WM , Patel PR , Joyce MP , Oster AM . MMWR Morb Mortal Wkly Rep 2020 69 (10) 260-264 ![]() Since implementation of Standard Precautions* for the prevention of bloodborne pathogen transmission in 1985, health care-associated transmission of human immunodeficiency virus (HIV) in the United States has been rare (1). In October 2017, the New York City Department of Health and Mental Hygiene (NYCDOHMH) and the New York State Department of Health (NYSDOH) were notified by a clinician of a diagnosis of acute HIV infection in a young adult male (patient A) without recognized risk factors (i.e., he was monogamous, had an HIV-negative partner, and had no injection drug use) who had recently been hospitalized for a chronic medical condition. The low risk coupled with the recent hospitalization and medical procedures prompted NYSDOH, NYCDOHMH, and CDC to investigate this case as possible health care-associated transmission of HIV. Among persons with known HIV infection who had hospitalization dates overlapping those of patient A, one person (patient B) had an HIV strain highly similar to patient A's strain by nucleotide sequence analysis. The sequence relatedness, combined with other investigation findings, indicated a likely health care-associated transmission. Nucleotide sequence analysis, which is increasingly used for detecting HIV clusters (i.e., persons with closely related HIV strains) and to inform public health response (2,3), might also be used to identify possible health care-associated transmission of HIV to someone with health care exposure and no known HIV risk factors (4). |
Phylogenetic diversity of Mycobacterium tuberculosis in two geographically distinct locations in Botswana - The Kopanyo Study.
Click ES , Finlay A , Oeltmann JE , Basotli J , Modongo C , Boyd R , Wen XJ , Shepard J , Moonan PK , Zetola N . Infect Genet Evol 2020 81 104232 ![]() Mycobacterium tuberculosis complex (MTBC) is divided into several major phylogenetic lineages, with differential distribution globally. Using population-based data collected over a three year period, we performed 24-locus Mycobacterial Interspersed Repeat Unit - Variable Number Tandem Repeat (MIRU-VNTR) genotyping on all culture isolates from two districts of the country that differ in tuberculosis (TB) incidence (Gaborone, the capital, and Ghanzi in the Western Kalahari). The study objective was to characterize the molecular epidemiology of TB in these districts. Overall phylogenetic diversity mirrored that reported from neighboring Republic of South Africa, but differences in the two districts were marked. All four major lineages of M. tuberculosis were found in Gaborone, but only three of the four major lineages were found in Ghanzi. Strain diversity was lower in Ghanzi, with a large proportion (38%) of all isolates having an identical MIRU-VNTR result, compared to 6% of all isolates in Gaborone with the same MIRU-VNTR result. This study demonstrates localized differences in strain diversity by two districts in Botswana, and contributes to a growing characterization of MTBC diversity globally. |
Genetic characterization of influenza A(H3N2) viruses circulating in coastal Kenya, 2009-2017.
Owuor DC , Ngoi JM , Otieno JR , Otieno GP , Nyasimi FM , Nyiro JU , Agoti CN , Chaves SS , Nokes DJ . Influenza Other Respir Viruses 2020 14 (3) 320-330 ![]() ![]() BACKGROUND: Influenza viruses evolve rapidly and undergo immune driven selection, especially in the hemagglutinin (HA) protein. We report amino acid changes affecting antigenic epitopes and receptor-binding sites of A(H3N2) viruses circulating in Kilifi, Kenya, from 2009 to 2017. METHODS: Next-generation sequencing (NGS) was used to generate A(H3N2) virus genomic data from influenza-positive specimens collected from hospital admissions and health facility outpatients presenting with acute respiratory illness to health facilities within the Kilifi Health and Demographic Surveillance System. Full-length HA sequences were utilized to characterize A(H3N2) virus genetic and antigenic changes. RESULTS: From 186 (90 inpatient and 96 outpatient) influenza A virus-positive specimens processed, 101 A(H3N2) virus whole genomes were obtained. Among viruses identified in inpatient specimens from 2009 to 2015, divergence of circulating A(H3N2) viruses from the vaccine strains A/Perth/16/2009, A/Texas/50/2012, and A/Switzerland/9715293/2013 formed 6 genetic clades (A/Victoria/208/2009-like, 3B, 3C, 3C.2a, 4, and 7). Among viruses identified in outpatient specimens from 2015 to 2017, divergence of circulating A(H3N2) viruses from vaccine strain A/Hong Kong/4801/2014 formed clade 3C.2a, subclades 3C.2a2 and 3C.2a3, and subgroup 3C.2a1b. Several amino acid substitutions were associated with the continued genetic evolution of A(H3N2) strains in circulation. CONCLUSIONS: Our results suggest continuing evolution of currently circulating A(H3N2) viruses in Kilifi, coastal Kenya and suggest the need for continuous genetic and antigenic viral surveillance of circulating seasonal influenza viruses with broad geographic representation to facilitate prompt and efficient selection of influenza strains for inclusion in future influenza vaccines. |
Trends in HIV-2 diagnoses and use of the HIV-1/HIV-2 differentiation test - United States, 2010-2017
Peruski AH , Wesolowski LG , Delaney KP , Chavez PR , Owen SM , Granade TC , Sullivan V , Switzer WM , Dong X , Brooks JT , Joyce MP . MMWR Morb Mortal Wkly Rep 2020 69 (3) 63-66 Since 2014, the recommended laboratory testing algorithm for diagnosing human immunodeficiency virus (HIV) infection has included a supplemental HIV-1/HIV-2 differentiation test to confirm infection type on the basis of the presence of type-specific antibodies (1). Correctly identifying HIV-1 and HIV-2 infections is vital because their epidemiology and clinical management differ. To describe the percentage of diagnoses for which an HIV-1/HIV-2 differentiation test result was reported and to categorize HIV type based on laboratory test results, 2010-2017 data from CDC's National HIV Surveillance System (NHSS) were analyzed. During 2010-2017, a substantial increase in the number of HIV-1/HIV-2 differentiation test results were reported to NHSS, consistent with implementation of the HIV laboratory-based testing algorithm recommended in 2014. However, >99.9% of all HIV infections identified in the United States were categorized as HIV-1, and the number of HIV-2 diagnoses (mono-infection or dual-infection) remained extremely low (<0.03% of all HIV infections). In addition, the overall number of false positive HIV-2 test results produced by the HIV-1/HIV-2 differentiation increased. The diagnostic value of a confirmatory antibody differentiation test in a setting with sensitive and specific screening tests and few HIV-2 infections might be limited. Evaluation and consideration of other HIV tests approved by the Food and Drug Administration (FDA) that might increase efficiencies in the CDC and Association of Public Health Laboratories-recommended HIV testing algorithm are warranted. |
Detection of highly pathogenic avian influenza A(H5N6) viruses in waterfowl in Bangladesh.
Yang G , Chowdury S , Hodges E , Rahman MZ , Jang Y , Hossain ME , Jones J , Stark TJ , Di H , Cook PW , Ghosh S , Azziz-Baumgartner E , Barnes JR , Wentworth DE , Kennedy E , Davis CT . Virology 2019 534 36-44 ![]() ![]() Bangladesh has reported repeated outbreaks of highly pathogenic avian influenza (HPAI) A(H5) viruses in poultry since 2007. Because of the large number of live poultry markets (LPM) relative to the population density of poultry throughout the country, these markets can serve as sentinel sites for HPAI A(H5) detection. Through active LPM surveillance during June 2016-June 2017, HPAI A(H5N6) viruses along with 14 other subtypes of influenza A viruses were detected. The HPAI A(H5N6) viruses belonged to clade 2.3.4.4 and were likely introduced into Bangladesh around March 2016. Human infections with influenza clade 2.3.4.4 viruses in Bangladesh have not been identified, but the viruses had several molecular markers associated with potential human infection. Vigilant surveillance at the animal-human interface is essential to identify emerging avian influenza viruses with the potential to threaten public and animal health. |
Extended delivery of vaccines to the skin improves immune responses.
Joyce JC , Sella HE , Jost H , Mistilis MJ , Esser ES , Pradhan P , Toy R , Collins ML , Rota PA , Roy K , Skountzou I , Compans RW , Oberste MS , Weldon WC , Norman JJ , Prausnitz MR . J Control Release 2019 304 135-145 Vaccines prevent 2-3 million childhood deaths annually; however, low vaccine efficacy and the resulting need for booster doses create gaps in immunization coverage. In this translational study, we explore the benefits of extended release of licensed vaccine antigens into skin to increase immune responses after a single dose in order to design improved vaccine delivery systems. By administering daily intradermal injections of inactivated polio vaccine according to six different delivery profiles, zeroth-order release over 28days resulted in neutralizing antibody titers equivalent to two bolus vaccinations administered one month apart. Vaccinations following this profile also improved immune responses to tetanus toxoid and subunit influenza vaccine but not a live-attenuated viral vaccine, measles vaccine. Finally, using subunit influenza vaccine, we demonstrated that daily vaccination by microneedle patch induced a potent, balanced humoral immunity with an increased memory response compared to bolus vaccination. We conclude that extended presentation of antigen in skin via intradermal injection or microneedle patch can enhance immune responses and reduce the number of vaccine doses, thereby enabling increased vaccination efficacy. |
Comparison of nucleic acid extraction methods for next-generation sequencing of avian influenza A virus from ferret respiratory samples.
Di H , Thor S , Trujillo AA , Stark T , Marinova-Petkova A , Jones J , Wentworth DE , Barnes J , Davis CT . J Virol Methods 2019 270 95-105 ![]() ![]() Influenza A virus is a negative-sense RNA virus with a segmented genome consisting of eight RNA segments. Avian influenza A virus (AIV) primarily infects avian hosts and sporadically infects mammals, which can lead to adaptation to new species. Next-generation sequencing (NGS) of emerging AIV genomes extracted from respiratory samples collected on sequential days from animal models and clinical patients enables analysis of the emergence of evolutionary variants within the virus population over time. However, obtaining codon complete AIV genome at a sufficient coverage depth for nucleotide variant calling remains a challenge, especially from post-inoculation respiratory samples collected at late time points that have low viral titers. In this study, nasal wash samples from ferrets inoculated with different subtypes of AIV were collected on various days post-inoculation. Each nasal wash sample was aliquoted and extracted using five commercially available nucleic acid extraction methods. Extracted influenza virus RNA was amplified and NGS conducted using Illumina Mi-Seq. For each nasal wash sample, completeness of AIV genome segments and coverage depth were compared among five extraction methods. Nucleic acids extracted by MagNA pure compact RNA isolation consistently yielded codon complete sequences for all eight genome segments at the required coverage depth at each time point sampled. The study revealed that DNase treatment was critical to the amplification of influenza genome segments and the downstream success of codon complete NGS from nasal wash samples. The findings from this study can be applied to improve NGS of influenza and other RNA viruses that infect the respiratory tract and are collected from respiratory samples. |
Hepatitis B vaccination using a dissolvable microneedle patch is immunogenic in mice and rhesus macaques
Perez Cuevas MB , Kodani M , Choi Y , Joyce J , O'Connor SM , Kamili S , Prausnitz MR . Bioeng Transl Med 2018 3 (3) 186-196 Chronic Hepatitis B virus infection remains a major global public health problem, accounting for about 887,000 deaths in 2015. Perinatal and early childhood infections are strongly associated with developing chronic hepatitis B. Adding a birth dose of the hepatitis B vaccine (HepB BD) to routine childhood vaccination can prevent over 85% of these infections. However, HepB BD coverage remains low in many global regions, with shortages of birth attendants trained to vaccinate and limited HepB BD supply at birth. To address the challenges, we developed coated metal microneedle patches (cMNPs) and dissolvable microneedle patches (dMNPs) that deliver adjuvant-free hepatitis B vaccine to the skin in a simple-to-administer manner. The dMNP contains micron-scale, solid needles encapsulating vaccine antigen and dissolve in the skin, generating no sharps waste. We delivered HepB BD via cMNP to BALB/c mice and via dMNP to both mice and rhesus macaques. Both cMNP and dMNP were immunogenic, generating hepatitis B surface antibody levels similar to human seroprotection. Biomechanical analysis showed that at high forces the microneedles failed mechanically by yielding but microneedles partially blunted by axial compression were still able to penetrate skin. Overall, this study indicates that with further development, dMNPs could offer a method of vaccination to increase HepB BD access and reduce needle waste in developing countries. |
Multi-site evaluation of the LN34 pan-lyssavirus real-time RT-PCR assay for post-mortem rabies diagnostics.
Gigante CM , Dettinger L , Powell JW , Seiders M , Condori REC , Griesser R , Okogi K , Carlos M , Pesko K , Breckenridge M , Simon EMM , Chu Myjv , Davis AD , Brunt SJ , Orciari L , Yager P , Carson WC , Hartloge C , Saliki JT , Sanchez S , Deldari M , Hsieh K , Wadhwa A , Wilkins K , Peredo VY , Rabideau P , Gruhn N , Cadet R , Isloor S , Nath SS , Joseph T , Gao J , Wallace R , Reynolds M , Olson VA , Li Y . PLoS One 2018 13 (5) e0197074 ![]() ![]() Rabies is a fatal zoonotic disease that requires fast, accurate diagnosis to prevent disease in an exposed individual. The current gold standard for post-mortem diagnosis of human and animal rabies is the direct fluorescent antibody (DFA) test. While the DFA test has proven sensitive and reliable, it requires high quality antibody conjugates, a skilled technician, a fluorescence microscope and diagnostic specimen of sufficient quality. The LN34 pan-lyssavirus real-time RT-PCR assay represents a strong candidate for rabies post-mortem diagnostics due to its ability to detect RNA across the diverse Lyssavirus genus, its high sensitivity, its potential for use with deteriorated tissues, and its simple, easy to implement design. Here, we present data from a multi-site evaluation of the LN34 assay in 14 laboratories. A total of 2,978 samples (1,049 DFA positive) from Africa, the Americas, Asia, Europe, and the Middle East were tested. The LN34 assay exhibited low variability in repeatability and reproducibility studies and was capable of detecting viral RNA in fresh, frozen, archived, deteriorated and formalin-fixed brain tissue. The LN34 assay displayed high diagnostic specificity (99.68%) and sensitivity (99.90%) when compared to the DFA test, and no DFA positive samples were negative by the LN34 assay. The LN34 assay produced definitive findings for 80 samples that were inconclusive or untestable by DFA; 29 were positive. Five samples were inconclusive by the LN34 assay, and only one sample was inconclusive by both tests. Furthermore, use of the LN34 assay led to the identification of one false negative and 11 false positive DFA results. Together, these results demonstrate the reliability and robustness of the LN34 assay and support a role for the LN34 assay in improving rabies diagnostics and surveillance. |
A microneedle patch for measles and rubella vaccination is immunogenic and protective in infant rhesus macaques
Joyce JC , Carroll TD , Collins ML , Chen MH , Fritts L , Dutra JC , Rourke TL , Goodson JL , McChesney MB , Prausnitz MR , Rota PA . J Infect Dis 2018 218 (1) 124-132 Background: New methods to increase measles and rubella (MR) vaccination coverage are needed to achieve global and regional MR elimination goals. Methods: Here, we developed microneedle (MN) patches designed to administer MR vaccine by minimally trained personnel, leave no biohazardous sharps waste, remove the need for vaccine reconstitution, and provide thermostability outside the cold chain. This study evaluated the immunogenicity of MN patches delivering MR vaccine to infant rhesus macaques. Results: Protective titers of measles neutralizing antibodies (>120 mIU/mL) were detected in 100% of macaques in the MN group and 75% of macaques in the subcutaneous (SC) injection group. Rubella neutralizing antibody titers were >10 IU/mL for all groups. All macaques in the MN group were protected from challenge with wild-type measles virus, whereas 75% were protected in the SC group. However, vaccination by the MN or SC route was unable to generate protective immune responses to measles in infant macaques pretreated with measles immunoglobulin to simulate maternal antibody. Conclusions: These results show, for the first time, that MR vaccine delivered by MN patch generated protective titers of neutralizing antibodies to both measles and rubella in infant rhesus macaques and afforded complete protection from measles virus challenge. |
Antigenically diverse swine-origin H1N1 variant influenza viruses exhibit differential ferret pathogenesis and transmission phenotypes.
Pulit-Penaloza JA , Jones J , Sun X , Jang Y , Thor S , Belser JA , Zanders N , Creager HM , Ridenour C , Wang L , Stark TJ , Garten R , Chen LM , Barnes J , Tumpey TM , Wentworth DE , Maines TR , Davis CT . J Virol 2018 92 (11) ![]() Influenza A(H1) viruses circulating in swine represent an emerging virus threat as zoonotic infections occur sporadically following exposure to swine. A fatal infection caused by an H1N1 variant (H1N1v) virus was detected in a patient with reported exposure to swine and who presented with pneumonia, respiratory failure, and cardiac arrest. To understand the genetic and phenotypic characteristics of the virus, genome sequence analysis, antigenic characterization, and ferret pathogenesis and transmissibility experiments were performed. Antigenic analysis of the virus isolated from the fatal case, A/Ohio/09/2015, demonstrated significant antigenic drift away from classical swine H1N1 variant viruses and H1N1 pandemic 2009 viruses. A substitution in the H1 hemagglutinin (G155E) was identified that likely impacted antigenicity, and reverse genetics was employed to understand the molecular mechanism of antibody escape. Reversion of the substitution to 155G, in a reverse genetics A/Ohio/09/2015 virus, showed that this residue was central to the loss of hemagglutination inhibition by ferret antisera raised against a prototypical H1N1 pandemic 2009 virus (A/California/07/2009), as well as gamma lineage classical swine H1N1 viruses, demonstrating the importance of this residue for antibody recognition of this H1 lineage. When analyzed in the ferret model, A/Ohio/09/2015 and another H1N1v virus (A/Iowa/39/2015), as well as A/California/07/2009, replicated efficiently in the respiratory tract of ferrets. The two H1N1v viruses transmitted efficiently among cohoused ferrets, but respiratory droplet transmission studies showed that A/California/07/2009 transmitted through the air more efficiently. Pre-existing immunity to A/California/07/2009 did not fully protect ferrets from challenge with A/Ohio/09/2015.IMPORTANCE Human infections with classical swine influenza A(H1N1) viruses that circulate in pigs continue to occur in the United States following exposure to swine. To understand the genetic and virologic characteristics of a virus (A/Ohio/09/2015) associated with a fatal infection and a virus associated with a non-fatal infection (A/Iowa/39/2015), we performed genome sequence analysis, antigenic testing, and pathogenicity and transmission studies in a ferret model. Reverse genetics was employed to identify a single antigenic site substitution (HA G155E) responsible for antigenic variation of A/Ohio/09/2015 compared to related classical swine influenza A(H1N1) viruses. Ferrets with pre-existing immunity to the pandemic A(H1N1) virus were challenged with A/Ohio/09/2015 demonstrating decreased protection. This data illustrates the potential for currently circulating swine influenza viruses to infect and cause illness in humans with pre-existing immunity to H1N1 pandemic 2009 viruses and a need for ongoing risk assessment and development of candidate vaccine viruses for improved pandemic preparedness. |
Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV Spike to avoid neutralization escape
Wang L , Shi W , Chappell JD , Joyce MG , Zhang Y , Kanekiyo M , Becker MM , van Doremalen N , Fischer R , Wang N , Corbett KS , Choe M , Mason RD , Van Galen JG , Zhou T , Saunders KO , Tatti KM , Haynes LM , Kwong PD , Modjarrad K , Kong WP , McLellan JS , Denison MR , Munster VJ , Mascola JR , Graham BS . J Virol 2018 92 (10) Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes a highly lethal pulmonary infection with approximately 35% mortality. The potential for a future pandemic originating from animal reservoirs or healthcare-associated events is a major public health concern. There are no vaccines or therapeutic agents currently available for MERS-CoV. Using a probe-based single B cell-cloning strategy, we have identified and characterized multiple neutralizing mAbs specifically binding to the receptor binding domain (RBD) or S1 (non-RBD) regions from a convalescent MERS-CoV-infected patient and from immunized rhesus macaques. RBD-specific mAbs tended to have greater neutralizing potency than non-RBD S1-specific mAbs. Six RBD-specific and five S1-specific mAbs could be sorted into four RBD and three non-RBD distinct binding patterns, based on competition assays, mapping neutralization escape variants, and structural analysis. We determined co-crystal structures for two mAbs targeting RBD from different angles and show they can only bind RBD in the "out" position. We then showed that selected RBD-specific, non-RBD S1, and S2-specific mAbs given prophylactically prevented MERS-CoV replication in lungs and protected mice from lethal challenge. Importantly, combining RBD- and non-RBD mAbs delayed the emergence of escape mutations in a cell-based virus-escape assay. These studies identify mAbs targeting different antigenic sites on S that will be useful for defining mechanisms of MERS-CoV neutralization, and for developing more effective interventions to prevent or treat MERS-CoV infections.IMPORTANCE: MERS-CoV causes a highly lethal respiratory infection for which no vaccines or antiviral therapeutic options are currently available. Based on continuing exposure from established reservoirs in dromedary camels and bats, transmission of MERS-CoV into humans and future outbreaks are expected. Using structurally-defined probes for the MERS-CoV Spike (S) glycoprotein, the target for neutralizing antibodies, single B cells were sorted from a convalescent human and immunized non-human primates (NHPs). mAbs produced from paired immunoglobulin gene sequences were mapped to multiple epitopes within and outside the receptor-binding domain (RBD) and protected against lethal MERS infection in a murine model following passive immunization. Importantly, combining mAbs targeting distinct epitopes prevented viral neutralization escape from RBD-directed mAbs. These data suggest that antibody responses to multiple domains on CoV Spike may improve immunity and will guide future vaccine and therapeutic development efforts. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure