Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-7 (of 7 Records) |
Query Trace: Johnston RA[original query] |
---|
Impact of vitamin D on hyperoxic acute lung injury in neonatal mice
Tran TT , Davies J , Johnston RA , Karmouty-Quintana H , Li H , Crocker CE , Khan AM , Alcorn JL . BMC Pulm Med 2024 24 (1) 584 BACKGROUND: Prolonged exposure to hyperoxia can lead to hyperoxic acute lung injury (HALI) in preterm neonates. Vitamin D (VitD) stimulates lung maturation and acts as an anti-inflammatory agent. Our objective was to determine if VitD provides a dose-dependent protective effect against HALI by reducing inflammatory cytokine expression and improving alveolarization and lung function in neonatal mice. METHODS: C57BL/6 mouse neonates were randomized and placed in room air or hyperoxic (85% O(2)) conditions for 6 days. Control, low (5 ng/neonate) and high (25 ng/neonate) doses of VitD were administered daily beginning at day 2 via oral gavage. Lung tissue was analyzed for edema, changes in pulmonary structure and function, and inflammatory cytokine expression. RESULTS: Neonatal mice treated with VitD in hyperoxic conditions had improved weight gain, reduced pulmonary edema and increased alveolar surface area compared to untreated pups in hyperoxia. No significant changes in cytokine expression were observed between untreated and VitD neonates. While changes in surfactant protein mRNA expression were impacted by hyperoxia and VitD administration, no significant changes in alveolar type II cell percentages were observed. At 3 weeks, mice in hyperoxia treated with VitD had greater lung compliance, diminished airway reactivity and improved weight gain. CONCLUSIONS: High dose VitD significantly limited harmful effects of HALI. These results suggest that supplementation of VitD to neonatal mice during hyperoxia exposure provides both short-term and long-term protective benefits against HALI. |
Weighted breaths: Exploring biologic and non-biologic therapies for co-existing asthma and obesity
Pilkington AW , Buragamadagu B , Johnston RA . Curr Allergy Asthma Rep 2024 PURPOSE OF REVIEW: To discuss the effectiveness of biologics, some of which comprise the newest class of asthma controller medications, and non-biologics in the treatment of asthma co-existing with obesity. RECENT FINDINGS: Our review of recent preliminary and published data from clinical trials revealed that obese asthmatics respond favorably to dupilumab, mepolizumab, omalizumab, and tezepelumab, which are biologics currently indicated as add-on maintenance therapy for severe asthma. Furthermore, clinical trials are ongoing to assess the efficacy of non-biologics in the treatment of obese asthma, including a glucagon-like peptide-1 receptor agonist, a Janus kinase inhibitor, and probiotics. Although many biologics presently indicated as add-on maintenance therapy for severe asthma exhibit efficacy in obese asthmatics, other phenotypes of asthma co-existing with obesity may be refractory to these medications. Thus, to improve quality of life and asthma control, it is imperative to identify therapeutic options for all existing phenotypes of obese asthma. |
Inconsequential role for chemerin-like receptor 1 in the manifestation of ozone-induced lung pathophysiology in male mice
Johnston RA , Pilkington AW , Atkins CL , Boots TE , Brown PL , Jackson WT , Spencer CY , Siddiqui SR , Haque IU . Physiol Rep 2024 12 (8) e16008 We executed this study to determine if chemerin-like receptor 1 (CMKLR1), a G(i/o) protein-coupled receptor expressed by leukocytes and non-leukocytes, contributes to the development of phenotypic features of non-atopic asthma, including airway hyperresponsiveness (AHR) to acetyl-β-methylcholine chloride, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Accordingly, we quantified sequelae of non-atopic asthma in wild-type mice and mice incapable of expressing CMKLR1 (CMKLR1-deficient mice) following cessation of acute inhalation exposure to either filtered room air (air) or ozone (O(3)), a criteria pollutant and non-atopic asthma stimulus. Following exposure to air, lung elastic recoil and airway responsiveness were greater while the quantity of adiponectin, a multi-functional adipocytokine, in bronchoalveolar lavage (BAL) fluid was lower in CMKLR1-deficient as compared to wild-type mice. Regardless of genotype, exposure to O(3) caused AHR, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Nevertheless, except for minimal genotype-related effects on lung hyperpermeability and BAL adiponectin, we observed no other genotype-related differences following O(3) exposure. In summary, we demonstrate that CMKLR1 limits the severity of innate airway responsiveness and lung elastic recoil but has a nominal effect on lung pathophysiology induced by acute exposure to O(3). |
Interleukin-11 receptor subunit alpha-1 is required for maximal airway responsiveness to methacholine following acute exposure to ozone.
Johnston RA , Atkins CL , Siddiqui SR , Jackson WT , Mitchell NC , Spencer CY , Pilkington AWth , Kashon ML , Haque IU . Am J Physiol Regul Integr Comp Physiol 2022 323 (6) R921-R934 Interleukin (IL)-11, a multi-functional cytokine, contributes to numerous biological processes, including adipogenesis, hematopoiesis, and inflammation. Asthma, a respiratory disease, is notably characterized by reversible airway obstruction, persistent lung inflammation, and airway hyperresponsiveness (AHR). Nasal insufflation of IL-11 causes AHR in wild-type mice while lung inflammation induced by antigen sensitization and challenge, which mimics features of atopic asthma in humans, is attenuated in mice genetically deficient in IL-11 receptor subunit alpha-1 (IL-11Rα1-deficient mice), a transmembrane receptor that is required conjointly with glycoprotein 130 to transduce IL-11 signaling. Nevertheless, the contribution of IL-11Rα1 to characteristics of non-atopic asthma is unknown. Thus, based on the aforementioned observations, we hypothesized that genetic deficiency of IL-11Rα1 would attenuate lung inflammation and increases in airway responsiveness following acute inhalation exposure to ozone (O(3)), a criteria pollutant and non-atopic asthma stimulus. Accordingly, four- and/or twenty-four hours following cessation of exposure to filtered room air or O(3), we assessed lung inflammation and airway responsiveness in wild-type and IL-11Rα1-deficient mice. With the exception of bronchoalveolar lavage macrophages and adiponectin, which were significantly increased and decreased, respectively, in O(3)-exposed IL-11Rα1-deficient as compared to O(3)-exposed wild-type mice, no other genotype-related differences in lung inflammation indices that we quantified were observed in O(3)-exposed mice. However, airway responsiveness to acetyl-β-methylcholine chloride (methacholine) was significantly diminished in IL-11Rα1-deficient as compared to wild-type mice following O(3) exposure. In conclusion, these results demonstrate that IL-11Rα1 minimally contributes to lung inflammation but is required for maximal airway responsiveness to methacholine in a mouse model of non-atopic asthma. |
High-fat western diet consumption exacerbates silica-induced pulmonary inflammation and fibrosis
Thompson JA , Johnston RA , Price RE , Hubbs AF , Kashon ML , McKinney W , Fedan JS . Toxicol Rep 2022 9 1045-1053 Consumption of a high-fat Western diet (HFWD) contributes to obesity, disrupted adipose endocrine function, and development of metabolic dysfunction (MetDys). Impaired lung function, pulmonary hypertension, and asthma are all associated with MetDys. Over 35% of adults in the U.S. have MetDys, yet interactions between MetDys and hazardous occupational inhalation exposures are largely unknown. Occupational silica-inhalation leads to chronic lung inflammation, progressive fibrosis, and significant respiratory morbidity and mortality. In this study, we aim to determine the potential of HFWD-consumption to alter silica-induced inflammatory responses in the lung. Six-wk old male F344 rats fed a high fat Western diet (HFWD; 45 kcal % fat, sucrose 22.2% by weight) to induce MetDys, or standard rat chow (STD, controls) for 16 wk were subsequently exposed to silica (6 h/d, 5 d/wk, 39 d; Min-U-Sil 5®, 15 mg/m(3)) or filtered air; animals remained on their assigned diet for the study duration. Indices of lung inflammation and histopathologic assessment of lung tissue were quantified at 0, 4, and 8 wk after cessation of exposure. Combined HFWD+silica exposure increased bronchoalveolar lavage (BAL) total cells, leukocytes, and BAL lactate dehydrogenase compared to STD+silica exposure controls at all timepoints. HFWD+silica exposure increased BAL proinflammatory cytokines at 4 and 8 wk compared to STD+silica exposure. At 8 wk, histopathological analysis confirmed that alveolitis, epithelial cell hypertrophy and hyperplasia, lipoproteinosis, fibrosis, bronchoalveolar lymphoid hyperplasia and granulomas were exacerbated in the HFWD+silica-exposed group compared to STD+silica-exposed controls. Our results suggest an increased susceptibility to silica-induced lung disease caused by HFWD consumption. |
High-fat western diet-consumption alters crystalline silica-induced serum adipokines, inflammatory cytokines and arterial blood flow in the F344 rat
Thompson JA , Krajnak K , Johnston RA , Kashon ML , McKinney W , Fedan JS . Toxicol Rep 2022 9 12-21 Adipose tissue (AT) plays a central role in the maintenance of whole-body energy homeostasis through release of adipokines. High-fat Western diet (HFWD)-consumption contributes to obesity, disruption of adipocyte metabolism, chronic systemic inflammation, and metabolic dysfunction (MetDys). MetDys is associated with impaired lung function, pulmonary hypertension, and asthma. Thirty-five percent of adults in the U.S. have MetDys, yet the impact of MetDys on susceptibility to occupational hazards is unknown. The aim of this study was to determine the potential of HFWD-consumption to alter inhaled crystalline silica dust-induced metabolic responses. Six-wk old male F344 rats were fed a HFWD (45 kcal % fat, sucrose 22.2 % by weight) or standard rat chow (STD, controls), and exposed to silica-inhalation (6 h/d, 5 d/wk, 39 d; Min-U-Sil 5®, 15 mg/m3) or filtered air. Indices of MetDys and systemic inflammation were measured at 0, 4, and 8 wk following cessation of silica exposure. At 8 wk post-exposure, silica reduced serum leptin and adiponectin levels, and increased arterial pulse frequency. HFWD-consumption induced weight gain, altered adipokines, liver, kidney, and pancreatic function, and increased tail artery blood flow. At 8 wk in HFWD + SIL-treated animals, the levels of serum pro-inflammatory cytokines (IFN-γ, CXCL-1, TNF-α, IL-1β, IL-4, IL-5, IL-6, IL-10 and IL-13) were increased compared to STD + SIL but were less than HFWD + AIR-induced levels. In conclusion, consumption of a HFWD altered silica-induced metabolic responses and silica exposure disrupted AT endocrine function. These findings demonstrate previously unknown interactions between HFWD-consumption and occupational silica exposure. © 2021 The Authors |
Filling a hole in ozone research: The impacts of early life microbiome alterations on pulmonary responses to a non-atopic asthma trigger
Johnston RA , Belenky P . Physiol Rep 2020 8 (1) e14346 The predominantly commensal collection of bacteria, fungi, archaea, protozoa, and viruses that inhabit multicellular organisms constitutes the microbiota, and their DNA is referred to as the microbiome. Early‐life microbiome perturbation influences the development of asthma (Russell et al., (2012)), which is a chronic lung disease that is characterized, in part, by persistent lung inflammation, cough, dyspnea, wheeze, variable expiratory flow limitation, and airway hyperresponsiveness (AHR). As a heterogeneous lung disease, asthma materializes as a diverse number of clinical phenotypes that result from exposure to either atopic or nonatopic stimuli (Wenzel, 2012). |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure