Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-3 (of 3 Records) |
Query Trace: Jennings WC[original query] |
---|
Chlorine inactivation of Elizabethkingia spp. In water
Holcomb DA , Riner D , Cowan B , Salah Z , Jennings WC , Mattioli MC , Murphy JL . Emerg Infect Dis 2024 30 (10) 2174-2177 We performed chlorine inactivation experiments for Elizabethkingia anophelis and E. meningoseptica bacterial strains from clinical and environmental sources. Free chlorine concentration × contact time values <0.04 mg·min/L achieved 99.9% inactivation of Elizabethkingia species, indicating chlorine susceptibility. Measures to control biofilm producing pathogens in plumbing are needed to prevent Elizabethkingia bacterial infections. |
Persistence of Human Norovirus (GII) in Surface Water: Decay Rate Constants and Inactivation Mechanisms.
Kennedy LC , Costantini VP , Huynh KA , Loeb SK , Jennings WC , Lowry S , Mattioli MC , Vinjé J , Boehm AB . Environ Sci Technol 2023 57 (9) 3671-3679 Human norovirus (HuNoV) is an important cause of acute gastroenteritis and can be transmitted by water exposures, but its persistence in water is not well understood. Loss of HuNoV infectivity in surface water was compared with persistence of intact HuNoV capsids and genome segments. Surface water from a freshwater creek was filter-sterilized, inoculated with HuNoV (GII.4) purified from stool, and incubated at 15 or 20 °C. We measured HuNoV infectivity via the human intestinal enteroid system and HuNoV persistence via reverse transcription-quantitative polymerase chain reaction assays without (genome segment persistence) or with (intact viral capsid persistence) enzymatic pretreatment to digest naked RNA. For infectious HuNoV, results ranged from no significant decay to a decay rate constant ("k") of 2.2 day(-1). In one creek water sample, genome damage was likely a dominant inactivation mechanism. In other samples from the same creek, loss of HuNoV infectivity could not be attributed to genome damage or capsid cleavage. The range in k and the difference in the inactivation mechanism observed in water from the same site could not be explained, but variable constituents in the environmental matrix could have contributed. Thus, a single k may be insufficient for modeling virus inactivation in surface waters. |
Using Wastewater Surveillance Data to Support the COVID-19 Response - United States, 2020-2021.
Kirby AE , Walters MS , Jennings WC , Fugitt R , LaCross N , Mattioli M , Marsh ZA , Roberts VA , Mercante JW , Yoder J , Hill VR . MMWR Morb Mortal Wkly Rep 2021 70 (36) 1242-1244 Wastewater surveillance, the measurement of pathogen levels in wastewater, is used to evaluate community-level infection trends, augment traditional surveillance that leverages clinical tests and services (e.g., case reporting), and monitor public health interventions (1). Approximately 40% of persons infected with SARS-CoV-2, the virus that causes COVID-19, shed virus RNA in their stool (2); therefore, community-level trends in SARS-CoV-2 infections, both symptomatic and asymptomatic (2) can be tracked through wastewater testing (3-6). CDC launched the National Wastewater Surveillance System (NWSS) in September 2020 to coordinate wastewater surveillance programs implemented by state, tribal, local, and territorial health departments to support the COVID-19 pandemic response. In the United States, wastewater surveillance was not previously implemented at the national level. As of August 2021, NWSS includes 37 states, four cities, and two territories. This report summarizes NWSS activities and describes innovative applications of wastewater surveillance data by two states, which have included generating alerts to local jurisdictions, allocating mobile testing resources, evaluating irregularities in traditional surveillance, refining health messaging, and forecasting clinical resource needs. NWSS complements traditional surveillance and enables health departments to intervene earlier with focused support in communities experiencing increasing concentrations of SARS-CoV-2 in wastewater. The ability to conduct wastewater surveillance is not affected by access to health care or the clinical testing capacity in the community. Robust, sustainable implementation of wastewater surveillance requires public health capacity for wastewater testing, analysis, and interpretation. Partnerships between wastewater utilities and public health departments are needed to leverage wastewater surveillance data for the COVID-19 response for rapid assessment of emerging threats and preparedness for future pandemics. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure