Last data update: May 30, 2025. (Total: 49382 publications since 2009)
Records 1-8 (of 8 Records) |
Query Trace: Jarashow C[original query] |
---|
Enhanced Contact Investigations for Nine Early Travel-Related Cases of SARS-CoV-2 in the United States (preprint)
Burke RM , Balter S , Barnes E , Barry V , Bartlett K , Beer KD , Benowitz I , Biggs HM , Bruce H , Bryant-Genevier J , Cates J , Chatham-Stephens K , Chea N , Chiou H , Christiansen D , Chu VT , Clark S , Cody SH , Cohen M , Conners EE , Dasari V , Dawson P , DeSalvo T , Donahue M , Dratch A , Duca L , Duchin J , Dyal JW , Feldstein LR , Fenstersheib M , Fischer M , Fisher R , Foo C , Freeman-Ponder B , Fry AM , Gant J , Gautom R , Ghinai I , Gounder P , Grigg CT , Gunzenhauser J , Hall AJ , Han GS , Haupt T , Holshue M , Hunter J , Ibrahim MB , Jacobs MW , Jarashow MC , Joshi K , Kamali T , Kawakami V , Kim M , Kirking HL , Kita-Yarbro A , Klos R , Kobayashi M , Kocharian A , Lang M , Layden J , Leidman E , Lindquist S , Lindstrom S , Link-Gelles R , Marlow M , Mattison CP , McClung N , McPherson TD , Mello L , Midgley CM , Novosad S , Patel MT , Pettrone K , Pillai SK , Pray IW , Reese HE , Rhodes H , Robinson S , Rolfes M , Routh J , Rubin R , Rudman SL , Russell D , Scott S , Shetty V , Smith-Jeffcoat SE , Soda EA , Spitters C , Stierman B , Sunenshine R , Terashita D , Traub E , Vahey GM , Verani JR , Wallace M , Westercamp M , Wortham J , Xie A , Yousaf A , Zahn M . medRxiv 2020 2020.04.27.20081901 Background Coronavirus disease 2019 (COVID-19), the respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. As part of initial response activities in the United States, enhanced contact investigations were conducted to enable early identification and isolation of additional cases and to learn more about risk factors for transmission.Methods Close contacts of nine early travel-related cases in the United States were identified. Close contacts meeting criteria for active monitoring were followed, and selected individuals were targeted for collection of additional exposure details and respiratory samples. Respiratory samples were tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction (RT-PCR) at the Centers for Disease Control and Prevention.Results There were 404 close contacts who underwent active monitoring in the response jurisdictions; 338 had at least basic exposure data, of whom 159 had ≥1 set of respiratory samples collected and tested. Across all known close contacts under monitoring, two additional cases were identified; both secondary cases were in spouses of travel-associated case patients. The secondary attack rate among household members, all of whom had ≥1 respiratory sample tested, was 13% (95% CI: 4 – 38%).Conclusions The enhanced contact tracing investigations undertaken around nine early travel-related cases of COVID-19 in the United States identified two cases of secondary transmission, both spouses. Rapid detection and isolation of the travel-associated case patients, enabled by public awareness of COVID-19 among travelers from China, may have mitigated transmission risk among close contacts of these cases.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNo external funding was sought or received.Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData may be available upon reasonable request. |
Enhanced contact investigations for nine early travel-related cases of SARS-CoV-2 in the United States.
Burke RM , Balter S , Barnes E , Barry V , Bartlett K , Beer KD , Benowitz I , Biggs HM , Bruce H , Bryant-Genevier J , Cates J , Chatham-Stephens K , Chea N , Chiou H , Christiansen D , Chu VT , Clark S , Cody SH , Cohen M , Conners EE , Dasari V , Dawson P , DeSalvo T , Donahue M , Dratch A , Duca L , Duchin J , Dyal JW , Feldstein LR , Fenstersheib M , Fischer M , Fisher R , Foo C , Freeman-Ponder B , Fry AM , Gant J , Gautom R , Ghinai I , Gounder P , Grigg CT , Gunzenhauser J , Hall AJ , Han GS , Haupt T , Holshue M , Hunter J , Ibrahim MB , Jacobs MW , Jarashow MC , Joshi K , Kamali T , Kawakami V , Kim M , Kirking HL , Kita-Yarbro A , Klos R , Kobayashi M , Kocharian A , Lang M , Layden J , Leidman E , Lindquist S , Lindstrom S , Link-Gelles R , Marlow M , Mattison CP , McClung N , McPherson TD , Mello L , Midgley CM , Novosad S , Patel MT , Pettrone K , Pillai SK , Pray IW , Reese HE , Rhodes H , Robinson S , Rolfes M , Routh J , Rubin R , Rudman SL , Russell D , Scott S , Shetty V , Smith-Jeffcoat SE , Soda EA , Spitters C , Stierman B , Sunenshine R , Terashita D , Traub E , Vahey GM , Verani JR , Wallace M , Westercamp M , Wortham J , Xie A , Yousaf A , Zahn M . PLoS One 2020 15 (9) e0238342 Coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. In response to the first cases identified in the United States, close contacts of confirmed COVID-19 cases were investigated to enable early identification and isolation of additional cases and to learn more about risk factors for transmission. Close contacts of nine early travel-related cases in the United States were identified and monitored daily for development of symptoms (active monitoring). Selected close contacts (including those with exposures categorized as higher risk) were targeted for collection of additional exposure information and respiratory samples. Respiratory samples were tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction at the Centers for Disease Control and Prevention. Four hundred four close contacts were actively monitored in the jurisdictions that managed the travel-related cases. Three hundred thirty-eight of the 404 close contacts provided at least basic exposure information, of whom 159 close contacts had ≥1 set of respiratory samples collected and tested. Across all actively monitored close contacts, two additional symptomatic COVID-19 cases (i.e., secondary cases) were identified; both secondary cases were in spouses of travel-associated case patients. When considering only household members, all of whom had ≥1 respiratory sample tested for SARS-CoV-2, the secondary attack rate (i.e., the number of secondary cases as a proportion of total close contacts) was 13% (95% CI: 4-38%). The results from these contact tracing investigations suggest that household members, especially significant others, of COVID-19 cases are at highest risk of becoming infected. The importance of personal protective equipment for healthcare workers is also underlined. Isolation of persons with COVID-19, in combination with quarantine of exposed close contacts and practice of everyday preventive behaviors, is important to mitigate spread of COVID-19. |
Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States.
Kujawski SA , Wong KK , Collins JP , Epstein L , Killerby ME , Midgley CM , Abedi GR , Ahmed NS , Almendares O , Alvarez FN , Anderson KN , Balter S , Barry V , Bartlett K , Beer K , Ben-Aderet MA , Benowitz I , Biggs HM , Binder AM , Black SR , Bonin B , Bozio CH , Brown CM , Bruce H , Bryant-Genevier J , Budd A , Buell D , Bystritsky R , Cates J , Charles EM , Chatham-Stephens K , Chea N , Chiou H , Christiansen D , Chu V , Cody S , Cohen M , Conners EE , Curns AT , Dasari V , Dawson P , DeSalvo T , Diaz G , Donahue M , Donovan S , Duca LM , Erickson K , Esona MD , Evans S , Falk J , Feldstein LR , Fenstersheib M , Fischer M , Fisher R , Foo C , Fricchione MJ , Friedman O , Fry A , Galang RR , Garcia MM , Gerber SI , Gerrard G , Ghinai I , Gounder P , Grein J , Grigg C , Gunzenhauser JD , Gutkin GI , Haddix M , Hall AJ , Han GS , Harcourt J , Harriman K , Haupt T , Haynes AK , Holshue M , Hoover C , Hunter JC , Jacobs MW , Jarashow C , Joshi K , Kamali T , Kamili S , Kim L , Kim M , King J , Kirking HL , Kita-Yarbro A , Klos R , Kobayashi M , Kocharian A , Komatsu KK , Koppaka R , Layden JE , Li Y , Lindquist S , Lindstrom S , Link-Gelles R , Lively J , Livingston M , Lo K , Lo J , Lu X , Lynch B , Madoff L , Malapati L , Marks G , Marlow M , Mathisen GE , McClung N , McGovern O , McPherson TD , Mehta M , Meier A , Mello L , Moon SS , Morgan M , Moro RN , Murray J , Murthy R , Novosad S , Oliver SE , O’Shea J , Pacilli M , Paden CR , Pallansch MA , Patel M , Patel S , Pedraza I , Pillai SK , Pindyck T , Pray I , Queen K , Quick N , Reese H , Reporter R , Rha B , Rhodes H , Robinson S , Robinson P , Rolfes MA , Routh JA , Rubin R , Rudman SL , Sakthivel SK , Scott S , Shepherd C , Shetty V , Smith EA , Smith S , Stierman B , Stoecker W , Sunenshine R , Sy-Santos R , Tamin A , Tao Y , Terashita D , Thornburg NJ , Tong S , Traub E , Tural A , Uehara A , Uyeki TM , Vahey G , Verani JR , Villarino E , Wallace M , Wang L , Watson JT , Westercamp M , Whitaker B , Wilkerson S , Woodruff RC , Wortham JM , Wu T , Xie A , Yousaf A , Zahn M , Zhang J . Nat Med 2020 26 (6) 861-868 Data on the detailed clinical progression of COVID-19 in conjunction with epidemiological and virological characteristics are limited. In this case series, we describe the first 12 US patients confirmed to have COVID-19 from 20 January to 5 February 2020, including 4 patients described previously(1-3). Respiratory, stool, serum and urine specimens were submitted for SARS-CoV-2 real-time reverse-transcription polymerase chain reaction (rRT-PCR) testing, viral culture and whole genome sequencing. Median age was 53 years (range: 21-68); 8 patients were male. Common symptoms at illness onset were cough (n = 8) and fever (n = 7). Patients had mild to moderately severe illness; seven were hospitalized and demonstrated clinical or laboratory signs of worsening during the second week of illness. No patients required mechanical ventilation and all recovered. All had SARS-CoV-2 RNA detected in respiratory specimens, typically for 2-3 weeks after illness onset. Lowest real-time PCR with reverse transcription cycle threshold values in the upper respiratory tract were often detected in the first week and SARS-CoV-2 was cultured from early respiratory specimens. These data provide insight into the natural history of SARS-CoV-2. Although infectiousness is unclear, highest viral RNA levels were identified in the first week of illness. Clinicians should anticipate that some patients may worsen in the second week of illness. |
Active Monitoring of Persons Exposed to Patients with Confirmed COVID-19 - United States, January-February 2020.
Burke RM , Midgley CM , Dratch A , Fenstersheib M , Haupt T , Holshue M , Ghinai I , Jarashow MC , Lo J , McPherson TD , Rudman S , Scott S , Hall AJ , Fry AM , Rolfes MA . MMWR Morb Mortal Wkly Rep 2020 69 (9) 245-246 In December 2019, an outbreak of coronavirus disease 2019 (COVID-19), caused by the virus SARS-CoV-2, began in Wuhan, China (1). The disease spread widely in China, and, as of February 26, 2020, COVID-19 cases had been identified in 36 other countries and territories, including the United States. Person-to-person transmission has been widely documented, and a limited number of countries have reported sustained person-to-person spread.* On January 20, state and local health departments in the United States, in collaboration with teams deployed from CDC, began identifying and monitoring all persons considered to have had close contact(dagger) with patients with confirmed COVID-19 (2). The aims of these efforts were to ensure rapid evaluation and care of patients, limit further transmission, and better understand risk factors for transmission. |
International Society of Cardiovascular Infectious Diseases Guidelines for the Diagnosis, Treatment and Prevention of Disseminated Mycobacterium chimaera Infection Following Cardiac Surgery with Cardiopulmonary Bypass.
Hasse B , Hannan M , Keller PM , Maurer FP , Sommerstein R , Mertz D , Wagner D , Fernandez-Hidalgo N , Nomura J , Manfrin V , Bettex D , Conte AH , Durante-Mangoni E , Hing-Cheung Tang T , Stuart RL , Lundgren J , Gordon S , Jarashow MC , Schreiber PW , Niemann S , Kohl TA , Daley C , Stewardson AJ , Whitener CJ , Perkins K , Plachouras D , Lamagni T , Chand M , Freiberger T , Zweifel S , Sander P , Schulthess B , Scriven J , Sax H , van Ingen J , Mestres CA , Diekema D , Brown-Elliott BA , Wallace RJJr , Baddour LM , Miro JM , Hoen B . J Hosp Infect 2019 104 (2) 214-235 ![]() Mycobacterial infection-related morbidity and mortality in patients following cardiopulmonary bypass surgery is high and and there is a growing need for a consensus-based expert opinion to provide international guidance for diagnosing, preventing and treating in these patients. In this document the International Society for Cardiovascular Infectious Diseases (ISCVID) covers aspects of prevention (field of hospital epidemiology), clinical management (infectious disease specialists, cardiac surgeons, ophthalmologists, others), laboratory diagnostics (microbiologists, molecular diagnostics), device management (perfusionists, cardiac surgeons) and public health aspects. |
Notes from the Field: Mycobacteria chimaera Infections associated with heater-cooler unit use during cardiopulmonary bypass surgery - Los Angeles County, 2012-2016
Jarashow MC , Terashita D , Balter S , Schwartz B . MMWR Morb Mortal Wkly Rep 2019 67 (5152) 1428-1429 In the United States, contact with live poultry has been linked to 70 Salmonella outbreaks resulting in 4,794 clinical cases since 2000 (1). Environmental sampling to confirm the outbreak strain at poultry hatcheries that supply backyard flocks is conducted infrequently during investigations; therefore, the source of the outbreak is rarely identified. On June 12, 2018, the Michigan Department of Health and Human Services requested assistance from CDC to investigate risk factors for Salmonella infection linked to live backyard poultry originating at a mail-order hatchery in Michigan (hatchery A). This hatchery supplies young poultry (poults) to backyard flocks through direct sale to flock owners and via feed stores. At the start of the investigation, traceback had linked 24 clinical cases of Salmonella enterica serotype Enteritidis to exposure to live poultry from hatchery A. Whole genome sequencing analysis of the clinical isolates revealed that they were closely related (within 0–15 alleles) by whole genome multilocus sequence typing to environmental isolates sampled from shipping containers originating from hatchery A at retail outlets in several states. |
Meningococcal disease surveillance in men who have sex with men - United States, 2015-2016
Bozio CH , Blain A , MacNeil J , Retchless A , Weil LM , Wang X , Jenkins LT , Rodriguez-Rivera LD , Jarashow C , Ngo V , Hariri S , Mbaeyi SA , Oliver S . MMWR Morb Mortal Wkly Rep 2018 67 (38) 1060-1063 Meningococcal disease is a rare, but serious, bacterial infection that progresses rapidly and can be life-threatening, even with prompt antibiotic treatment. Men who have sex with men (MSM) have previously been reported to be at increased risk for meningococcal disease compared with other men, and recent outbreaks of serogroup C meningococcal disease among MSM have occurred (1). However, the epidemiology of meningococcal disease among MSM in the United States is not well described, in part, because information about MSM has not historically been collected as part of routine meningococcal disease surveillance. To better characterize and identify risk factors for meningococcal disease in general, supplementary data and isolates have been collected since 2015 through enhanced meningococcal disease surveillance activities. During 2015-2016, 271 cases of meningococcal disease in men aged >/=18 years were reported to the National Notifiable Diseases Surveillance System (NNDSS) in 45 states participating in this enhanced surveillance. Forty-eight (17.7%) cases were in men identified as MSM, including 17 (37.8%) with human immunodeficiency virus (HIV) infection. Among MSM, 39 (84.8%) cases were caused by Neisseria meningitidis serogroup C, whereas this serogroup was responsible for only 16.4% of cases among men who were not known to be MSM (non-MSM). Despite improvements in surveillance, MSM likely remain underascertained among men with meningococcal disease. Improved surveillance data are needed to understand the prevalence of and risk for meningococcal disease among MSM and inform policy and prevention strategies. Vaccination with quadrivalent meningococcal conjugate (MenACWY) vaccine is recommended for the control of meningococcal disease outbreaks caused by serogroups A, C, W, or Y, including during outbreaks among MSM; in addition, all persons aged >/=2 months with HIV infection should receive MenACWY vaccine because of the increased risk for meningococcal disease. |
Outbreak of serogroup C meningococcal disease primarily affecting men who have sex with men - Southern California, 2016
Nanduri S , Foo C , Ngo V , Jarashow C , Civen R , Schwartz B , Holguin J , Shearer E , Zahn M , Harriman K , Winter K , Kretz C , Chang HY , Meyer S , MacNeil J . MMWR Morb Mortal Wkly Rep 2016 65 (35) 939-940 During March 4-August 11, 2016, 25 outbreak-associated cases of meningococcal disease, including two deaths (8% case-fatality ratio), were reported in Southern California. Twenty-four of the cases were caused by serogroup C Neisseria meningitidis (NmC) and one by N. meningitidis with an undetermined serogroup (Figure). On June 24, 2016, in response to this increase in NmC cases, primarily among men who have sex with men (MSM) in Los Angeles County, the city of Long Beach, and Orange County, the California Department of Public Health (CDPH) issued a press release and health advisory, declaring an outbreak of NmC in Southern California. |
- Page last reviewed:Feb 1, 2024
- Page last updated:May 30, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure