Last data update: Jan 21, 2025. (Total: 48615 publications since 2009)
Records 1-6 (of 6 Records) |
Query Trace: Janisko SJ[original query] |
---|
Reducing float coal dust: Field evaluation of an inline auxiliary fan scrubber
Patts JR , Colinet JF , Janisko SJ , Barone TL , Patts LD . Min Eng 2016 68 (12) 63-68 Controlling float coal dust in underground coal mines before dispersal into the general airstream can reduce the risk of mine explosions while potentially achieving a more effective and efficient use of rock dust. A prototype flooded-bed scrubber was evaluated for float coal dust control in the return of a continuous miner section. The scrubber was installed inline between the face ventilation tubing and an exhausting auxiliary fan. Airborne and deposited dust mass measurements were collected over three days at set distances from the fan exhaust to assess changes in float coal dust levels in the return due to operation of the scrubber. Mass-based measurements were collected on a per-cut basis and normalized on the basis of per ton mined by the continuous miner. The results show that average float coal dust levels measured under baseline conditions were reduced by more than 90 percent when operating the scrubber. |
Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust
Barone TL , Patts JR , Janisko SJ , Colinet JF , Patts LD , Beck TW , Mischler SE . J Occup Environ Hyg 2015 13 (4) 0 Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine. |
Aerosols and criteria gases in an underground mine that uses FAME biodiesel blends
Bugarski AD , Janisko SJ , Cauda EG , Patts LD , Hummer JA , Westover C , Terrillion T . Ann Occup Hyg 2014 58 (8) 971-82 The contribution of heavy-duty haulage trucks to the concentrations of aerosols and criteria gases in underground mine air and the physical properties of those aerosols were assessed for three fuel blends made with fatty acid methyl esters biodiesel and petroleum-based ultra-low-sulfur diesel (ULSD). The contributions of blends with 20, 50, and 57% of biodiesel as well as neat ULSD were assessed using a 30-ton truck operated over a simulated production cycle in an isolated zone of an operating underground metal mine. When fueled with the B20 (blend of biodiesel with ULSD with 20% of biodiesel content), B50 (blend of biodiesel with ULSD with 50% of biodiesel content), and B57 (blend of biodiesel with ULSD with 57% of biodiesel content) blends in place of ULSD, the truck's contribution to mass concentrations of elemental and total carbon was reduced by 20, 50, and 61%, respectively. Size distribution measurements showed that the aerosols produced by the engine fueled with these blends were characterized by smaller median electrical mobility diameter and lower peak concentrations than the aerosols produced by the same engine fueled with ULSD. The use of the blends resulted in number concentrations of aerosols that were 13-29% lower than those when ULSD was used. Depending on the content of biodiesel in the blends, the average reductions in the surface area concentrations of aerosol which could be deposited in the alveolar region of the lung (as measured by a nanoparticle surface area monitor) ranged between 6 and 37%. The use of blends also resulted in slight but measurable reductions in CO emissions, as well as an increase in NOX emissions. All of the above changes in concentrations and physical properties were found to be correlated with the proportion of biodiesel in the blends. |
Aerosol sensing technologies in the mining industry
Janisko SJ , Noll JD , Cauda EE . Proc SPIE Int Soc Opt Eng 2011 8029 80291E Recent health, safety and environmental regulations are causing an increased demand for monitoring of aerosols in the mining industry. Of particular concern are airborne concentrations of combustible and toxic rock dusts as well as particulate matter generated from diesel engines in underground mines. In response, the National Institute for Occupational Safety and Health (NIOSH) has been evaluating a number of real time sensing technologies for potential use in underground mines. In particular, extensive evaluation has been done on filter-based light extinction using elemental carbon (EC) as a surrogate measurement of total diesel particulate matter (DPM) mass concentration as well as mechanical tapered element oscillating microbalance (TEOM) technology for measurement of both DPM and rock dust mass concentrations. Although these technologies are promising in their ability to accurately measure mine aerosols for their respective applications, there are opportunities for design improvements or alternative technologies that may significantly enhance the monitoring of mine aerosols. Such alterations can lead to increases in sensitivity or a reduction in the size and cost of these devices. This paper provides a brief overview of current practices and presents results of NIOSH research in this area. It concludes with a short discussion of future directions in mine aerosol sensing research. 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE). |
Aerosols emitted in underground mine air by diesel engine fueled with biodiesel
Bugarski AD , Cauda EG , Janisko SJ , Hummer JA , Patts LD . J Air Waste Manag Assoc 2010 60 (2) 237-244 Using biodiesel in place of petroleum diesel is considered by several underground metal and nonmetal mine operators to be a viable strategy for reducing the exposure of miners to diesel particulate matter. This study was conducted in an underground experimental mine to evaluate the effects of soy methyl ester biodiesel on the concentrations and size distributions of diesel aerosols and nitric oxides in mine air. The objective was to compare the effects of neat and blended biodiesel fuels with those of ultralow sulfur petroleum diesel. The evaluation was performed using a mechanically controlled, naturally aspirated diesel engine equipped with a muffler and a diesel oxidation catalyst. The effects of biodiesel fuels on size distributions and number and total aerosol mass concentrations were found to be strongly dependent on engine operating conditions. When fueled with biodiesel fuels, the engine contributed less to elemental carbon concentrations for all engine operating modes and exhaust configurations. The substantial increases in number concentrations and fraction of organic carbon (OC) in total carbon over the baseline were observed when the engine was fueled with biodiesel fuels and operated at light-load operating conditions. Size distributions for all test conditions were found to be single modal and strongly affected by engine operating conditions, fuel type, and exhaust configuration. The peak and total number concentrations as well as median diameter decreased with an increase in the fraction of biodiesel in the fuels, particularly for high-load operating conditions. The effects of the diesel oxidation catalyst, commonly deployed to counteract the potential increase in OC emissions due to use of biodiesel, were found to vary depending upon fuel formulation and engine operating conditions. The catalyst was relatively effective in reducing aerosol number and mass concentrations, particularly at light-load conditions, but also showed the potential for an increase in nitrogen dioxide concentrations at high-load modes. |
Effects of diesel exhaust aftertreatment devices on concentrations and size distribution of aerosols in underground mine air
Bugarski AD , Schnakenberg Jr GH , Hummer JA , Cauda E , Janisko SJ , Patts LD . Environ Sci Technol 2009 43 (17) 6737-43 Three types of uncatalyzed diesel particulate filter (DPF) systems, three types of high-temperature disposable filter elements (DFEs), and one diesel oxidation catalytic converter (DOC) were evaluated in underground mine conditions for their effects on the concentrations and size distributions of diesel aerosols. Those effects were compared with the effects of a standard muffler. The experimental work was conducted directly in an underground environment using a unique diesel laboratory developed in an underground experimental mine. The DPF systems reduced total mass of aerosols in the mine air approximately 10-fold for light-load and 20-fold or more for high-load test conditions. The DFEs offered similar reductions in aerosol mass concentrations. The efficiency of the new DFEs significantly increased with accumulation of operating time and buildup of diesel particulate matter in the porous structure of the filter elements. A single laundering process did not exhibit substantial effects on performance of the filter element. The effectiveness of DPFs and DFEs in removing aerosols by number was strongly influenced by engine operating mode. The concentrations of nucleation mode aerosols in the mine air were found to be substantially higher for both DPFs and DFEs when the engine was operated at high-load modes than at low-load modes. The effects of the DOC on mass and number concentrations of aerosols in mine air were relatively minor when compared to those of the DPF and DFE systems. copyright 2009 American Chemical Society. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure