Last data update: Sep 30, 2024. (Total: 47785 publications since 2009)
Records 1-30 (of 58 Records) |
Query Trace: Jang Y[original query] |
---|
Influenza A(H5N1) virus infection in two dairy farm workers in Michigan
Morse J , Coyle J , Mikesell L , Stoddard B , Eckel S , Weinberg M , Kuo J , Riner D , Margulieux K , Stricklen J , Dover M , Kniss KL , Jang Y , Kirby MK , Frederick JC , Lacek KA , Davis CT , Uyeki TM , Lyon-Callo S , Bagdasarian N . N Engl J Med 2024 |
FDA, CDC, and NIH Co-sponsored Public Workshop Summary-Development Considerations of Antimicrobial Drugs for the Treatment of Gonorrhea
Hiruy H , Bala S , Byrne JM , Roche KG , Jang SH , Kim P , Nambiar S , Rubin D , Yasinskaya Y , Bachmann LH , Bernstein K , Botgros R , Cammarata S , Chaves RL , Deal CD , Drusano GL , Duffy EM , Eakin AE , Gelone S , Hiltke T , Hook Iii EW , Jerse AE , McNeil CJ , Newman L , O'Brien S , Perry C , Reno HEL , Romaguera RA , Sato J , Unemo M , Wi TEC , Workowski K , O'May GA , Shukla SJ , Farley JJ . Clin Infect Dis 2024 There is an unmet need for developing drugs for the treatment of gonorrhea, due to rapidly evolving resistance of Neisseria gonorrhoeae against antimicrobial drugs used for empiric therapy, an increase in globally reported multidrug resistant cases, and the limited available therapeutic options. Furthermore, few drugs are under development. Development of antimicrobials is hampered by challenges in clinical trial design, limitations of available diagnostics, changes in and varying standards of care, lack of robust animal models, and clinically relevant pharmacodynamic targets. On April 23, 2021, the U.S. Food and Drug Administration; Centers for Disease Control and Prevention; and National Institute of Allergy and Infectious Diseases, National Institutes of Health co-sponsored a workshop with stakeholders from academia, industry, and regulatory agencies to discuss the challenges and strategies, including potential collaborations and incentives, to facilitate the development of drugs for the treatment of gonorrhea. This article provides a summary of the workshop. |
Highly pathogenic avian influenza A(H5N1) virus infection in a dairy farm worker
Uyeki TM , Milton S , Abdul Hamid C , Reinoso Webb C , Presley SM , Shetty V , Rollo SN , Martinez DL , Rai S , Gonzales ER , Kniss KL , Jang Y , Frederick JC , De La Cruz JA , Liddell J , Di H , Kirby MK , Barnes JR , Davis CT . N Engl J Med 2024 |
Pathogenesis and transmission assessment of three swine-origin influenza A(H3N2) viruses with zoonotic risk to humans isolated in the U.S from 2017-2020
Sun X , Belser JA , Pulit-Penaloza JA , Brock N , Pappas C , Zanders N , Jang Y , Jones J , Tumpey TM , Davis CT , Maines TR . J Infect Dis 2024 229 (4) 1107-1111 The sporadic occurrence of human infections with swine-origin influenza A(H3N2) viruses and the continual emergence of novel A(H3N2) viruses in swine herds underscore the necessity for ongoing assessment of the pandemic risk posed by these viruses. Here, we selected 3 recent novel swine-origin A(H3N2) viruses isolated between 2017 to 2020, bearing hemagglutinins from the 1990.1, 2010.1, or 2010.2 clades, and evaluated their ability to cause disease and transmit in a ferret model. We conclude that despite considerable genetic variances, all 3 contemporary swine-origin A(H3N2) viruses displayed a capacity for robust replication in the ferret respiratory tract and were also capable of limited airborne transmission. These findings highlight the continued public health risk of swine-origin A(H3N2) strains, especially in human populations with low cross-reactive immunity. |
Novel influenza A viruses in pigs with zoonotic potential, Chile
Tapia R , Brito B , Saavedra M , Mena J , García-Salum T , Rathnasinghe R , Barriga G , Tapia K , García V , Bucarey S , Jang Y , Wentworth D , Torremorell M , Neira V , Medina RA . Microbiol Spectr 2024 e0218123 Novel H1N2 and H3N2 swine influenza A viruses (IAVs) have recently been identified in Chile. The objective of this study was to evaluate their zoonotic potential. We perform phylogenetic analyses to determine the genetic origin and evolution of these viruses, and a serological analysis to determine the level of cross-protective antibodies in the human population. Eight genotypes were identified, all with pandemic H1N1 2009-like internal genes. H1N1 and H1N2 were the subtypes more commonly detected. Swine H1N2 and H3N2 IAVs had hemagglutinin and neuraminidase lineages genetically divergent from IAVs reported worldwide, including human vaccine strains. These genes originated from human seasonal viruses were introduced into the swine population since the mid-1980s. Serological data indicate that the general population is susceptible to the H3N2 virus and that elderly and young children also lack protective antibodies against the H1N2 strains, suggesting that these viruses could be potential zoonotic threats. Continuous IAV surveillance and monitoring of the swine and human populations is strongly recommended.IMPORTANCEIn the global context, where swine serve as crucial intermediate hosts for influenza A viruses (IAVs), this study addresses the pressing concern of the zoonotic potential of novel reassortant strains. Conducted on a large scale in Chile, it presents a comprehensive account of swine influenza A virus diversity, covering 93.8% of the country's industrialized swine farms. The findings reveal eight distinct swine IAV genotypes, all carrying a complete internal gene cassette of pandemic H1N1 2009 origin, emphasizing potential increased replication and transmission fitness. Genetic divergence of H1N2 and H3N2 IAVs from globally reported strains raises alarms, with evidence suggesting introductions from human seasonal viruses since the mid-1980s. A detailed serological analysis underscores the zoonotic threat, indicating susceptibility in the general population to swine H3N2 and a lack of protective antibodies in vulnerable demographics. These data highlight the importance of continuous surveillance, providing crucial insights for global health organizations. |
Avian influenza A(H5) virus circulation in live bird markets in Vietnam, 2017-2022
Nguyen DT , Sumner KM , Nguyen TTM , Phan MQ , Hoang TM , Vo CD , Nguyen TD , Nguyen PT , Yang G , Jang Y , Jones J , Olsen SJ , Gould PL , Nguyen LV , Davis CT . Influenza Other Respir Viruses 2023 17 (12) e13245 BACKGROUND: Highly pathogenic avian influenza A(H5) human infections are a global concern, with many A(H5) human cases detected in Vietnam, including a case in October 2022. Using avian influenza virus surveillance from March 2017-September 2022, we described the percent of pooled samples that were positive for avian influenza A, A(H5), A(H5N1), A(H5N6), and A(H5N8) viruses in live bird markets (LBMs) in Vietnam. METHODS: Monthly at each LBM, 30 poultry oropharyngeal swab specimens and five environmental samples were collected. Samples were pooled in groups of five and tested for influenza A, A(H5), A(H5N1), A(H5N6), and A(H5N8) viruses by real-time reverse-transcription polymerase chain reaction. Trends in the percent of pooled samples that were positive for avian influenza were summarized by LBM characteristics and time and compared with the number of passively detected avian influenza outbreaks using Spearman's rank correlation. RESULTS: A total of 25,774 pooled samples were collected through active surveillance at 167 LBMs in 24 provinces; 36.9% of pooled samples were positive for influenza A, 3.6% A(H5), 1.9% A(H5N1), 1.1% A(H5N6), and 0.2% A(H5N8). Influenza A(H5) viruses were identified January-December and at least once in 91.7% of sampled provinces. In 246 A(H5) outbreaks in poultry; 20.3% were influenza A(H5N1), 60.2% A(H5N6), and 19.5% A(H5N8); outbreaks did not correlate with active surveillance. CONCLUSIONS: In Vietnam, influenza A(H5) viruses were detected by active surveillance in LBMs year-round and in most provinces sampled. In addition to outbreak reporting, active surveillance for A(H5) viruses in settings with high potential for animal-to-human spillover can provide situational awareness. |
Mitigating Pandemic Risk with Influenza A Virus Field Surveillance at a Swine-Human Interface (preprint)
Rambo-Martin BL , Keller MW , Wilson MM , Nolting JM , Anderson TK , Vincent AL , Bagal UR , Jang Y , Neuhaus EB , Davis CT , Bowman AS , Wentworth DE , Barnes JR . bioRxiv 2019 585588 Working overnight at a large swine exhibition, we identified an influenza A virus (IAV) outbreak in swine, nanopore-sequenced 13 IAV genomes from samples collected, and in real-time, determined that these viruses posed a novel risk to humans due to genetic mismatches between the viruses and current pre-pandemic candidate vaccine viruses (CVV). We developed and used a portable IAV sequencing and analysis platform called Mia (Mobile Influenza Analysis) to complete and characterize full-length consensus genomes approximately 18 hours after unpacking the mobile lab. Swine are important animal IAV reservoirs that have given rise to pandemic viruses via zoonotic transmission. Genomic analyses of IAV in swine are critical to understanding pandemic risk of viruses in this reservoir, and characterization of viruses circulating in exhibition swine enables rapid comparison to current seasonal influenza vaccines and CVVs. The Mia system rapidly identified three genetically distinct swine IAV lineages from three subtypes: A(H1N1), A(H3N2) and A(H1N2). Additional analysis of the HA protein sequences of the A(H1N2) viruses identified >30 amino acid differences between the HA1 portion of the hemagglutinin of these viruses and the most closely related pre-2009 CVV. All virus sequences were emailed to colleagues at CDC who initiated development of a synthetically derived CVV designed to provide an optimal antigenic match with the viruses detected in the exhibition. In subsequent months, this virus caused 13 infections in humans, and was the dominant variant virus in the US detected in 2018. Had this virus caused a severe outbreak or pandemic, our proactive surveillance efforts and CVV derivation would have provided an approximate 8 week time advantage for vaccine manufacturing. This is the first report of the use of field-derived nanopore sequencing data to initiate a real-time, actionable public health countermeasure. |
Antiviral susceptibility of clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses isolated from birds and mammals in the United States, 2022
Nguyen HT , Chesnokov A , De La Cruz J , Pascua PNQ , Mishin VP , Jang Y , Jones J , Di H , Ivashchenko AA , Killian ML , Torchetti MK , Lantz K , Wentworth DE , Davis CT , Ivachtchenko AV , Gubareva LV . Antiviral Res 2023 217 105679 Clade 2.3.4.4 b highly pathogenic avian influenza (HPAI) A (H5N1) viruses that are responsible for devastating outbreaks in birds and mammals pose a potential threat to public health. Here, we evaluated their susceptibility to influenza antivirals. Of 1015 sequences of HPAI A (H5N1) viruses collected in the United States during 2022, eight viruses (∼0.8%) had a molecular marker of drug resistance to an FDA-approved antiviral: three adamantane-resistant (M2-V27A), four oseltamivir-resistant (NA-H275Y), and one baloxavir-resistant (PA-I38T). Additionally, 31 viruses contained mutations that may reduce susceptibility to inhibitors of neuraminidase (NA) (n = 20) or cap-dependent endonuclease (CEN) (n = 11). A panel of 22 representative viruses was tested phenotypically. Overall, clade 2.3.4.4 b A (H5N1) viruses lacking recognized resistance mutations were susceptible to FDA-approved antivirals. Oseltamivir was least potent at inhibiting NA activity, while the investigational NA inhibitor AV5080 was most potent, including against NA mutants. A novel NA substitution T438N conferred 12-fold reduced inhibition by zanamivir, and in combination with the known marker N295S, synergistically affected susceptibility to all five NA inhibitors. In cell culture-based assays HINT and IRINA, the PA-I38T virus displayed 75- to 108-fold and 37- to 78-fold reduced susceptibility to CEN inhibitors baloxavir and investigational AV5116, respectively. Viruses with PA-I38M or PA-A37T showed 5- to 10-fold reduced susceptibilities. As HPAI A (H5N1) viruses continue to circulate and evolve, close monitoring of drug susceptibility is needed for risk assessment and to inform decisions regarding antiviral stockpiling. |
Changes in influenza and other respiratory virus activity during the COVID-19 pandemic-United States, 2020-2021.
Olsen SJ , Winn AK , Budd AP , Prill MM , Steel J , Midgley CM , Kniss K , Burns E , Rowe T , Foust A , Jasso G , Merced-Morales A , Davis CT , Jang Y , Jones J , Daly P , Gubareva L , Barnes J , Kondor R , Sessions W , Smith C , Wentworth DE , Garg S , Havers FP , Fry AM , Hall AJ , Brammer L , Silk BJ . Am J Transplant 2021 21 (10) 3481-3486 The COVID-19 pandemic and subsequent implementation of nonpharmaceutical interventions (e.g., cessation of global travel, mask use, physical distancing, and staying home) reduced the transmission of some viral respiratory pathogens.1 In the United States, influenza activity decreased in March 2020, was historically low through the summer of 2020,2 and remained low during October 2020–May 2021 (<0.4% of respiratory specimens with positive test results for each week of the season). Circulation of other respiratory pathogens, including respiratory syncytial virus (RSV), common human coronaviruses (HCoVs) types OC43, NL63, 229E, and HKU1, and parainfluenza viruses (PIVs) types 1–4 also decreased in early 2020 and did not increase until spring 2021. Human metapneumovirus (HMPV) circulation decreased in March 2020 and remained low through May 2021. Respiratory adenovirus (RAdV) circulated at lower levels throughout 2020 and as of early May 2021. Rhinovirus and enterovirus (RV/EV) circulation decreased in March 2020, remained low until May 2020, and then increased to near prepandemic seasonal levels. Circulation of respiratory viruses could resume at prepandemic levels after COVID-19 mitigation practices become less stringent. Clinicians should be aware of increases in some respiratory virus activity and remain vigilant for off-season increases. In addition to the use of everyday preventive actions, fall influenza vaccination campaigns are an important component of prevention as COVID-19 mitigation measures are relaxed and schools and workplaces resume in-person activities. |
Erratum: Vol. 71, No. 6.
Lambrou AS , Shirk P , Steele MK , Paul P , Paden CR , Cadwell B , Reese HE , Aoki Y , Hassell N , Caravas J , Kovacs NA , Gerhart JG , Ng HJ , Zheng XY , Beck A , Chau R , Cintron R , Cook PW , Gulvik CA , Howard D , Jang Y , Knipe K , Lacek KA , Moser KA , Paskey AC , Rambo-Martin BL , Nagilla RR , Rethchless AC , Schmerer MW , Seby S , Shephard SS , Stanton RA , Stark TJ , Uehara A , Unoarumhi Y , Bentz ML , Burhgin A , Burroughs M , Davis ML , Keller MW , Keong LM , Le SS , Lee JS , Madden Jr JC , Nobles S , Owouor DC , Padilla J , Sheth M , Wilson MM , Talarico S , Chen JC , Oberste MS , Batra D , McMullan LK , Halpin AL , Galloway SE , MacCannell DR , Kondor R , Barnes J , MacNeil A , Silk BJ , Dugan VG , Scobie HM , Wentworth DE . MMWR Morb Mortal Wkly Rep 2022 71 (14) 528 The report “Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants — United States, June 2021–January 2022” contained several errors. |
Correlation Between Third Dose of COVID-19 Vaccines and Regional Case Fatality Rates During the Omicron Wave in Korea.
Jang Y , Kim IJ , Moon SS , Kim SB , Lee J . J Korean Med Sci 2022 37 (50) e347 This study seeks to find the correlation between case fatality rates (CFRs) and third-dose vaccination coverage in 244 counties (si/gun/gu) of South Korea during the omicron variant wave. Multivariate regression analyses report that the higher third-dose vaccination rates were correlated with lower regional CFRs, when controlling for age structure. If the third-dose vaccination rate of a county is higher by 10%, it would have a CFR lower by 0.05% (95% confidence interval, 0.03-0.08%). As the number of cumulative confirmed cases in South Korea was 16,353,495 as of April 20, 2022, a lower CFR by 0.03-0.08% is equivalent to 4,394-12,448 lives (8.6-24.4 per 100,000) spared. County-specific characteristics, such as age structure, intensive care unit availability, and the level of non-pharmaceutical interventions may also affect the extent of this correlation. The conclusion implicates the potential role of coronavirus disease 2019 vaccines in reducing the pressure on the regional healthcare capacity. |
Pathogenesis and Transmission of Human Seasonal and Swine-origin A(H1) Influenza Viruses in the Ferret Model.
Pulit-Penaloza JA , Brock N , Jones J , Belser JA , Jang Y , Sun X , Thor S , Pappas C , Zanders N , Tumpey TM , Todd Davis C , Maines TR . Emerg Microbes Infect 2022 11 (1) 1-20 Influenza A viruses (IAVs) in the swine reservoir constantly evolve, resulting in expanding genetic and antigenic diversity of strains that occasionally cause infections in humans and pose threat of emerging as a strain capable of human-to-human transmission. For these reasons, there is an ongoing need for surveillance and characterization of newly emerging strains to aid pandemic preparedness efforts, particularly for the selection of candidate vaccine viruses and conducting risk assessments. Here, we performed a parallel comparison of the pathogenesis and transmission of genetically and antigenically diverse swine-origin A(H1N1) variant (v) and A(H1N2)v, and human seasonal A(H1N1)pdm09 IAVs using the ferret model. Both groups of viruses were capable of replication in the ferret upper respiratory tract; however, variant viruses were more frequently isolated from the lower respiratory tract as compared to the human-adapted viruses. Regardless of virus origin, observed clinical signs of infection differed greatly between strains, with some viruses causing nasal discharge, sneezing and, in some instances, diarrhea in ferrets. The most striking difference between the viruses was the ability to transmit through the air. Human-adapted viruses were capable of airborne transmission between all ferret pairs. In contrast, only one out of the four tested variant viruses was able to transmit via the air as efficiently as the human-adapted viruses. Overall, this work highlights the need for sustained monitoring of emerging swine IAVs to identify strains of concern such as those that are antigenically different from vaccine strains and that possess adaptations required for efficient respiratory droplet transmission in mammals. |
Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants - United States, June 2021-January 2022.
Lambrou AS , Shirk P , Steele MK , Paul P , Paden CR , Cadwell B , Reese HE , Aoki Y , Hassell N , Caravas J , Kovacs NA , Gerhart JG , Ng HJ , Zheng XY , Beck A , Chau R , Cintron R , Cook PW , Gulvik CA , Howard D , Jang Y , Knipe K , Lacek KA , Moser KA , Paskey AC , Rambo-Martin BL , Nagilla RR , Rethchless AC , Schmerer MW , Seby S , Shephard SS , Stanton RA , Stark TJ , Uehara A , Unoarumhi Y , Bentz ML , Burhgin A , Burroughs M , Davis ML , Keller MW , Keong LM , Le SS , Lee JS , Madden Jr JC , Nobles S , Owouor DC , Padilla J , Sheth M , Wilson MM , Talarico S , Chen JC , Oberste MS , Batra D , McMullan LK , Halpin AL , Galloway SE , MacCannell DR , Kondor R , Barnes J , MacNeil A , Silk BJ , Dugan VG , Scobie HM , Wentworth DE . MMWR Morb Mortal Wkly Rep 2022 71 (6) 206-211 Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.(†) The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice. |
First human infection of avian influenza A(H5N6) virus reported in Lao People's Democratic Republic, February-March 2021
Sengkeopraseuth B , Co KC , Leuangvilay P , Mott JA , Khomgsamphanh B , Somoulay V , Tsuyuoka R , Chiew M , Ketmayoon P , Jones J , Pusch E , Jang Y , Barnes J , Davis CT , Phommachanh P , Khamphaphongphane B , Olsen SJ , Xangsayyarath P . Influenza Other Respir Viruses 2021 16 (2) 181-185 In March 2021, Lao People's Democratic Republic (Laos) reported an avian influenza A(H5N6) virus infection in a 5-year-old child identified through sentinel surveillance. This was the first human A(H5N6) infection reported outside of China. A multidisciplinary investigation undertook contact tracing and enhanced human and animal surveillance in surrounding villages and live bird markets. Seven Muscovy ducks tested positive for highly pathogenic avian influenza A(H5N6) viruses. Sequenced viruses belonged to clade 2.3.4.4h and were closely related to viruses detected in poultry in Vietnam and to previous viruses detected in Laos. Surveillance and coordinated outbreak response remain essential to global health security. |
Changes in Influenza and Other Respiratory Virus Activity During the COVID-19 Pandemic - United States, 2020-2021.
Olsen SJ , Winn AK , Budd AP , Prill MM , Steel J , Midgley CM , Kniss K , Burns E , Rowe T , Foust A , Jasso G , Merced-Morales A , Davis CT , Jang Y , Jones J , Daly P , Gubareva L , Barnes J , Kondor R , Sessions W , Smith C , Wentworth DE , Garg S , Havers FP , Fry AM , Hall AJ , Brammer L , Silk BJ . MMWR Morb Mortal Wkly Rep 2021 70 (29) 1013-1019 The COVID-19 pandemic and subsequent implementation of nonpharmaceutical interventions (e.g., cessation of global travel, mask use, physical distancing, and staying home) reduced transmission of some viral respiratory pathogens (1). In the United States, influenza activity decreased in March 2020, was historically low through the summer of 2020 (2), and remained low during October 2020-May 2021 (<0.4% of respiratory specimens with positive test results for each week of the season). Circulation of other respiratory pathogens, including respiratory syncytial virus (RSV), common human coronaviruses (HCoVs) types OC43, NL63, 229E, and HKU1, and parainfluenza viruses (PIVs) types 1-4 also decreased in early 2020 and did not increase until spring 2021. Human metapneumovirus (HMPV) circulation decreased in March 2020 and remained low through May 2021. Respiratory adenovirus (RAdV) circulated at lower levels throughout 2020 and as of early May 2021. Rhinovirus and enterovirus (RV/EV) circulation decreased in March 2020, remained low until May 2020, and then increased to near prepandemic seasonal levels. Circulation of respiratory viruses could resume at prepandemic levels after COVID-19 mitigation practices become less stringent. Clinicians should be aware of increases in some respiratory virus activity and remain vigilant for off-season increases. In addition to the use of everyday preventive actions, fall influenza vaccination campaigns are an important component of prevention as COVID-19 mitigation measures are relaxed and schools and workplaces resume in-person activities. |
Assessment of New York City Urgent Care Centers' Emergency Preparedness and Infection Prevention and Control Practices, 2016-2017
Jacobs-Wingo J , Beatty NL , Jang K , Foote MM . Disaster Med Public Health Prep 2021 16 (3) 1-5 BACKGROUND: Urgent care centers (UCCs) have become frontline healthcare facilities for individuals with acute infectious diseases. Additionally, UCCs could potentially support the healthcare system response during a public health emergency. Investigators sought to assess NYC UCCs' implementation of nationally-recommended IPC and EP practices. METHODS: Investigators identified 199 eligible UCCs based on criteria defined by the Urgent Care Association of America. Multiple facilities under the same ownership were considered a network. As part of a cross-sectional analysis, an electronic survey was sent to UCC representatives assessing their respective facilities' IPC and EP practices. Representatives of urgent care networks responded on behalf of all UCCs within the network if all sites within the network used the same policies and procedures. RESULTS: Of the respondents, 18 representing 144 UCCs completed the survey. Of these, 8 of them (44.4% of the respondents) represented more than 1 facility that utilized standardized practices (range = 2-60 facilities). Overall, 81.3% have written IPC policies, 75.0% have EP policies, 80.6% require staff to train on IPC, and 75.7% train staff on EP. CONCLUSION: Most UCCs reported implementation of IPC and EP practices; however, the comprehensiveness of these activities varied across UCCs. Public health can better prepare the healthcare system by engaging UCCs in planning and executing of IPC and EP-related initiatives. |
Detection and Characterization of Swine-origin Influenza A(H1N1) Pandemic 2009 Viruses in Humans Following Zoonotic Transmission.
Cook PW , Stark T , Jones J , Kondor R , Zanders N , Benfer J , Scott S , Jang Y , Janas-Martindale A , Lindstrom S , Blanton L , Schiltz J , Tell R , Griesser R , Shult P , Reisdorf E , Danz T , Fry A , Barnes J , Vincent A , Wentworth DE , Davis CT . J Virol 2020 95 (2) Human-to-swine transmission of seasonal influenza viruses has led to sustained human-like influenza viruses circulating in the United States swine population. While some reverse zoonotic-origin viruses adapt and become enzootic in swine, nascent reverse zoonoses may result in virus detections that are difficult to classify as 'swine-origin' or 'human-origin' due to the genetic similarity of circulating viruses. This is the case for human-origin influenza A(H1N1) pandemic 2009 (pdm09) viruses detected in pigs following numerous reverse zoonosis events since the 2009 pandemic. We report the identification of two human infections with A(H1N1)pdm09 viruses originating from swine hosts and classify them as 'swine-origin' variant influenza viruses based on phylogenetic analysis and sequence comparison methods. Phylogenetic analyses of viral genomes from two cases revealed these viruses were reassortants containing A(H1N1)pdm09 HA and NA genes with genetic combinations derived from the triple reassortant internal gene cassette. Follow-up investigations determined that one individual had direct exposure to swine in the week preceding illness onset, while another did not report swine exposure. The swine-origin A(H1N1) variant cases were resolved by full genome sequence comparison of the variant viruses to swine influenza genomes. However, if reassortment does not result in the acquisition of swine-associated genes and swine virus genomic sequences are not available from the exposure source future cases may not be discernible. We have developed a pipeline that performs maximum likelihood analyses, a k-mer-based set difference algorithm, and random forest algorithms to identify swine-associated sequences in the hemagglutinin gene to differentiate between human-origin and swine-origin A(H1N1)pdm09 viruses.IMPORTANCE Influenza virus infects a wide range of hosts resulting in illnesses that vary from asymptomatic cases to severe pneumonia and death. Viral transfer can occur between human and non-human hosts resulting in human and non-human origin viruses circulating in novel hosts. In this work, we have identified the first case of a swine-origin influenza A(H1N1)pdm09 virus resulting in a human infection. This shows that as these viruses not only circulate in swine hosts, but are continuing to evolve and distinguish themselves from previously circulating human-origin influenza viruses. The development of techniques for distinguishing human-origin and swine-origin viruses are necessary for the continued surveillance of influenza viruses. We show that unique genetic signatures can differentiate circulating swine-associated strains from circulating human-associated strains of influenza A(H1N1)pdm09, and these signatures can be used to enhance surveillance of swine-origin influenza. |
Genetically and antigenically divergent influenza A(H9N2) viruses exhibit differential replication and transmission phenotypes in mammalian models.
Belser JA , Sun X , Brock N , Pappas C , Pulit-Penaloza JA , Zeng H , Jang Y , Jones J , Carney PJ , Chang J , Van Long N , Diep NT , Thor S , Di H , Yang G , Cook PW , Creager HM , Wang D , McFarland J , Van Dong P , Wentworth DE , Tumpey TM , Barnes JR , Stevens J , Davis CT , Maines TR . J Virol 2020 94 (17) Low pathogenicity avian influenza A(H9N2) viruses, enzootic in poultry populations in Asia, are associated with fewer confirmed human infections but higher rates of seropositivity compared to A(H5) or A(H7) subtype viruses. Co-circulation of A(H5) and A(H7) viruses leads to the generation of reassortant viruses bearing A(H9N2) internal genes with markers of mammalian adaptation, warranting continued surveillance in both avian and human populations. Here, we describe active surveillance efforts in live poultry markets in Vietnam in 2018 and compare representative viruses to G1 and Y280 lineage viruses that have infected humans. Receptor binding properties, pH thresholds for HA activation, in vitro replication in human respiratory tract cells, and in vivo mammalian pathogenicity and transmissibility were investigated. While A(H9N2) viruses from both poultry and humans exhibited features associated with mammalian adaptation, one human isolate from 2018, A/Anhui-Lujiang/39/2018, exhibited increased capacity for replication and transmission, demonstrating the pandemic potential of A(H9N2) viruses.IMPORTANCE A(H9N2) influenza viruses are widespread in poultry in many parts of the world, and for over twenty years, have sporadically jumped species barriers to cause human infection. As these viruses continue to diversify genetically and antigenically, it is critical to closely monitor viruses responsible for human infections, to ascertain if A(H9N2) viruses are acquiring properties that make them better suited to infect and spread among humans. In this study, we describe an active poultry surveillance system established in Vietnam to identify the scope of influenza viruses present in live bird markets and the threat they pose to human health. Assessment of a recent A(H9N2) virus isolated from an individual in China in 2018 is also reported and was found to exhibit properties of adaptation to humans and, importantly, show similarities to strains isolated from the live bird markets of Vietnam. |
Molecular typing of Cyclospora cayetanensis in produce and clinical samples using targeted enrichment of complete mitochondrial genomes and next-generation sequencing.
Cinar HN , Gopinath G , Murphy HR , Almeria S , Durigan M , Choi D , Jang A , Kim E , Kim R , Choi S , Lee J , Shin Y , Lee J , Qvarnstrom Y , Benedict TK , Bishop HS , da Silva A . Parasit Vectors 2020 13 (1) 122 BACKGROUND: Outbreaks of cyclosporiasis, a diarrheal illness caused by Cyclospora cayetanensis, have been a public health issue in the USA since the mid 1990's. In 2018, 2299 domestically acquired cases of cyclosporiasis were reported in the USA as a result of multiple large outbreaks linked to different fresh produce commodities. Outbreak investigations are hindered by the absence of standardized molecular epidemiological tools for C. cayetanensis. For other apicomplexan coccidian parasites, multicopy organellar DNA such as mitochondrial genomes have been used for detection and molecular typing. METHODS: We developed a workflow to obtain complete mitochondrial genome sequences from cilantro samples and clinical samples for typing of C. cayetanensis isolates. The 6.3 kb long C. cayetanensis mitochondrial genome was amplified by PCR in four overlapping amplicons from genomic DNA extracted from cilantro, seeded with oocysts, and from stool samples positive for C. cayetanensis by diagnostic methods. DNA sequence libraries of pooled amplicons were prepared and sequenced via next-generation sequencing (NGS). Sequence reads were assembled using a custom bioinformatics pipeline. RESULTS: This approach allowed us to sequence complete mitochondrial genomes from the samples studied. Sequence alterations, such as single nucleotide polymorphism (SNP) profiles and insertion and deletions (InDels), in mitochondrial genomes of 24 stool samples from patients with cyclosporiasis diagnosed in 2014, exhibited discriminatory power. The cluster dendrogram that was created based on distance matrices of the complete mitochondrial genome sequences, indicated distinct strain-level diversity among the 2014 C. cayetanensis outbreak isolates analyzed in this study. CONCLUSIONS: Our results suggest that genomic analyses of mitochondrial genome sequences may help to link outbreak cases to the source. |
Influenza A virus field surveillance at a swine-human interface
Rambo-Martin BL , Keller MW , Wilson MM , Nolting JM , Anderson TK , Vincent AL , Bagal UR , Jang Y , Neuhaus EB , Davis CT , Bowman AS , Wentworth DE , Barnes JR . mSphere 2020 5 (1) While working overnight at a swine exhibition, we identified an influenza A virus (IAV) outbreak in swine, Nanopore sequenced 13 IAV genomes from samples we collected, and predicted in real time that these viruses posed a novel risk to humans due to genetic mismatches between the viruses and current prepandemic candidate vaccine viruses (CVVs). We developed and used a portable IAV sequencing and analysis platform called Mia (Mobile Influenza Analysis) to complete and characterize full-length consensus genomes approximately 18 h after unpacking the mobile lab. Exhibition swine are a known source for zoonotic transmission of IAV to humans and pose a potential pandemic risk. Genomic analyses of IAV in swine are critical to understanding this risk, the types of viruses circulating in swine, and whether current vaccines developed for use in humans would be predicted to provide immune protection. Nanopore sequencing technology has enabled genome sequencing in the field at the source of viral outbreaks or at the bedside or pen-side of infected humans and animals. The acquired data, however, have not yet demonstrated real-time, actionable public health responses. The Mia system rapidly identified three genetically distinct swine IAV lineages from three subtypes, A(H1N1), A(H3N2), and A(H1N2). Analysis of the hemagglutinin (HA) sequences of the A(H1N2) viruses identified >30 amino acid differences between the HA1 of these viruses and the most closely related CVV. As an exercise in pandemic preparedness, all sequences were emailed to CDC collaborators who initiated the development of a synthetically derived CVV.IMPORTANCE Swine are influenza virus reservoirs that have caused outbreaks and pandemics. Genomic characterization of these viruses enables pandemic risk assessment and vaccine comparisons, though this typically occurs after a novel swine virus jumps into humans. The greatest risk occurs where large groups of swine and humans comingle. At a large swine exhibition, we used Nanopore sequencing and on-site analytics to interpret 13 swine influenza virus genomes and identified an influenza virus cluster that was genetically highly varied to currently available vaccines. As part of the National Strategy for Pandemic Preparedness exercises, the sequences were emailed to colleagues at the CDC who initiated the development of a synthetically derived vaccine designed to match the viruses at the exhibition. Subsequently, this virus caused 14 infections in humans and was the dominant U.S. variant virus in 2018. |
The first report of human infection with avian influenza A(H9N2) virus in Oman: the need for a One Health approach
Al-Mayahi Z , Al Kindi H , Davis CT , Al-Rawahi B , Al-Yaqoubi F , Jang Y , Jones J , Barnes JR , Davis W , Shu B , Lynch B , Wentworth DE , Al-Maskari Z , Al Maani A , Al Abri S . Int J Infect Dis 2019 91 169-173 After detection of the first human case of avian influenza A subtype H9N2 in 1998, more than 40 cases were diagnosed worldwide. The spread of the virus, on the other hand, is more remarkable and significant in global poultry populations causing notable economic losses despite its low pathogenicity. Many surveillance studies and activities conducted in several countries proved the predominance of this virus subtype. We present a case report of A(H9N2) virus infection in a 14-month-old female from Oman. It is the first A(H9N2) human case reported from Oman and the Gulf Cooperation Countries and the second country outside of southern and eastern Asia, cases were also detected in Egypt. The patient had bronchial asthma and presented with high-grade temperature and symptoms of lower respiratory tract infection that necessitated admission to a high dependency unit in a tertiary care hospital. It is of urgency that a multisectoral One Health approach be established to combat the threat of avian influenza at the animal-human interface. In addition to enhancements of surveillance and control in poultry, there is a need to develop screening and preventive programs for high-risk occupations. |
Characteristics of hospitalized and nonhospitalized patients in a nationwide outbreak of e-cigarette, or vaping, product use-associated lung injury - United States, November 2019
Chatham-Stephens K , Roguski K , Jang Y , Cho P , Jatlaoui TC , Kabbani S , Glidden E , Ussery EN , Trivers KF , Evans ME , King BA , Rose DA , Jones CM , Baldwin G , Delaney LJ , Briss P , Ritchey MD . MMWR Morb Mortal Wkly Rep 2019 68 (46) 1076-1080 CDC, the Food and Drug Administration (FDA), state and local health departments, and public health and clinical stakeholders are investigating a nationwide outbreak of e-cigarette, or vaping, product use-associated lung injury (EVALI) (1). As of November 13, 2019, 49 states, the District of Columbia, and two U.S. territories (Puerto Rico and U.S. Virgin Islands) have reported 2,172 EVALI cases to CDC, including 42 (1.9%) EVALI-associated deaths. To inform EVALI surveillance, including during the 2019-20 influenza season, case report information supplied by states for hospitalized and nonhospitalized patients with EVALI were analyzed using data collected as of November 5, 2019. Among 2,016 EVALI patients with available data on hospitalization status, 1,906 (95%) were hospitalized, and 110 (5%) were not hospitalized. Demographic characteristics of hospitalized and nonhospitalized patients were similar; most were male (68% of hospitalized versus 65% of nonhospitalized patients), and most were aged <35 years (78% of hospitalized versus 74% of nonhospitalized patients). These patients also reported similar use of tetrahydrocannabinol (THC)-containing products (83% of hospitalized versus 84% of nonhospitalized patients). Given the similarity between hospitalized and nonhospitalized EVALI patients, the potential for large numbers of respiratory infections during the emerging 2019-20 influenza season, and the potential difficulty in distinguishing EVALI from respiratory infections, CDC will no longer collect national data on nonhospitalized EVALI patients. Further collection of data on nonhospitalized patients will be at the discretion of individual state, local, and territorial health departments. Candidates for outpatient management of EVALI should have normal oxygen saturation (>/=95% while breathing room air), no respiratory distress, no comorbidities that might compromise pulmonary reserve, reliable access to care, strong social support systems, and should be able to ensure follow-up within 24-48 hours of initial evaluation and to seek medical care promptly if respiratory symptoms worsen. Health care providers should emphasize the importance of annual influenza vaccination for all persons aged >/=6 months, including persons who use e-cigarette, or vaping, products (2,3). |
Susceptibility of influenza A, B, C, and D viruses to Baloxavir
Mishin VP , Patel MC , Chesnokov A , De La Cruz J , Nguyen HT , Lollis L , Hodges E , Jang Y , Barnes J , Uyeki T , Davis CT , Wentworth DE , Gubareva LV . Emerg Infect Dis 2019 25 (10) 1969-1972 Baloxavir showed broad-spectrum in vitro replication inhibition of 4 types of influenza viruses (90% effective concentration range 1.2-98.3 nmol/L); susceptibility pattern was influenza A > B > C > D. This drug also inhibited influenza A viruses of avian and swine origin, including viruses that have pandemic potential and those resistant to neuraminidase inhibitors. |
Update: Influenza Activity - United States and Worldwide, May 19-September 28, 2019, and Composition of the 2020 Southern Hemisphere Influenza Vaccine
Epperson S , Davis CT , Brammer L , Abd Elal AI , Ajayi N , Barnes J , Budd AP , Burns E , Daly P , Dugan VG , Fry AM , Jang Y , Johnson SJ , Kniss K , Kondor R , Grohskopf LA , Gubareva L , Merced-Morales A , Sessions W , Stevens J , Wentworth DE , Xu X , Jernigan D . MMWR Morb Mortal Wkly Rep 2019 68 (40) 880-884 During May 19-September 28, 2019,* low levels of influenza activity were reported in the United States, with cocirculation of influenza A and influenza B viruses. In the Southern Hemisphere seasonal influenza viruses circulated widely, with influenza A(H3) predominating in many regions; however, influenza A(H1N1)pdm09 and influenza B viruses were predominant in some countries. In late September, the World Health Organization (WHO) recommended components for the 2020 Southern Hemisphere influenza vaccine and included an update to the A(H3N2) and B/Victoria-lineage components. Annual influenza vaccination is the best means for preventing influenza illness and its complications, and vaccination before influenza activity increases is optimal. Health care providers should recommend vaccination for all persons aged >/=6 months who do not have contraindications to vaccination (1). |
Detection of highly pathogenic avian influenza A(H5N6) viruses in waterfowl in Bangladesh.
Yang G , Chowdury S , Hodges E , Rahman MZ , Jang Y , Hossain ME , Jones J , Stark TJ , Di H , Cook PW , Ghosh S , Azziz-Baumgartner E , Barnes JR , Wentworth DE , Kennedy E , Davis CT . Virology 2019 534 36-44 Bangladesh has reported repeated outbreaks of highly pathogenic avian influenza (HPAI) A(H5) viruses in poultry since 2007. Because of the large number of live poultry markets (LPM) relative to the population density of poultry throughout the country, these markets can serve as sentinel sites for HPAI A(H5) detection. Through active LPM surveillance during June 2016-June 2017, HPAI A(H5N6) viruses along with 14 other subtypes of influenza A viruses were detected. The HPAI A(H5N6) viruses belonged to clade 2.3.4.4 and were likely introduced into Bangladesh around March 2016. Human infections with influenza clade 2.3.4.4 viruses in Bangladesh have not been identified, but the viruses had several molecular markers associated with potential human infection. Vigilant surveillance at the animal-human interface is essential to identify emerging avian influenza viruses with the potential to threaten public and animal health. |
Influenza A(H3N2) variant virus outbreak at three fairs - Maryland, 2017
Duwell MM , Blythe D , Radebaugh MW , Kough EM , Bachaus B , Crum DA , Perkins KAJr , Blanton L , Davis CT , Jang Y , Vincent A , Chang J , Abney DE , Gudmundson L , Brewster MG , Polsky L , Rose DC , Feldman KA . MMWR Morb Mortal Wkly Rep 2018 67 (42) 1169-1173 On September 17, 2017, the Maryland Department of Agriculture (MDA) was notified by fair and 4-H officials of ill swine at agricultural fair A, held September 14-17. That day, investigation of the 107 swine at fair A revealed five swine with fever and signs of upper respiratory tract illness. All five respiratory specimens collected from these swine tested positive for influenza A virus at the MDA Animal Health Laboratory, and influenza A(H3N2) virus was confirmed in all specimens by the U.S. Department of Agriculture National Veterinary Services Laboratory (NVSL). On September 18, MDA was notified by fair and 4-H officials that swine exhibitors were also ill. MDA alerted the Maryland Department of Health (MDH). A joint investigation with MDH and the local health department was started and later broadened to Maryland agricultural fairs B (September 13-17) and C (September 15-23). In total, 76 persons underwent testing for variant influenza, and influenza A(H3N2) variant (A(H3N2)v) virus infection was identified in 40 patients with exposure to swine at these fairs (Figure), including 30 (75%) who had more than one characteristic putting them at high risk for serious influenza complications; 24 (60%) of these were children aged <5 years. Twenty-six (65%) patients reported direct contact with swine (i.e., touching swine or swine enclosure), but 14 (35%) reported only indirect contact (e.g., walking through a swine barn). Two children required hospitalization; all patients recovered. This outbreak highlights the risk, particularly among children, for contracting variant influenza virus at agricultural fairs after direct or indirect swine contact. Publicizing CDC's recommendation that persons at high risk for serious influenza complications avoid pigs and swine barns might help prevent future variant influenza outbreaks among vulnerable groups (1). |
Update: Influenza activity - United States and worldwide, May 20-October 13, 2018
Chow EJ , Davis CT , Abd Elal AI , Alabi N , Azziz-Baumgartner E , Barnes J , Blanton L , Brammer L , Budd AP , Burns E , Davis WW , Dugan VG , Fry AM , Garten R , Grohskopf LA , Gubareva L , Jang Y , Jones J , Kniss K , Lindstrom S , Mustaquim D , Porter R , Rolfes M , Sessions W , Taylor C , Wentworth DE , Xu X , Zanders N , Katz J , Jernigan D . MMWR Morb Mortal Wkly Rep 2018 67 (42) 1178-1185 During May 20-October 13, 2018,* low levels of influenza activity were reported in the United States, with a mix of influenza A and B viruses circulating. Seasonal influenza activity in the Southern Hemisphere was low overall, with influenza A(H1N1)pdm09 predominating in many regions. Antigenic testing of available influenza A and B viruses indicated that no significant antigenic drift in circulating viruses had emerged. In late September, the components for the 2019 Southern Hemisphere influenza vaccine were selected and included an incremental update to the A(H3N2) vaccine virus used in egg-based vaccine manufacturing; no change was recommended for the A(H3N2) component of cell-manufactured or recombinant influenza vaccines. Annual influenza vaccination is the best method for preventing influenza illness and its complications, and all persons aged >/=6 months who do not have contraindications should receive influenza vaccine, preferably before the onset of influenza circulation in their community, which often begins in October and peaks during December-February. Health care providers should offer vaccination by the end of October and should continue to recommend and administer influenza vaccine to previously unvaccinated patients throughout the 2018-19 influenza season (1). In addition, during May 20-October 13, a small number of nonhuman influenza "variant" virus infections(dagger) were reported in the United States; most were associated with exposure to swine. Although limited human-to-human transmission might have occurred in one instance, no ongoing community transmission was identified. Vulnerable populations, especially young children and other persons at high risk for serious influenza complications, should avoid swine barns at agricultural fairs, or close contact with swine. |
Attenuation of highly pathogenic avian influenza A(H5N1) viruses in Indonesia following the reassortment and acquisition of genes from low pathogenicity avian influenza A virus progenitors.
Dharmayanti Nlpi , Thor SW , Zanders N , Hartawan R , Ratnawati A , Jang Y , Rodriguez M , Suarez DL , Samaan G , Pudjiatmoko , Davis CT . Emerg Microbes Infect 2018 7 (1) 147 The highly pathogenic avian influenza (HPAI) A(H5N1) virus is endemic in Indonesian poultry and has caused sporadic human infection in Indonesia since 2005. Surveillance of H5N1 viruses in live bird markets (LBMs) during 2012 and 2013 was carried out to provide epidemiologic and virologic information regarding viral circulation and the risk of human exposure. Real-time RT-PCR of avian cloacal swabs and environmental samples revealed influenza A-positive specimens, which were then subjected to virus isolation and genomic sequencing. Genetic analysis of specimens collected at multiple LBMs in Indonesia identified both low pathogenicity avian influenza (LPAI) A(H3N8) and HPAI A(H5N1) viruses belonging to clade 2.1.3.2a. Comparison of internal gene segments among the LPAI and HPAI viruses revealed that the latter had acquired the PB2, PB1, and NS genes from LPAI progenitors and other viruses containing a wild type (wt) genomic constellation. Comparison of murine infectivity of the LPAI A(H3N8), wt HPAI A(H5N1) and reassortant HPAI A(H5N1) viruses showed that the acquisition of LPAI internal genes attenuated the reassortant HPAI virus, producing a mouse infectivity/virulence phenotype comparable to that of the LPAI virus. Comparison of molecular markers in each viral gene segment suggested that mutations in PB2 and NS1 may facilitate attenuation. The discovery of an attenuated HPAI A(H5N1) virus in mice that resulted from reassortment may have implications for the capability of these viruses to transmit and cause disease. In addition, surveillance suggests that LBMs in Indonesia may play a role in the generation of reassortant A(H5) viruses and should be monitored. |
Update: Influenza Activity in the United States During the 2017-18 Season and Composition of the 2018-19 Influenza Vaccine.
Garten R , Blanton L , Elal AIA , Alabi N , Barnes J , Biggerstaff M , Brammer L , Budd AP , Burns E , Cummings CN , Davis T , Garg S , Gubareva L , Jang Y , Kniss K , Kramer N , Lindstrom S , Mustaquim D , O'Halloran A , Sessions W , Taylor C , Xu X , Dugan VG , Fry AM , Wentworth DE , Katz J , Jernigan D . MMWR Morb Mortal Wkly Rep 2018 67 (22) 634-642 The United States 2017-18 influenza season (October 1, 2017-May 19, 2018) was a high severity season with high levels of outpatient clinic and emergency department visits for influenza-like illness (ILI), high influenza-related hospitalization rates, and elevated and geographically widespread influenza activity across the country for an extended period. Nationally, ILI activity began increasing in November, reaching an extended period of high activity during January-February, and remaining elevated through March. Influenza A(H3N2) viruses predominated through February and were predominant overall for the season; influenza B viruses predominated from March onward. This report summarizes U.S. influenza activity* during October 1, 2017-May 19, 2018.(dagger). |
Pathogenesis and transmission of genetically diverse swine-origin H3N2v influenza A viruses from multiple lineages isolated in the United States, 2011-2016.
Sun X , Pulit-Penaloza JA , Belser JA , Pappas C , Pearce MB , Brock N , Zeng H , Creager HM , Zanders N , Jang Y , Tumpey TM , Davis T , Maines TR . J Virol 2018 92 (16) While several swine-origin influenza A H3N2 variant (H3N2v) viruses isolated from humans prior to 2011 have been previously characterized for their virulence and transmissibility in ferrets, recent genetic and antigenic divergence of H3N2v viruses warrants an updated assessment of their pandemic potential. Here, four contemporary H3N2v viruses isolated during 2011-2016 were evaluated for their replicative ability in both in vitro and in vivo mammalian models, as well as their transmissibility among ferrets. We found that all four H3N2v viruses possessed similar or enhanced replication capacity in a human bronchial epithelium cell line (Calu-3) compared to a human seasonal influenza virus, suggestive of strong fitness in human respiratory tract cells. The majority of H3N2v viruses examined in our study were mildly virulent in mice and capable of replicating in mouse lungs with different degrees of efficiency. In ferrets, all four H3N2v viruses caused moderate morbidity and exhibited comparable titers in the upper respiratory tract, but only 2 of the 4 viruses replicated in the lower respiratory tract in this model. Furthermore, despite efficient transmission among cohoused ferrets, recently isolated H3N2v viruses displayed considerable variance in their ability to transmit by respiratory droplets. The lack of a full understanding of the molecular correlates of virulence and transmission underscores the need for close genotypic and phenotypic monitoring of H3N2v viruses and the importance of continued surveillance to improve pandemic preparedness.Importance: Swine-origin influenza viruses of the H3N2 subtype, with the HA and NA derived from historic human seasonal influenza viruses, continue to cross species barriers and cause human infections, posing an indelible threat to public health. To help us better understand the potential risk associated with swine-origin H3N2v viruses that emerged in the U.S between 2011-2016 influenza seasons, we use both in vitro and in vivo models to characterize the ability of these viruses to replicate, caused disease, and transmit in mammalian hosts. The efficient respiratory droplet transmission exhibited by some of the H3N2v viruses in the ferret model combined with the existing evidence of low immunity against such viruses in young children and older adults highlights their pandemic potential. Extensive surveillance and risk assessment of H3N2v viruses should continue to be an essential component of our pandemic preparedness strategy. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Sep 30, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure