Last data update: Mar 10, 2025. (Total: 48852 publications since 2009)
Records 1-14 (of 14 Records) |
Query Trace: Jackson MC[original query] |
---|
Weight loss in short-term interventions for physical activity and nutrition among adults with overweight or obesity: A systematic review and meta-analysis
Rotunda W , Rains C , Jacobs SR , Ng V , Lee R , Rutledge S , Jackson MC , Myers K . Prev Chronic Dis 2024 21 E21 INTRODUCTION: Reaching, enrolling, and retaining participants in lengthy lifestyle change interventions for weight loss is a major challenge. The objective of our meta-analysis was to investigate whether lifestyle interventions addressing nutrition and physical activity lasting 6 months or less are effective for weight loss. METHODS: We searched for peer-reviewed studies on lifestyle change interventions of 6 months or less published from 2012 through 2023. Studies were screened based on inclusion criteria, including randomized controlled trials (RCTs) for adults with overweight or obesity. We used a random-effects model to pool the mean difference in weight loss between intervention and control groups. We also performed subgroup analyses by intervention length and control type. RESULTS: Fourteen RCTs were identified and included in our review. Half had interventions lasting less than 13 weeks, and half lasted from 13 to 26 weeks. Seven were delivered remotely, 4 were delivered in person, and 3 used combined methods. The pooled mean difference in weight change was -2.59 kg (95% CI, -3.47 to -1.72). The pooled mean difference measured at the end of the intervention was -2.70 kg (95% CI, -3.69 to -1.71) among interventions lasting less than 13 weeks and -2.40 kg (95% CI, -4.44 to -0.37) among interventions of 13 to 26 weeks. CONCLUSION: Short-term multicomponent interventions involving physical activity and nutrition can achieve weight loss for adults with overweight or obesity. Offering short-term interventions as alternatives to long-term ones may reach people who otherwise would be unwilling or unable to enroll in or complete longer programs. |
Automated crude oil vapor inhalation exposure system
McKinney W , Jackson MC , Law B , Fedan JS . Inhal Toxicol 2022 34 1-10 Objective: Inhalation exposure systems are tools for delivering compounds (particles, vapors, and gases) under well-controlled conditions for toxicological testing. The objective of this project was to develop an automated computer-controlled system to expose small laboratory animals to precise concentrations of crude oil vapor (COV).Materials and Methods: Vapor from heated Deepwater Horizon surrogate oil was atomized into a fine mist then diluted with filtered air, then the air/droplet mixture was routed into an evaporation column with an high efficiency particulate air (HEPA) filter on its exit port. The HEPA filter was used to remove oil particles, thus ensuring only vapor would pass. The vapor was then introduced into a custom-built exposure chamber housing rats. A calibrated flame ionization detector was used to read the total volatile organic compounds (TVOC) in real time, and custom software was developed to automatically adjust the amount of oil entering the atomizer with a syringe pump. The software also controlled relative humidity and pressure inside the exposure chamber. Other exposure chamber environmental parameters, e.g. temperature and CO(2) levels, were monitored. Four specific components within the COV were monitored during each exposure: benzene, toluene, ethylbenzene, and xylenes.Results: The TVOC vapor concentration control algorithm maintained median concentrations to within 2ppm of the target concentration (300ppm) of TVOC during exposures lasting 6h. The system could reach 90% of the desired target in less than 15min, and repeat exposures were consistent and reproducible.Conclusion: This exposure system provided a highly automated tool for conducting COV inhalation toxicology studies. |
Biological effects of inhaled crude oil vapor. II. Pulmonary effects
Fedan JS , Thompson JA , Russ KA , Dey RD , Reynolds JS , Kashon ML , Jackson MC , McKinney W . Toxicol Appl Pharmacol 2022 450 116154 Workers involved in oil exploration and production in the upstream petroleum industry are exposed to crude oil vapor (COV). COV levels in the proximity of workers during production tank gauging and opening of thief hatches can exceed regulatory standards, and several deaths have occurred after opening thief hatches. There is a paucity of information regarding the effects of COV inhalation in the lung. To address these knowledge gaps, the present hazard identification study was undertaken to investigate the effects of an acute, single inhalation exposure (6h) or a 28 d sub-chronic exposure (6h/d4 d/wk 4 wks) to COV (300ppm; Macondo well surrogate oil) on ventilatory and non-ventilatory functions of the lung in a rat model 1 and 28 d after acute exposure, and 1, 28 and 90 d following sub-chronic exposure. Basal airway resistance was increased 90 d post-sub-chronic exposure, but reactivity to methacholine (MCh) was unaffected. In the isolated, perfused trachea preparation the inhibitory effect of the airway epithelium on reactivity to MCh was increased at 90 d post-exposure. Efferent cholinergic nerve activity regulating airway smooth muscle was unaffected by COV exposure. Acute exposure did not affect basal airway epithelial ion transport, but 28 d after sub-chronic exposure alterations in active (Na(+) and Cl) and passive ion transport occurred. COV treatment did not affect lung vascular permeability. The findings indicate that acute and sub-chronic COV inhalation does not appreciably affect ventilatory properties of the rat, but transient changes in airway epithelium occur. |
Biological effects of inhaled crude oil vapor V. Altered biogenic amine neurotransmitters and neural protein expression
Sriram K , Lin GX , Jefferson AM , McKinney W , Jackson MC , Cumpston JL , Cumpston JB , Leonard HD , Kashon ML , Fedan JS . Toxicol Appl Pharmacol 2022 449 116137 Workers in the oil and gas industry are at risk for exposure to a number of physical and chemical hazards at the workplace. Chemical hazard risks include inhalation of crude oil or its volatile components. While several studies have investigated the neurotoxic effects of volatile hydrocarbons, in general, there is a paucity of studies assessing the neurotoxicity of crude oil vapor (COV). Consequent to the 2010 Deepwater Horizon (DWH) oil spill, there is growing concern about the short- and long-term health effects of exposure to COV. NIOSH surveys suggested that the DWH oil spill cleanup workers experienced neurological symptoms, including depression and mood disorders, but the health effects apart from oil dispersants were difficult to discern. To investigate the potential neurological risks of COV, male Sprague-Dawley rats were exposed by whole-body inhalation to COV (300ppm; Macondo surrogate crude oil) following an acute (6h/d1 d) or sub-chronic (6h/d4 d/wk.4 wks) exposure regimen. At 1, 28 or 90 d post-exposure, norepinephrine (NE), epinephrine (EPI), dopamine (DA) and serotonin (5-HT) were evaluated as neurotransmitter imbalances are associated with psychosocial-, motor- and cognitive- disorders. Sub-chronic COV exposure caused significant reductions in NE, EPI and DA in the dopaminergic brain regions, striatum (STR) and midbrain (MB), and a large increase in 5-HT in the STR. Further, sub-chronic exposure to COV caused upregulation of synaptic and Parkinson's disease-related proteins in the STR and MB. Whether such effects will lead to neurodegenerative outcomes remain to be investigated. |
Biological effects of inhaled hydraulic fracturing sand dust VII. Neuroinflammation and altered synaptic protein expression
Sriram K , Lin GX , Jefferson AM , McKinney W , Jackson MC , Cumpston A , Cumpston JL , Cumpston JB , Leonard HD , Kashon M , Fedan JS . Toxicol Appl Pharmacol 2020 409 115300 Hydraulic fracturing (fracking) is a process used to recover oil and gas from shale rock formation during unconventional drilling. Pressurized liquids containing water and sand (proppant) are used to fracture the oil- and natural gas-laden rock. The transportation and handling of proppant at well sites generate dust aerosols; thus, there is concern of worker exposure to such fracking sand dusts (FSD) by inhalation. FSD are generally composed of respirable crystalline silica and other minerals native to the geological source of the proppant material. Field investigations by NIOSH suggest that the levels of respirable crystalline silica at well sites can exceed the permissible exposure limits. Thus, from an occupational safety perspective, it is important to evaluate the potential toxicological effects of FSD, including any neurological risks. Here, we report that acute inhalation exposure of rats to one FSD, i.e., FSD 8, elicited neuroinflammation, altered the expression of blood brain barrier-related markers, and caused glial changes in the olfactory bulb, hippocampus and cerebellum. An intriguing observation was the persistent reduction of synaptophysin 1 and synaptotagmin 1 proteins in the cerebellum, indicative of synaptic disruption and/or injury. While our initial hazard identification studies suggest a likely neural risk, more research is necessary to determine if such molecular aberrations will progressively culminate in neuropathology/neurodegeneration leading to behavioral and/or functional deficits. |
Biological effects of inhaled hydraulic fracturing sand dust. II. Particle characterization and pulmonary effects 30 d following intratracheal instillation
Fedan JS , Hubbs AF , Barger M , Schwegler-Berry D , Friend SA , Leonard SS , Thompson JA , Jackson MC , Snawder JE , Dozier AK , Coyle J , Kashon ML , Park JH , McKinney W , Roberts JR . Toxicol Appl Pharmacol 2020 409 115282 Hydraulic fracturing ("fracking") is used in unconventional gas drilling to allow for the free flow of natural gas from rock. Sand in fracking fluid is pumped into the well bore under high pressure to enter and stabilize fissures in the rock. In the process of manipulating the sand on site, respirable dust (fracking sand dust, FSD) is generated. Inhalation of FSD is a potential hazard to workers inasmuch as respirable crystalline silica causes silicosis, and levels of FSD at drilling work sites have exceeded occupational exposure limits set by OSHA. In the absence of any information about its potential toxicity, a comprehensive rat animal model was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems (Fedan, J.S., Toxicol Appl Pharmacol. 00, 000-000, 2020). The present report, part of the larger investigation, describes: 1) a comparison of the physico-chemical properties of nine FSDs, collected at drilling sites, and MIN-U-SIL® 5, a reference silica dust, and 2) a comparison of the pulmonary inflammatory responses to intratracheal instillation of the nine FSDs and MIN-U-SIL® 5. Our findings indicate that, in many respects, the physico-chemical characteristics, and the biological effects of the FSDs and MIN-U-SIL® 5 after intratracheal instillation, have distinct differences. |
An examination of gender differences in the National Diabetes Prevention Program's Lifestyle Change Program
Jackson MC , Dai S , Skeete RA , Owens-Gary M , Cannon MJ , Smith BD , Jabrah R , Masalovich SE , Soler RE . Diabetes Educ 2020 46 (6) 580-586 PURPOSE: The purpose of the study was to examine how gender was related to enrollment and number of sessions attended in the National Diabetes Prevention Program's Lifestyle Change Program (DPP LCP). METHODS: To better understand program uptake, a population of those who would be eligible for the LCP was compared to those who enrolled. Estimates of those eligible were computed using data from the National Health and Nutrition Examination Survey, whereas enrollment and sessions attended were computed using data from the Centers for Disease Control and Prevention's Diabetes Prevention Recognition Program. RESULTS: Results revealed that although similar numbers of males and females were eligible for the program, only 39 321 males versus 121 007 females had enrolled in the National DPP LCP by the end of 2017 (odds ratio = 3.20; 95% CI, 3.17-3.24). The gender differences persisted even when stratifying by age or race/ethnicity. In contrast, no significant gender differences were found between the average number of sessions attended for males (14.0) and females (13.8). DISCUSSION: Results of the study can help inform efforts to market and tailor programs to appeal more directly to men and other groups that are underrepresented in the National DPP LCP. |
Biological effects of inhaled hydraulic fracturing sand dust. IV. Pulmonary effects
Russ KA , Thompson JA , Reynolds JS , Mercer RR , Porter DW , McKinney W , Dey RD , Barger M , Cumpston J , Batchelor TP , Kashon ML , Kodali V , Jackson MC , Sriram K , Fedan JS . Toxicol Appl Pharmacol 2020 409 115284 Hydraulic fracturing creates fissures in subterranean rock to increase the flow and retrieval of natural gas. Sand ("proppant") in fracking fluid injected into the well bore maintains fissure patency. Fracking sand dust (FSD) is generated during manipulation of sand to prepare the fracking fluid. Containing respirable crystalline silica, FSD could pose hazards similar to those found in work sites where silica inhalation induces lung disease such as silicosis. This study was performed to evaluate the possible toxic effects following inhalation of a FSD (FSD 8) in the lung and airways. Rats were exposed (6 h/d × 4 d) to 10 or 30 mg/m(3) of a FSD, i.e., FSD 8, collected at a gas well, and measurements were performed 1, 7, 27 and, in one series of experiments, 90 d post-exposure. The following ventilatory and non-ventilatory parameters were measured in vivo and/or in vitro: 1) lung mechanics (respiratory system resistance and elastance, tissue damping, tissue elastance, Newtonian resistance and hysteresivity); 2) airway reactivity to inhaled methacholine (MCh); airway epithelium integrity (isolated, pefused trachea); airway efferent motor nerve activity (electric field stimulation in vitro); airway smooth muscle contractility; ion transport in intact and cultured epithelium; airway effector and sensory nerves; tracheal particle deposition; and neurogenic inflammation/vascular permeability. FSD 8 was without large effect on most parameters, and was not pro-inflammatory, as judged histologically and in cultured epithelial cells, but increased reactivity to inhaled MCh at some post-exposure time points and affected Na(+) transport in airway epithelial cells. |
Nudging to change: Using behavioral economics theory to move people and their health care partners toward effective type 2 diabetes prevention
Soler RE , Proia K , Jackson MC , Lanza A , Klein C , Leifer J , Darling M . Diabetes Spectr 2018 31 (4) 310-319 IN BRIEF In 2017, 30 million Americans had diabetes, and 84 million had prediabetes. In this article, the authors focus on the journey people at risk for type 2 diabetes take when they become fully engaged in an evidence-based type 2 diabetes prevention program. They highlight potential drop-off points along the journey, using behavioral economics theory to provide possible reasons for most of the drop-off points, and propose solutions to move people toward making healthy decisions. |
Accumulation of ubiquitin and sequestosome-1 implicate protein damage in diacetyl-induced cytotoxicity
Hubbs AF , Fluharty KL , Edwards RJ , Barnabei JL , Grantham JT , Palmer SM , Kelly F , Sargent LM , Reynolds SH , Mercer RR , Goravanahally MP , Kashon ML , Honaker JC , Jackson MC , Cumpston AM , Goldsmith WT , McKinney W , Fedan JS , Battelli LA , Munro T , Bucklew-Moyers W , McKinstry K , Schwegler-Berry D , Friend S , Knepp AK , Smith SL , Sriram K . Am J Pathol 2016 186 (11) 2887-2908 Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive alpha-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this alpha-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the alpha-dicarbonyl group in the protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal markers lysosomal-associated membrane protein 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease. |
Popcorn flavoring effects on reactivity of rat airways in vivo and in vitro
Zaccone EJ , Thompson JA , Ponnoth DS , Cumpston AM , Goldsmith WT , Jackson MC , Kashon ML , Frazer DG , Hubbs AF , Shimko MJ , Fedan JS . J Toxicol Environ Health A 2013 76 (11) 669-89 Popcorn workers' lung is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100-360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism. |
Diacetyl increases sensory innervation and substance P production in rat trachea
Goravanahally MP , Hubbs AF , Fedan JS , Kashon ML , Battelli LA , Mercer RR , Goldsmith WT , Jackson MC , Cumpston A , Frazer DG , Dey RD . Toxicol Pathol 2013 42 (3) 582-90 ![]() Inhalation of diacetyl, a butter flavoring, causes airway responses potentially mediated by sensory nerves. This study examines diacetyl-induced changes in sensory nerves of tracheal epithelium. Rats (n = 6/group) inhaled 0-, 25-, 249-, or 346-ppm diacetyl for 6 hr. Tracheas and vagal ganglia were removed 1-day postexposure and labeled for substance P (SP) or protein gene product 9.5 (PGP9.5). Vagal ganglia neurons projecting to airway epithelium were identified by axonal transport of fluorescent microspheres intratracheally instilled 14 days before diacetyl inhalation. End points were SP and PGP9.5 nerve fiber density (NFD) in tracheal epithelium and SP-positive neurons projecting to the trachea. PGP9.5-immunoreactive NFD decreased in foci with denuded epithelium, suggesting loss of airway sensory innervation. However, in the intact epithelium adjacent to denuded foci, SP-immunoreactive NFD increased from 0.01 +/- 0.002 in controls to 0.05 +/- 0.01 after exposure to 346-ppm diacetyl. In vagal ganglia, SP-positive airway neurons increased from 3.3 +/- 3.0% in controls to 25.5 +/- 6.6% after inhaling 346-ppm diacetyl. Thus, diacetyl inhalation increases SP levels in sensory nerves of airway epithelium. Because SP release in airways promotes inflammation and activation of sensory nerves mediates reflexes, neural changes may contribute to flavorings-related lung disease pathogenesis. |
Respiratory and olfactory cytotoxicity of inhaled 2,3-pentanedione in Sprague-Dawley rats
Hubbs AF , Cumpston AM , Goldsmith WT , Battelli LA , Kashon ML , Jackson MC , Frazer DG , Fedan JS , Goravanahally MP , Castranova V , Kreiss K , Willard PA , Friend S , Schwegler-Berry D , Fluharty KL , Sriram K . Am J Pathol 2012 181 (3) 829-44 ![]() Flavorings-related lung disease is a potentially disabling disease of food industry workers associated with exposure to the alpha-diketone butter flavoring, diacetyl (2,3-butanedione). To investigate the hypothesis that another alpha-diketone flavoring, 2,3-pentanedione, would cause airway damage, rats that inhaled air, 2,3-pentanedione (112, 241, 318, or 354 ppm), or diacetyl (240 ppm) for 6 hours were sacrificed the following day. Rats inhaling 2,3-pentanedione developed necrotizing rhinitis, tracheitis, and bronchitis comparable to diacetyl-induced injury. To investigate delayed toxicity, additional rats inhaled 318 (range, 317.9-318.9) ppm 2,3-pentanedione for 6 hours and were sacrificed 0 to 2, 12 to 14, or 18 to 20 hours after exposure. Respiratory epithelial injury in the upper nose involved both apoptosis and necrosis, which progressed through 12 to 14 hours after exposure. Olfactory neuroepithelial injury included loss of olfactory neurons that showed reduced expression of the 2,3-pentanedione-metabolizing enzyme, dicarbonyl/L-xylulose reductase, relative to sustentacular cells. Caspase 3 activation occasionally involved olfactory nerve bundles that synapse in the olfactory bulb (OB). An additional group of rats inhaling 270 ppm 2,3-pentanedione for 6 hours 41 minutes showed increased expression of IL-6 and nitric oxide synthase-2 and decreased expression of vascular endothelial growth factor A in the OB, striatum, hippocampus, and cerebellum using real-time PCR. Claudin-1 expression increased in the OB and striatum. We conclude that 2,3-pentanedione is a respiratory hazard that can also alter gene expression in the brain. |
Determining when enhanced pause (Penh) is sensitive to changes in specific airway resistance
Frazer DG , Reynolds JS , Jackson MC . J Toxicol Environ Health A 2011 74 (5) 287-95 Penh is a dimensionless index normally used to evaluate changes in the shape of the airflow pattern entering and leaving a whole-body flow plethysmograph as an animal breathes. The index is sensitive to changes in the distribution of area under the waveform during exhalation and increases in a nonlinear fashion as the normalized area increases near the beginning of the curve. Enhanced pause (Penh) has been used to evaluate changes in pulmonary function and as a method to evaluate airway reactivity. However, the use of Penh to assess pulmonary function has been challenged (Bates et al., 2004; Lundblad et al., 2002; Mitzner et al., 2003; Mitzner & Tankersley, 1998; Petak et al., 2001; Sly et al., 2005). The objective of this study was to show how Penh of the thorax and plethysmograph flow patterns are related. That relationship is used to describe the conditions under which whole-body plethysmograph Penh measurements can be used to detect changes in sR(aw). |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 10, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure