Last data update: Oct 07, 2024. (Total: 47845 publications since 2009)
Records 1-30 (of 90 Records) |
Query Trace: Hunsperger E[original query] |
---|
Characterization of avian influenza viruses detected in Kenyan live bird markets and wild bird habitats reveal genetically diverse subtypes and high proportion of A(H9N2), 2018-2020
Munyua P , Osoro E , Jones J , Njogu G , Yang G , Hunsperger E , Szablewski CM , Njoroge R , Marwanga D , Oyas H , Andagalu B , Ndanyi R , Otieno N , Obanda V , Nasimiyu C , Njagi O , DaSilva J , Jang Y , Barnes J , Emukule GO , Onyango CO , Davis CT . Viruses 2024 16 (9) Following the detection of highly pathogenic avian influenza (HPAI) virus in countries bordering Kenya to the west, we conducted surveillance among domestic and wild birds along the shores of Lake Victoria. In addition, between 2018 and 2020, we conducted surveillance among poultry and poultry workers in live bird markets and among wild migratory birds in various lakes that are resting sites during migration to assess introduction and circulation of avian influenza viruses in these populations. We tested 7464 specimens (oropharyngeal (OP) and cloacal specimens) from poultry and 6531 fresh fecal specimens from wild birds for influenza A viruses by real-time RT-PCR. Influenza was detected in 3.9% (n = 292) of specimens collected from poultry and 0.2% (n = 10) of fecal specimens from wild birds. On hemagglutinin subtyping, most of the influenza A positives from poultry (274/292, 93.8%) were H9. Of 34 H9 specimens randomly selected for further subtyping, all were H9N2. On phylogenetic analysis, these viruses were genetically similar to other H9 viruses detected in East Africa. Only two of the ten influenza A-positive specimens from the wild bird fecal specimens were successfully subtyped; sequencing analysis of one specimen collected in 2018 was identified as a low-pathogenicity avian influenza H5N2 virus of the Eurasian lineage, and the second specimen, collected in 2020, was subtyped as H11. A total of 18 OP and nasal specimens from poultry workers with acute respiratory illness (12%) were collected; none were positive for influenza A virus. We observed significant circulation of H9N2 influenza viruses in poultry in live bird markets in Kenya. During the same period, low-pathogenic H5N2 virus was detected in a fecal specimen collected in a site hosting a variety of migratory and resident birds. Although HPAI H5N8 was not detected in this survey, these results highlight the potential for the introduction and establishment of highly pathogenic avian influenza viruses in poultry populations and the associated risk of spillover to human populations. |
Acute febrile illness in Kenya: Clinical characteristics and pathogens detected among patients hospitalized with fever, 2017-2019
Verani JR , Eno EN , Hunsperger EA , Munyua P , Osoro E , Marwanga D , Bigogo G , Amon D , Ochieng M , Etau P , Bandika V , Zimbulu V , Kiogora J , Burton JW , Okunga E , Samuels AM , Njenga K , Montgomery JM , Widdowson MA . PLoS One 2024 19 (8) e0305700 Acute febrile illness (AFI) is a common reason for healthcare seeking and hospitalization in Sub-Saharan Africa and is often presumed to be malaria. However, a broad range of pathogens cause fever, and more comprehensive data on AFI etiology can improve clinical management, prevent unnecessary prescriptions, and guide public health interventions. We conducted surveillance for AFI (temperature ≥38.0°C <14 days duration) among hospitalized patients of all ages at four sites in Kenya (Nairobi, Mombasa, Kakamega, and Kakuma). For cases of undifferentiated fever (UF), defined as AFI without diarrhea (≥3 loose stools in 24 hours) or lower respiratory tract symptoms (cough/difficulty breathing plus oxygen saturation <90% or [in children <5 years] chest indrawing), we tested venous blood with real-time PCR-based TaqMan array cards (TAC) for 17 viral, 8 bacterial, and 3 protozoal fever-causing pathogens. From June 2017 to March 2019, we enrolled 3,232 AFI cases; 2,529 (78.2%) were aged <5 years. Among 3,021 with outcome data, 131 (4.3%) cases died while in hospital, including 106/2,369 (4.5%) among those <5 years. Among 1,735 (53.7%) UF cases, blood was collected from 1,340 (77.2%) of which 1,314 (98.1%) were tested by TAC; 715 (54.4%) had no pathogens detected, including 147/196 (75.0%) of those aged <12 months. The most common pathogen detected was Plasmodium, as a single pathogen in 471 (35.8%) cases and in combination with other pathogens in 38 (2.9%). HIV was detected in 51 (3.8%) UF cases tested by TAC and was most common in adults (25/236 [10.6%] ages 18-49, 4/40 [10.0%] ages ≥50 years). Chikungunya virus was found in 30 (2.3%) UF cases, detected only in the Mombasa site. Malaria prevention and control efforts are critical for reducing the burden of AFI, and improved diagnostic testing is needed to provide better insight into non-malarial causes of fever. The high case fatality of AFI underscores the need to optimize diagnosis and appropriate management of AFI to the local epidemiology. |
Long-term impact of 10-valent pneumococcal conjugate vaccine in Kenya: Nasopharyngeal carriage among children in a rural and an urban site six years after introduction
Verani JR , Omondi D , Odoyo A , Odiembo H , Ouma A , Ngambi J , Aol G , Audi A , Kiplangat S , Agumba N , Munywoki PK , Onyango C , Hunsperger E , Farrar JL , Kim L , Kobayashi M , Breiman RF , Pimenta FC , da Gloria Carvalho M , Lessa FC , Whitney CG , Bigogo G . Vaccine 2024 BACKGROUND: Kenya introduced Synflorix™ (GlaxoSmithKline, PCV10-GSK), a 10-valent pneumococcal conjugate vaccine, in 2011, using three primary doses and, in select areas, catch-up campaigns. Surveys conducted 1-2 years post-introduction showed a stable prevalence of pneumococcal colonization, with declines in vaccine-type carriage. However, little is known about the long-term impact of PCV10-GSK in Kenya. METHODS: We conducted a cross-sectional survey of pneumococcal carriage among children aged <5 years in November-December 2017 in Kibera (Nairobi informal settlement, no catch-up) and Asembo (rural western Kenya, 2-dose catch-up for children 1-4 years), using the same methods and settings as prior annual surveys from 2009 to 2013. Participants were randomly selected from an ongoing population-based surveillance platform. Nasopharyngeal swabs were frozen in skim milk-tryptone-glucose-glycerin media within 4 h and underwent culture with broth enrichment for pneumococcus. Isolates were serotyped by polymerase chain reaction and Quellung. RESULTS: We enrolled 504 children, including 252 from each site; >90 % of participants had received 3 doses of PCV10-GSK. Pneumococcal colonization was detected in 210 (83.3 %) participants in Kibera and 149 (59.1 %) in Asembo, which was significantly lower than the prevalence observed in 2013 (92.9 % and 85.7 %, respectively). PCV10-GSK serotypes were detected in 35/252 (13.9 %) participants in Kibera and 23/252 (9.1 %) in Asembo, respectively; these prevalences were lower, but not statistically different, from vaccine-type carriage prevalences in 2013 (17.3 % and 13.3 %, respectively). In 2017 in both sites, serotypes 3, 6A, 19A, 19F, and 35B were among the most common serotypes. CONCLUSION: Six years post-PCV10-GSK introduction, the prevalence of pneumococcal carriage among children has decreased, and the impact of PCV10-GSK on vaccine-type carriage has plateaued. Kenya recently changed from PCV10-GSK to Pneumosil™ (Serum Institute of India), a 10-valent PCV that includes serotypes 6A and 19A; these data provide historical context for interpreting changes in vaccine-type carriage following the PCV formulation switch. |
Association between low maternal serum aflatoxin B1 exposure and adverse pregnancy outcomes in Mombasa, Kenya, 2017-2019: A nested matched case-control study
Osoro E , Awuor AO , Inwani I , Mugo C , Hunsperger E , Verani JR , Nduati R , Kinuthia J , Okutoyi L , Mwaengo D , Maugo B , Otieno NA , Mirieri H , Ombok C , Nyawanda B , Agogo GO , Ngere I , Zitomer NC , Rybak ME , Munyua P , Njenga K , Widdowson MA . Matern Child Nutr 2024 e13688 We examined the association between serum aflatoxin B1-lysine adduct (AFB1-lys) levels in pregnant women and adverse pregnancy outcomes (low birthweight, miscarriage and stillbirth) through a nested matched case-control study of pregnant women enroled at ≤28 weeks' gestation in Mombasa, Kenya, from 2017 to 2019. Cases comprised women with an adverse birth outcome, defined as either delivery of a singleton infant weighing <2500 g, or a miscarriage, or a stillbirth, while controls were women who delivered a singleton live infant with a birthweight of ≥2500 g. Cases were matched to controls at a ratio of 1:2 based on maternal age at enrolment, gestational age at enrolment and study site. The primary exposure was serum AFB1-lys. The study included 125 cases and 250 controls. The median gestation age when serum samples were collected was 23.0 weeks (interquartile range [IQR]: 18.1-26.0) and 23.5 (IQR: 18.1-26.5) among cases and controls, respectively. Of the 375 tested sera, 145 (38.7%) had detectable serum AFB1-lys: 36.0% in cases and 40.0% in controls. AFB1-lys adduct levels were not associated with adverse birth outcomes on multivariable analysis. Mid-upper arm circumference was associated with a 6% lower odds of adverse birth outcome for every unit increase (p = 0.023). Two-fifths of pregnant women had detectable levels of aflatoxin midway through pregnancy. However, we did not detect an association with adverse pregnancy outcomes, likely because of low serum AFB1-lys levels and low power, restricting meaningful comparison. More research is needed to understand the public health risk of aflatoxin in pregnant women to unborn children. |
Surveillance of respiratory viruses at health facilities from across Kenya, 2014
Murunga N , Nyawanda B , Nyiro JU , Otieno GP , Kamau E , Agoti CN , Lewa C , Gichuki A , Mutunga M , Otieno N , Mayieka L , Ochieng M , Kikwai G , Hunsperger E , Onyango C , Emukule G , Bigogo G , Verani JR , Chaves SS , Nokes DJ , Munywoki PK . Wellcome Open Res 2023 7 (234) Background: Acute respiratory illnesses (ARI) are a major cause of morbidity and mortality globally. With (re) emergence of novel viruses and increased access to childhood bacterial vaccines, viruses have assumed greater importance in the aetiology of ARI. There are now promising candidate vaccines against some of the most common endemic respiratory viruses. Optimal delivery strategies for these vaccines, and the need for interventions against other respiratory viruses, requires geographically diverse data capturing temporal variations in virus circulation. |
Epidemiology of SARS-CoV-2 in Kakuma Refugee Camp Complex, Kenya, 2020-2021(1)
Ope M , Musyoka R , Kiogora J , Wambugu J , Hunsperger E , Emukule GO , Munyua P , Juma B , Simiyu E , Gagnidze L , Burton J , Eidex RB . Emerg Infect Dis 2024 30 (5) 900-907 Understanding SARS-CoV-2 infection in populations at increased risk for poor health is critical to reducing disease. We describe the epidemiology of SARS-CoV-2 infection in Kakuma Refugee Camp Complex, Kenya. We performed descriptive analyses of SARS-CoV-2 infection in the camp and surrounding community during March 16, 2020‒December 31, 2021. We identified cases in accordance with national guidelines.We estimated fatality ratios and attack rates over time using locally weighted scatterplot smoothing for refugees, host community members, and national population. Of the 18,864 SARS-CoV-2 tests performed, 1,024 were positive, collected from 664 refugees and 360 host community members. Attack rates were 325.0/100,000 population (CFR 2.9%) for refugees,150.2/100,000 population (CFR 1.11%) for community, and 628.8/100,000 population (CFR 1.83%) nationwide. During 2020-2021, refugees experienced a lower attack rate but higher CFR than the national population, underscoring the need to prioritize SARS-CoV-2 mitigation measures, including vaccination. |
Seroconversion and seroprevalence of TORCH infections in a pregnant women cohort study, Mombasa, Kenya, 2017-2019
Hunsperger E , Osoro E , Munyua P , Njenga MK , Mirieri H , Kikwai G , Odhiambo D , Dayan M , Omballa V , Agogo GO , Mugo C , Widdowson MA , Inwani I . Epidemiol Infect 2024 1-24 |
Heterogenous transmission and seroprevalence of SARS-CoV-2 in two demographically diverse populations with low vaccination uptake in Kenya, March and June 2021
Munywoki PK , Bigogo G , Nasimiyu C , Ouma A , Aol G , Oduor CO , Rono S , Auko J , Agogo GO , Njoroge R , Oketch D , Odhiambo D , Odeyo VW , Kikwai G , Onyango C , Juma B , Hunsperger E , Lidechi S , Ochieng CA , Lo TQ , Munyua P , Herman-Roloff A . Gates Open Res 2023 7 101 BACKGROUND: SARS-CoV-2 has extensively spread in cities and rural communities, and studies are needed to quantify exposure in the population. We report seroprevalence of SARS-CoV-2 in two well-characterized populations in Kenya at two time points. These data inform the design and delivery of public health mitigation measures. METHODS: Leveraging on existing population based infectious disease surveillance (PBIDS) in two demographically diverse settings, a rural site in western Kenya in Asembo, Siaya County, and an urban informal settlement in Kibera, Nairobi County, we set up a longitudinal cohort of randomly selected households with serial sampling of all consenting household members in March and June/July 2021. Both sites included 1,794 and 1,638 participants in the March and June/July 2021, respectively. Individual seroprevalence of SARS-CoV-2 antibodies was expressed as a percentage of the seropositive among the individuals tested, accounting for household clustering and weighted by the PBIDS age and sex distribution. RESULTS: Overall weighted individual seroprevalence increased from 56.2% (95%CI: 52.1, 60.2%) in March 2021 to 63.9% (95%CI: 59.5, 68.0%) in June 2021 in Kibera. For Asembo, the seroprevalence almost doubled from 26.0% (95%CI: 22.4, 30.0%) in March 2021 to 48.7% (95%CI: 44.3, 53.2%) in July 2021. Seroprevalence was highly heterogeneous by age and geography in these populations-higher seroprevalence was observed in the urban informal settlement (compared to the rural setting), and children aged <10 years had the lowest seroprevalence in both sites. Only 1.2% and 1.6% of the study participants reported receipt of at least one dose of the COVID-19 vaccine by the second round of serosurvey-none by the first round. CONCLUSIONS: In these two populations, SARS-CoV-2 seroprevalence increased in the first 16 months of the COVID-19 pandemic in Kenya. It is important to prioritize additional mitigation measures, such as vaccine distribution, in crowded and low socioeconomic settings. |
Characterizing the countrywide epidemic spread of influenza A(H1N1)pdm09 virus in Kenya between 2009 and 2018 (preprint)
Owuor DC , de Laurent ZR , Kikwai GK , Mayieka LM , Ochieng M , Müller NF , Otieno NA , Emukule GO , Hunsperger EA , Garten R , Barnes JR , Chaves SS , Nokes DJ , Agoti CN . medRxiv 2021 2021.03.30.21254587 Background The spatiotemporal patterns of spread of influenza A(H1N1)pdm09 viruses on a countrywide scale are unclear in many tropical/subtropical regions mainly because spatiotemporally representative sequence data is lacking.Methods We isolated, sequenced, and analyzed 383 influenza A(H1N1)pdm09 viral genomes isolated from hospitalized patients between 2009 and 2018 from seven locations across Kenya. Using these genomes and contemporaneously sampled global sequences, we characterized the spread of the virus in Kenya over several seasons using phylodynamic methods.Results The transmission dynamics of influenza A(H1N1)pdm09 virus in Kenya was characterized by: (i) multiple virus introductions into Kenya over the study period, although these were remarkably few, with only a few of those introductions instigating seasonal epidemics that then established local transmission clusters; (ii) persistence of transmission clusters over several epidemic seasons across the country; (iii) seasonal fluctuations in effective reproduction number (Re) associated with lower number of infections and seasonal fluctuations in relative genetic diversity after an initial rapid increase during the early pandemic phase, which broadly corresponded to epidemic peaks in the northern and southern hemispheres; (iv) high virus genetic diversity with greater frequency of seasonal fluctuations in 2009-11 and 2018 and low virus genetic diversity with relatively weaker seasonal fluctuations in 2012-17; and (v) virus migration from multiple geographical regions to multiple geographical destinations in Kenya.Conclusion Considerable influenza virus diversity circulates within Africa, as demonstrated in this report, including virus lineages that are unique to the region, which may be capable of dissemination to other continents through a globally migrating virus population. Further knowledge of the viral lineages that circulate within understudied low-to-middle income tropical and subtropical regions is required to understand the full diversity and global ecology of influenza viruses in humans and to inform vaccination strategies within these regions.Competing Interest StatementThe authors have declared no competing interest.Funding StatementFunding: The authors D.C.O. and C.N.A. were supported by the Initiative to Develop African Research Leaders (IDeAL) through the DELTAS Africa Initiative [DEL-15-003]. The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS)'s Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa's Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust [107769/Z/10/Z] and the UK government. The study was also part funded by a Wellcome Trust grant [1029745] and the USA CDC grant [GH002133]. N.F.M. is supported by the Swiss National Science Foundation (PZEZP3_191891). This paper is published with the permission of the Director of KEMRI.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The Kenya Medical Research Institute (KEMRI) and KEMRI-Wellcome Trust Research Programme Scientific and Ethics Review Unit (SERU), which is mandated to provide ethical approval for research work conducted in Kenya, provided ethical approval for the studies which collected and archived the samples used in these studies. These were approved under the following Scientific Steering Committee (SSC) approvals: 1. SSC No. 1899, SSC No. 2558 and SSC No. 2692; 2. KEMRI-Wellcome Trust Research Programme SSC No. 1055 and SSC No. 1433.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as Clini alTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll generated sequence data were deposited in the Global Initiative on Sharing All Influenza Data (GISAID). https://github.com/DCollinsOwuor/H1N1pdm09_Kenya_Phylodynamics/tree/main/Data/. |
Dynamic incidence of typhoid fever over a 10-year period (2010-2019) in Kibera, an urban informal settlement in Nairobi, Kenya
Ng'eno E , Lind M , Audi A , Ouma A , Oduor C , Munywoki PK , Agogo GO , Odongo G , Kiplangat S , Wamola N , Osita MP , Mugoh R , Ochieng C , Omballa V , Mogeni OD , Mikoleit M , Fields BS , Montgomery JM , Gauld J , Breiman RF , Juma B , Hunsperger E , Widdowson MA , Bigogo G , Mintz ED , Verani JR . Am J Trop Med Hyg 2023 109 (1) 22-31 Typhoid fever burden can vary over time. Long-term data can inform prevention strategies; however, such data are lacking in many African settings. We reexamined typhoid fever incidence and antimicrobial resistance (AMR) over a 10-year period in Kibera, a densely populated urban informal settlement where a high burden has been previously described. We used data from the Population Based Infectious Diseases Surveillance platform to estimate crude and adjusted incidence rates and prevalence of AMR in nearly 26,000 individuals of all ages. Demographic and healthcare-seeking information was collected through household visits. Blood cultures were processed for patients with acute fever or lower respiratory infection. Between 2010 and 2019, 16,437 participants were eligible for blood culture and 11,848 (72.1%) had a culture performed. Among 11,417 noncontaminated cultures (96.4%), 237 grew Salmonella enterica serovar Typhi (2.1%). Overall crude and adjusted incidences were 95 and 188 cases per 100,000 person-years of observation (pyo), respectively. Annual crude incidence varied from 144 to 233 between 2010 and 2012 and from 9 to 55 between 2013 and 2018 and reached 130 per 100,000 pyo in 2019. Children 5-9 years old had the highest overall incidence (crude, 208; adjusted, 359 per 100,000 pyo). Among isolates tested, 156 of 217 were multidrug resistant (resistant to chloramphenicol, ampicillin, and trimethoprim/sulfamethoxazole [71.9%]) and 6 of 223 were resistant to ciprofloxacin (2.7%). Typhoid fever incidence resurged in 2019 after a prolonged period of low rates, with the highest incidence among children. Typhoid fever control measures, including vaccines, could reduce morbidity in this setting. |
Flavivirus antibodies reactive to zika virus detected in multiple species of nonhuman primates in Kenya, 2008-2017
Makio A , Widdowson MA , Ambala P , Ozwara H , Munyua P , Hunsperger E . Vector Borne Zoonotic Dis 2023 23 (7) 393-396 Background: Zika virus (ZIKV), first described in 1947, is an arthropod-borne virus associated with sporadic outbreaks and interepidemic transmission. Recent studies have implicated nonhuman primates (NHPs) as the probable reservoir hosts. We tested archived serum samples of NHPs collected in Kenya for evidence of neutralizing ZIKV antibodies. Methods: We randomly selected 212 archived serum samples from Institute of Primate Research in Kenya collected between 1992 and 2017. These specimens were tested by microneutralization test. Results: The 212 serum samples were collected in 7 counties from 87 (41.0%) Olive baboons, 69 (32.5%) Vervet monkeys, and 49 (23.1%) Sykes monkeys. Half (50.9%) were male and 56.4% were adult. We detected ZIKV antibodies in 38 (17.9%; 95% confidence interval: 13.3-23.6) samples. Conclusions: These results suggest ZIKV transmission and potential maintenance in nature by NHPs in Kenya. |
Seroprevalence and risk factors of SARS-CoV-2 infection in an urban informal settlement in Nairobi, Kenya, December 2020 (preprint)
Munywoki PK , Nasimiyu C , Alando MD , Otieno N , Ombok C , Njoroge R , Kikwai G , Odhiambo D , Osita MP , Ouma A , Odour C , Juma B , Ochieng CA , Mutisya I , Ngere I , Dawa J , Osoro E , Njenga MK , Bigogo G , Munyua P , Lo TQ , Hunsperger E , Herman-Roloff A . F1000Res 2021 10 853 Introduction: Urban informal settlements may be disproportionately affected by the COVID-19 pandemic due to overcrowding and other socioeconomic challenges that make adoption and implementation of public health mitigation measures difficult. We conducted a seroprevalence survey in the Kibera informal settlement, Nairobi, Kenya, to determine the extent of SARS-CoV-2 infection. Methods: Members of randomly selected households from an existing population-based infectious disease surveillance (PBIDS) provided blood specimens between 27 (th) November and 5 (th) December 2020. The specimens were tested for antibodies to the SARS-CoV-2 spike protein. Seroprevalence estimates were weighted by age and sex distribution of the PBIDS population and accounted for household clustering. Multivariable logistic regression was used to identify risk factors for individual seropositivity. Results: Consent was obtained from 523 individuals in 175 households, yielding 511 serum specimens that were tested. The overall weighted seroprevalence was 43.3% (95% CI, 37.4 - 49.5%) and did not vary by sex. Of the sampled households, 122(69.7%) had at least one seropositive individual. The individual seroprevalence increased by age from 7.6% (95% CI, 2.4 - 21.3%) among children (<5 years), 32.7% (95% CI, 22.9 - 44.4%) among children 5 - 9 years, 41.8% (95% CI, 33.0 - 51.1%) for those 10-19 years, and 54.9%(46.2 - 63.3%) for adults (≥20 years). Relative to those from medium-sized households (3 and 4 individuals), participants from large (≥5 persons) households had significantly increased odds of being seropositive, aOR, 1.98(95% CI, 1.17 - 1.58), while those from small-sized households (≤2 individuals) had increased odds but not statistically significant, aOR, 2.31 (95% CI, 0.93 - 5.74). Conclusion: In densely populated urban settings, close to half of the individuals had an infection to SARS-CoV-2 after eight months of the COVID-19 pandemic in Kenya. This highlights the importance to prioritize mitigation measures, including COVID-19 vaccine distribution, in the crowded, low socioeconomic settings. |
Prevalence of Salmonella in stool during the Vaccine Impact on Diarrhea in Africa (VIDA) Study, 2015-2018
Kasumba IN , Powell H , Omore R , Hossain MJ , Sow SO , Ochieng JB , Badji H , Verani JR , Widdowson MA , Sen S , Nasrin S , Permala-Booth J , Jones JA , Roose A , Nasrin D , Sugerman CE , Juma J , Awuor A , Jones JCM , Doh S , Okoi C , Zaman SMA , Antonio M , Hunsperger E , Onyango C , Platts-Mills J , Liu J , Houpt E , Neuzil KM , Kotloff KL , Tennant SM . Clin Infect Dis 2023 76 S87-s96 BACKGROUND: Non-typhoidal Salmonella (NTS) is a common cause of gastroenteritis in young children, with limited data on NTS serovars and antimicrobial resistance in Africa. METHODS: We determined the prevalence of Salmonella spp. and frequency of antimicrobial resistance among serovars identified in stools of 0-59 month-old children with moderate-to-severe diarrhea (MSD) and controls enrolled in the Vaccine Impact on Diarrhea in Africa (VIDA) Study in The Gambia, Mali, and Kenya in 2015-2018, and compared with data from the Global Enteric Multicenter Study (GEMS; 2007-2010) and the GEMS-1A study (2011). Salmonella spp. was detected by quantitative real-time PCR (qPCR) and culture-based methods. Identification of serovars was determined by microbiological methods. RESULTS: By qPCR, the prevalence of Salmonella spp. among MSD cases was 4.0%, 1.6%, and 1.9% and among controls was 4.6%, 2.4%, and 1.6% in The Gambia, Mali, and Kenya, respectively, during VIDA. We observed year-to-year variation in serovar distribution and variation between sites. In Kenya, Salmonella enterica serovar Typhimurium decreased (78.1% to 23.1%; P < .001) among cases and controls from 2007 to 2018, whereas serogroup O:8 increased (8.7% to 38.5%; P = .04). In The Gambia, serogroup O:7 decreased from 2007 to 2018 (36.3% to 0%; P = .001) but S. enterica serovar Enteritidis increased during VIDA (2015 to 2018; 5.9% to 50%; P = .002). Only 4 Salmonella spp. were isolated in Mali during all 3 studies. Multidrug resistance was 33.9% in Kenya and 0.8% in The Gambia across all 3 studies. Ceftriaxone resistance was only observed in Kenya (2.3%); NTS isolates were susceptible to ciprofloxacin at all sites. CONCLUSIONS: Understanding variability in serovar distribution will be important for the future deployment of vaccines against salmonellosis in Africa. |
Epidemiology of enteroaggregative, enteropathogenic, and shiga toxin-producing escherichia coli among children aged <5 years in 3 countries in Africa, 2015-2018: Vaccine Impact on Diarrhea in Africa (VIDA) Study
Ochieng JB , Powell H , Sugerman CE , Omore R , Ogwel B , Juma J , Awuor AO , Sow SO , Sanogo D , Onwuchekwa U , Keita AM , Traoré A , Badji H , Hossain MJ , Jones JCM , Kasumba IN , Nasrin D , Roose A , Liang Y , Jamka LP , Antonio M , Platts-Mills JA , Liu J , Houpt ER , Mintz ED , Hunsperger E , Onyango CO , Strockbine N , Widdowson MA , Verani JR , Tennant SM , Kotloff KL . Clin Infect Dis 2023 76 S77-s86 BACKGROUND: To address knowledge gaps regarding diarrheagenic Escherichia coli (DEC) in Africa, we assessed the clinical and epidemiological features of enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), and Shiga toxin-producing E. coli (STEC) positive children with moderate-to-severe diarrhea (MSD) in Mali, The Gambia, and Kenya. METHODS: Between May 2015 and July 2018, children aged 0-59 months with medically attended MSD and matched controls without diarrhea were enrolled. Stools were tested conventionally using culture and multiplex polymerase chain reaction (PCR), and by quantitative PCR (qPCR). We assessed DEC detection by site, age, clinical characteristics, and enteric coinfection. RESULTS: Among 4840 children with MSD and 6213 matched controls enrolled, 4836 cases and 1 control per case were tested using qPCR. Of the DEC detected with TAC, 61.1% were EAEC, 25.3% atypical EPEC (aEPEC), 22.4% typical EPEC (tEPEC), and 7.2% STEC. Detection was higher in controls than in MSD cases for EAEC (63.9% vs 58.3%, P < .01), aEPEC (27.3% vs 23.3%, P < .01), and STEC (9.3% vs 5.1%, P < .01). EAEC and tEPEC were more frequent in children aged <23 months, aEPEC was similar across age strata, and STEC increased with age. No association between nutritional status at follow-up and DEC pathotypes was found. DEC coinfection with Shigella/enteroinvasive E. coli was more common among cases (P < .01). CONCLUSIONS: No significant association was detected between EAEC, tEPEC, aEPEC, or STEC and MSD using either conventional assay or TAC. Genomic analysis may provide a better definition of the virulence factors associated with diarrheal disease. |
A mixed methods assessment of knowledge, attitudes and practices related to aflatoxin contamination and exposure among caregivers of children under five years in Western Kenya
Awuor A , Wambura G , Ngere I , Hunsperger E , Onyango C , Bigogo G , Blum LS , Munyua P , Njenga MK , Widdowson MA . Public Health Nutr 2023 26 (12) 1-29 OBJECTIVE: Identifying factors that may influence aflatoxin exposure in children under five years of age living in farming households in western Kenya. DESIGN: We used a mixed methods design. The quantitative component entailed serial cross-sectional interviews in 250 farming households to examine crop processing and conservation practices, household food storage and consumption, and local understandings of aflatoxins. Qualitative data collection included focus group discussions (N=7) and key informant interviews (N=13) to explore explanations of harvesting and post-harvesting techniques and perceptions of crop spoilage. SETTING: The study was carried out in Asembo, a rural community where high rates of child stunting exist. PARTICIPANTS: A total of 250 female primary caregivers of children under five years of age and 13 experts in farming and food management participated. RESULTS: Study results showed that from a young age, children routinely ate maize-based dishes. Economic constraints and changing environmental patterns guided the application of sub-optimal crop practices involving early harvest, poor drying, mixing spoiled with good cereals, and storing cereals in polypropylene bags in confined quarters occupied by humans and livestock, raising risks of aflatoxin contamination. Most (80%) smallholder farmers were unaware of aflatoxins and their harmful economic and health consequences. CONCLUSIONS: Young children living in subsistence farming households may be at risk of exposure to aflatoxins and consequent ill health and stunting. Sustained efforts to increase awareness of the risks of aflatoxins and control measures among subsistence farmers could help to mitigate practices that raise exposure. |
Incorporating COVID-19 into acute febrile illness surveillance systems, Belize, Kenya, Ethiopia, Peru, and Liberia, 2020-2021
Shih DC , Silver R , Henao OL , Alemu A , Audi A , Bigogo G , Colston JM , Edu-Quansah EP , Erickson TA , Gashu A , Gbelee GB Jr , Gunter SM , Kosek MN , Logan GG , Mackey JM , Maliga A , Manzanero R , Morazan G , Morey F , Munoz FM , Murray KO , Nelson TV , Olortegui MP , Yori PP , Ronca SE , Schiaffino F , Tayachew A , Tedasse M , Wossen M , Allen DR , Angra P , Balish A , Farron M , Guerra M , Herman-Roloff A , Hicks VJ , Hunsperger E , Kazazian L , Mikoleit M , Munyua P , Munywoki PK , Namwase AS , Onyango CO , Park M , Peruski LF , Sugerman DE , Gutierrez EZ , Cohen AL . Emerg Infect Dis 2022 28 (13) S34-s41 Existing acute febrile illness (AFI) surveillance systems can be leveraged to identify and characterize emerging pathogens, such as SARS-CoV-2, which causes COVID-19. The US Centers for Disease Control and Prevention collaborated with ministries of health and implementing partners in Belize, Ethiopia, Kenya, Liberia, and Peru to adapt AFI surveillance systems to generate COVID-19 response information. Staff at sentinel sites collected epidemiologic data from persons meeting AFI criteria and specimens for SARS-CoV-2 testing. A total of 5,501 patients with AFI were enrolled during March 2020-October 2021; >69% underwent SARS-CoV-2 testing. Percentage positivity for SARS-CoV-2 ranged from 4% (87/2,151, Kenya) to 19% (22/115, Ethiopia). We show SARS-CoV-2 testing was successfully integrated into AFI surveillance in 5 low- to middle-income countries to detect COVID-19 within AFI care-seeking populations. AFI surveillance systems can be used to build capacity to detect and respond to both emerging and endemic infectious disease threats. |
Diagnostic accuracy of the Panbio COVID-19 antigen rapid test device for SARS-CoV-2 detection in Kenya, 2021: A field evaluation
Irungu JK , Munyua P , Ochieng C , Juma B , Amoth P , Kuria F , Kiiru J , Makayotto L , Abade A , Bulterys M , Hunsperger E , Emukule GO , Onyango C , Samandari T , Barr BAT , Akelo V , Weyenga H , Munywoki PK , Bigogo G , Otieno NA , Kisivuli JA , Ochieng E , Nyaga R , Hull N , Herman-Roloff A , Aman R . PLoS One 2023 18 (1) e0277657 BACKGROUND: Accurate and timely diagnosis is essential in limiting the spread of SARS-CoV-2 infection. The reference standard, rRT-PCR, requires specialized laboratories, costly reagents, and a long turnaround time. Antigen RDTs provide a feasible alternative to rRT-PCR since they are quick, relatively inexpensive, and do not require a laboratory. The WHO requires that Ag RDTs have a sensitivity ≥80% and specificity ≥97%. METHODS: This evaluation was conducted at 11 health facilities in Kenya between March and July 2021. We enrolled persons of any age with respiratory symptoms and asymptomatic contacts of confirmed COVID-19 cases. We collected demographic and clinical information and two nasopharyngeal specimens from each participant for Ag RDT testing and rRT-PCR. We calculated the diagnostic performance of the Panbio™ Ag RDT against the US Centers for Disease Control and Prevention's (CDC) rRT-PCR test. RESULTS: We evaluated the Ag RDT in 2,245 individuals where 551 (24.5%, 95% CI: 22.8-26.3%) tested positive by rRT-PCR. Overall sensitivity of the Ag RDT was 46.6% (95% CI: 42.4-50.9%), specificity 98.5% (95% CI: 97.8-99.0%), PPV 90.8% (95% CI: 86.8-93.9%) and NPV 85.0% (95% CI: 83.4-86.6%). Among symptomatic individuals, sensitivity was 60.6% (95% CI: 54.3-66.7%) and specificity was 98.1% (95% CI: 96.7-99.0%). Among asymptomatic individuals, sensitivity was 34.7% (95% CI 29.3-40.4%) and specificity was 98.7% (95% CI: 97.8-99.3%). In persons with onset of symptoms <5 days (594/876, 67.8%), sensitivity was 67.1% (95% CI: 59.2-74.3%), and 53.3% (95% CI: 40.0-66.3%) among those with onset of symptoms >7 days (157/876, 17.9%). The highest sensitivity was 87.0% (95% CI: 80.9-91.8%) in symptomatic individuals with cycle threshold (Ct) values ≤30. CONCLUSION: The overall sensitivity and NPV of the Panbio™ Ag RDT were much lower than expected. The specificity of the Ag RDT was high and satisfactory; therefore, a positive result may not require confirmation by rRT-PCR. The kit may be useful as a rapid screening tool only for symptomatic patients in high-risk settings with limited access to rRT-PCR. A negative result should be interpreted based on clinical and epidemiological information and may require retesting by rRT-PCR. |
Adapting Longstanding Public Health Collaborations between Government of Kenya and CDC Kenya in Response to the COVID-19 Pandemic, 2020-2021.
Herman-Roloff A , Aman R , Samandari T , Kasera K , Emukule GO , Amoth P , Chen TH , Kisivuli J , Weyenga H , Hunsperger E , Onyango C , Juma B , Munyua P , Wako D , Akelo V , Kimanga D , Ndegwa L , Mohamed AA , Okello P , Kariuki S , DeCock KM , Bulterys M . Emerg Infect Dis 2022 28 (13) S159-s167 Kenya's Ministry of Health (MOH) and the US Centers for Disease Control and Prevention in Kenya (CDC Kenya) have maintained a 40-year partnership during which measures were implemented to prevent, detect, and respond to disease threats. During the COVID-19 pandemic, the MOH and CDC Kenya rapidly responded to mitigate disease impact on Kenya's 52 million residents. We describe activities undertaken jointly by the MOH and CDC Kenya that lessened the effects of COVID-19 during 5 epidemic waves from March through December 2021. Activities included establishing national and county-level emergency operations centers and implementing workforce development and deployment, infection prevention and control training, laboratory diagnostic advancement, enhanced surveillance, and information management. The COVID-19 pandemic provided fresh impetus for the government of Kenya to establish a national public health institute, launched in January 2022, to consolidate its public health activities and counter COVID-19 and future infectious, vaccine-preventable, and emerging zoonotic diseases. |
First cases of SARS-CoV-2 infection and secondary transmission in Kisumu, Kenya
Tippett Barr Beth A , Herman-Roloff Amy , Mburu Margaret , Murnane Pamela M , Sang Norton , Bukusi Elizabeth , Oele Elizabeth , Odhiambo Albert , Lewis-Kulzer Jayne , Onyango Clayton O , Hunsperger Elizabeth , Odhiambo Francesca , Joseph Rachel H , Munyua Peninah , Othieno Kephas , Mulwa Edwin , Akelo Victor , Muok Erick , Bulterys Marc , Nzioka Charles , Cohen Craig R . PLoS Glob Public Health 2022 2 (9) e0000951 We investigated the first 152 laboratory-confirmed SARS-CoV-2 cases (125 primary and 27 secondary) and their 248 close contacts in Kisumu County, Kenya. Conducted June 10–October 8, 2020, this study included interviews and sample collection at enrolment and 14–21 days later. Median age was 35 years (IQR 28–44); 69.0% reported COVID-19 related symptoms, most commonly cough (60.0%), headache (55.2%), fever (53.3%) and loss of taste or smell (43.8%). One in five were hospitalized, 34.4% >25 years of age had at least one comorbidity, and all deaths had comorbidities. Adults ≥25 years with a comorbidity were 3.15 (95% CI 1.37–7.26) times more likely to have been hospitalized or died than participants without a comorbidity. Infectious comorbidities included HIV, tuberculosis, and malaria, but no current cases of influenza, respiratory syncytial virus, dengue fever, leptospirosis or chikungunya were identified. Thirteen (10.4%) of the 125 primary infections transmitted COVID-19 to 27 close contacts, 158 (63.7%) of whom resided or worked within the same household. Thirty-one percent (4 of 13) of those who transmitted COVID-19 to secondary cases were health care workers; no known secondary transmissions occurred between health care workers. This rapid assessment early in the course of the COVID-19 pandemic identified some context-specific characteristics which conflicted with the national line-listing of cases, and which have been substantiated in the year since. These included over two-thirds of cases reporting the development of symptoms during the two weeks after diagnosis, compared to the 7% of cases reported nationally; over half of cases reporting headaches, and nearly half of all cases reporting loss of taste and smell, none of which were reported at the time by the World Health Organization to be common symptoms. This study highlights the importance of rapid in-depth assessments of outbreaks in understanding the local epidemiology and response measures required. |
Detection of neutralizing antibodies against Zika virus in wild nonhuman primates in Rwanda
Umuhoza T , Makio A , Hunsperger E , Mudakikwa A , Muvunyi R , Nziza J , Widdowson MA . J Wildl Dis 2022 58 (4) 939-942 The range of nonhuman primate (NHP) species involved in Zika virus (ZIKV) sylvatic transmission is not known. We tested 97 NHP archived sera, collected from 2006 to 2016 in Rwandan National Parks, for neutralizing antibodies to ZIKV. Serum from one olive baboon (Papio anubis) was positive for ZIKV antibodies. |
Prevalence of microcephaly and Zika virus infection in a pregnancy cohort in Kenya, 2017-2019
Osoro E , Inwani I , Mugo C , Hunsperger E , Verani JR , Omballa V , Wamalwa D , Rhee C , Nduati R , Kinuthia J , Jin H , Okutoyi L , Mwaengo D , Maugo B , Otieno NA , Mirieri H , Shabibi M , Munyua P , Njenga MK , Widdowson MA . BMC Med 2022 20 (1) 291 BACKGROUND: Zika virus (ZIKV), first discovered in Uganda in 1947, re-emerged globally in 2013 and was later associated with microcephaly and other birth defects. We determined the incidence of ZIKV infection and its association with adverse pregnancy and fetal outcomes in a pregnancy cohort in Kenya. METHODS: From October 2017 to July 2019, we recruited and followed up women aged ≥ 15 years and ≤ 28 weeks pregnant in three hospitals in coastal Mombasa. Monthly follow-up included risk factor questions and a blood sample collected for ZIKV serology. We collected anthropometric measures (including head circumference), cord blood, venous blood from newborns, and any evidence of birth defects. Microcephaly was defined as a head circumference (HC) < 2 standard deviations (SD) for sex and gestational age. Severe microcephaly was defined as HC < 3 SD for sex and age. We tested sera for anti-ZIKV IgM antibodies using capture enzyme-linked immunosorbent assay (ELISA) and confirmed positives using the plaque reduction neutralization test (PRNT(90)) for ZIKV and for dengue (DENV) on the samples that were ZIKV neutralizing antibody positive. We collected blood and urine from participants reporting fever or rash for ZIKV testing. RESULTS: Of 2889 pregnant women screened for eligibility, 2312 (80%) were enrolled. Of 1916 recorded deliveries, 1816 (94.6%) were live births and 100 (5.2%) were either stillbirths or spontaneous abortions (< 22 weeks of gestation). Among 1236 newborns with complete anthropometric measures, 11 (0.9%) had microcephaly and 3 (0.2%) had severe microcephaly. A total of 166 (7.2%) participants were positive for anti-ZIKV IgM, 136 of whom became seropositive during follow-up. Among the 166 anti-ZIKV IgM positive, 3 and 18 participants were further seropositive for ZIKV and DENV neutralizing antibodies, respectively. Of these 3 and 18 pregnant women, one and 13 (72.2%) seroconverted with antibodies to ZIKV and DENV, respectively. All 308 samples (serum and urine samples collected during sick visits and samples that were anti-ZIKV IgM positive) tested by RT-PCR were negative for ZIKV. No adverse pregnancy or neonatal outcomes were reported among the three participants with confirmed ZIKV exposure. Among newborns from pregnant women with DENV exposure, four (22.2%) were small for gestational age and one (5.6%) had microcephaly. CONCLUSIONS: The prevalence of severe microcephaly among newborns in coastal Kenya was high relative to published estimates from facility-based studies in Europe and Latin America, but little evidence of ZIKV transmission. There is a need for improved surveillance for microcephaly and other congenital malformations in Kenya. |
Molecular characterization of circulating Salmonella Typhi strains in an urban informal settlement in Kenya.
Ochieng C , Chen JC , Osita MP , Katz LS , Griswold T , Omballa V , Ng'eno E , Ouma A , Wamola N , Opiyo C , Achieng L , Munywoki PK , Hendriksen RS , Freeman M , Mikoleit M , Juma B , Bigogo G , Mintz E , Verani JR , Hunsperger E , Carleton HA . PLoS Negl Trop Dis 2022 16 (8) e0010704 A high burden of Salmonella enterica subspecies enterica serovar Typhi (S. Typhi) bacteremia has been reported from urban informal settlements in sub-Saharan Africa, yet little is known about the introduction of these strains to the region. Understanding regional differences in the predominant strains of S. Typhi can provide insight into the genomic epidemiology. We genetically characterized 310 S. Typhi isolates from typhoid fever surveillance conducted over a 12-year period (2007-2019) in Kibera, an urban informal settlement in Nairobi, Kenya, to assess the circulating strains, their antimicrobial resistance attributes, and how they relate to global S. Typhi isolates. Whole genome multi-locus sequence typing (wgMLST) identified 4 clades, with up to 303 pairwise allelic differences. The identified genotypes correlated with wgMLST clades. The predominant clade contained 290 (93.5%) isolates with a median of 14 allele differences (range 0-52) and consisted entirely of genotypes 4.3.1.1 and 4.3.1.2. Resistance determinants were identified exclusively in the predominant clade. Determinants associated with resistance to aminoglycosides were observed in 245 isolates (79.0%), sulphonamide in 243 isolates (78.4%), trimethoprim in 247 isolates (79.7%), tetracycline in 224 isolates (72.3%), chloramphenicol in 247 isolates (79.6%), β-lactams in 239 isolates (77.1%) and quinolones in 62 isolates (20.0%). Multidrug resistance (MDR) determinants (defined as determinants conferring resistance to ampicillin, chloramphenicol and cotrimoxazole) were found in 235 (75.8%) isolates. The prevalence of MDR associated genes was similar throughout the study period (2007-2012: 203, 76.3% vs 2013-2019: 32, 72.7%; Fisher's Exact Test: P = 0.5478, while the proportion of isolates harboring quinolone resistance determinants increased (2007-2012: 42, 15.8% and 2013-2019: 20, 45.5%; Fisher's Exact Test: P<0.0001) following a decline in S. Typhi in Kibera. Some isolates (49, 15.8%) harbored both MDR and quinolone resistance determinants. There were no determinants associated with resistance to cephalosporins or azithromycin detected among the isolates sequenced in this study. Plasmid markers were only identified in the main clade including IncHI1A and IncHI1B(R27) in 226 (72.9%) isolates, and IncQ1 in 238 (76.8%) isolates. Molecular clock analysis of global typhoid isolates and isolates from Kibera suggests that genotype 4.3.1 has been introduced multiple times in Kibera. Several genomes from Kibera formed a clade with genomes from Kenya, Malawi, South Africa, and Tanzania. The most recent common ancestor (MRCA) for these isolates was from around 1997. Another isolate from Kibera grouped with several isolates from Uganda, sharing a common ancestor from around 2009. In summary, S. Typhi in Kibera belong to four wgMLST clades one of which is frequently associated with MDR genes and this poses a challenge in treatment and control. |
Outbreak of Middle East Respiratory Syndrome Coronavirus in Camels and Probable Spillover Infection to Humans in Kenya.
Ngere I , Hunsperger EA , Tong S , Oyugi J , Jaoko W , Harcourt JL , Thornburg NJ , Oyas H , Muturi M , Osoro EM , Gachohi J , Ombok C , Dawa J , Tao Y , Zhang J , Mwasi L , Ochieng C , Mwatondo A , Bodha B , Langat D , Herman-Roloff A , Njenga MK , Widdowson MA , Munyua PM . Viruses 2022 14 (8) The majority of Kenya's > 3 million camels have antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV), although human infection in Africa is rare. We enrolled 243 camels aged 0-24 months from 33 homesteads in Northern Kenya and followed them between April 2018 to March 2020. We collected and tested camel nasal swabs for MERS-CoV RNA by RT-PCR followed by virus isolation and whole genome sequencing of positive samples. We also documented illnesses (respiratory or other) among the camels. Human camel handlers were also swabbed, screened for respiratory signs, and samples were tested for MERS-CoV by RT-PCR. We recorded 68 illnesses among 58 camels, of which 76.5% (52/68) were respiratory signs and the majority of illnesses (73.5% or 50/68) were recorded in 2019. Overall, 124/4692 (2.6%) camel swabs collected from 83 (34.2%) calves in 15 (45.5%) homesteads between April-September 2019 screened positive, while 22 calves (26.5%) recorded reinfections (second positive swab following ≥ 2 consecutive negative tests). Sequencing revealed a distinct Clade C2 virus that lacked the signature ORF4b deletions of other Clade C viruses. Three previously reported human PCR positive cases clustered with the camel infections in time and place, strongly suggesting sporadic transmission to humans during intense camel outbreaks in Northern Kenya. |
Comparable pregnancy outcomes for HIV-uninfected and HIV-infected women on antiretroviral treatment in Kenya
Mugo C , Nduati R , Osoro E , Nyawanda BO , Mirieri H , Hunsperger E , Verani JR , Jin H , Mwaengo D , Maugo B , Machoki J , Otieno NA , Ombok C , Shabibi M , Okutoyi L , Kinuthia J , Widdowson MA , Njenga K , Inwani I , Wamalwa D . J Infect Dis 2022 226 (4) 678-686 BACKGROUND: The impact of Human Immunodeficiency Virus (HIV) on pregnancy outcomes for women on antiretroviral therapy (ART) in sub-Saharan Africa remains unclear. METHODS: Pregnant women in Kenya were enrolled in the second trimester and followed up to delivery. We estimated effects of treated HIV with three pregnancy outcomes: loss, premature birth, and low birthweight and factors associated with HIV-positive status. RESULTS: Of 2,113 participants, 311 (15%) were HIV-infected and on ART. Ninety-one of 1,762 (5%) experienced a pregnancy loss, 169/1,725 (10%) a premature birth (<37 weeks), and 74/1,317 (6%) had a low birthweight newborn (<2500g).There was no evidence of associations between treated HIV infection and pregnancy loss (adjusted relative risk [aRR]: 1.19 [95% confidence interval: 0.65-2.16], p=0.57), prematurity (1.09 [0.70-1.70], p=0.69) and low birthweight (1.36 [0.77-2.40], p=0.27). Factors associated with an HIV-positive status included older age, food insecurity, lower education level, higher parity, lower gestation at first antenatal clinic, anemia, and syphilis. Women who were overweight or underweight were less likely to be HIV infected compared to those with normal weight. CONCLUSION: Currently treated HIV was not significantly associated with adverse pregnancy outcomes. HIV-infected women, however, had a higher prevalence of other factors associated with adverse pregnancy outcomes. |
Genome Sequence of Escherichia coli Isolated from an Adult in Kibera, an Urban Informal Settlement in Nairobi, Kenya.
Kikwai GK , Juma B , Nindo F , Ochieng C , Wamola N , Mbogo K , Call DR , Hunsperger E . Microbiol Resour Announc 2022 11 (4) e0124121 An Escherichia coli strain (sequence type 636) was isolated from an adult residing in an urban informal settlement in Nairobi, Kenya, and was sequenced using the Illumina MiSeq platform. The draft genome was 5,075,726 bp, with a Col(BS512) plasmid plus aph(6)-Id, bla(TEM-1B), and dfrA7 genes, which encode kanamycin, ampicillin, and trimethoprim resistance proteins, respectively. |
Effect of Time Since Death on Multipathogen Molecular Test Results of Postmortem Specimens Collected Using Minimally Invasive Tissue Sampling Techniques.
Dawa J , Walong E , Onyango C , Mathaiya J , Muturi P , Bunei M , Ochieng W , Barake W , Seixas JN , Mayieka L , Ochieng M , Omballa V , Lidechi S , Hunsperger E , Otieno NA , Ritter JM , Widdowson MA , Diaz MH , Winchell JM , Martines RB , Zaki SR , Chaves SS . Clin Infect Dis 2021 73 S360-s367 BACKGROUND: We used postmortem minimally invasive tissue sampling (MITS) to assess the effect of time since death on molecular detection of pathogens among respiratory illness-associated deaths. METHODS: Samples were collected from 20 deceased children (aged 1-59 months) hospitalized with respiratory illness from May 2018 through February 2019. Serial lung and/or liver and blood samples were collected using MITS starting soon after death and every 6 hours thereafter for up to 72 hours. Bodies were stored in the mortuary refrigerator for the duration of the study. All specimens were analyzed using customized multipathogen TaqMan® array cards (TACs). RESULTS: We identified a median of 3 pathogens in each child's lung tissue (range, 1-8; n = 20), 3 pathogens in each child's liver tissue (range, 1-4; n = 5), and 2 pathogens in each child's blood specimen (range, 0-4; n = 5). Pathogens were not consistently detected across all collection time points; there was no association between postmortem interval and the number of pathogens detected (P = .43) and no change in TAC cycle threshold value over time for pathogens detected in lung tissue. Human ribonucleoprotein values indicated that specimens collected were suitable for testing throughout the study period. CONCLUSIONS: Results suggest that lung, liver, and blood specimens can be collected using MITS procedures up to 4 days after death in adequately preserved bodies. However, inconsistent pathogen detection in samples needs careful consideration before drawing definitive conclusions on the etiologic causes of death. |
Characterizing the Countrywide Epidemic Spread of Influenza A(H1N1)pdm09 Virus in Kenya between 2009 and 2018.
Owuor DC , de Laurent ZR , Kikwai GK , Mayieka LM , Ochieng M , Müller NF , Otieno NA , Emukule GO , Hunsperger EA , Garten R , Barnes JR , Chaves SS , Nokes DJ , Agoti CN . Viruses 2021 13 (10) The spatiotemporal patterns of spread of influenza A(H1N1)pdm09 viruses on a countrywide scale are unclear in many tropical/subtropical regions mainly because spatiotemporally representative sequence data are lacking. We isolated, sequenced, and analyzed 383 A(H1N1)pdm09 viral genomes from hospitalized patients between 2009 and 2018 from seven locations across Kenya. Using these genomes and contemporaneously sampled global sequences, we characterized the spread of the virus in Kenya over several seasons using phylodynamic methods. The transmission dynamics of A(H1N1)pdm09 virus in Kenya were characterized by (i) multiple virus introductions into Kenya over the study period, although only a few of those introductions instigated local seasonal epidemics that then established local transmission clusters, (ii) persistence of transmission clusters over several epidemic seasons across the country, (iii) seasonal fluctuations in effective reproduction number (R(e)) associated with lower number of infections and seasonal fluctuations in relative genetic diversity after an initial rapid increase during the early pandemic phase, which broadly corresponded to epidemic peaks in the northern and southern hemispheres, (iv) high virus genetic diversity with greater frequency of seasonal fluctuations in 2009-2011 and 2018 and low virus genetic diversity with relatively weaker seasonal fluctuations in 2012-2017, and (v) virus spread across Kenya. Considerable influenza virus diversity circulated within Kenya, including persistent viral lineages that were unique to the country, which may have been capable of dissemination to other continents through a globally migrating virus population. Further knowledge of the viral lineages that circulate within understudied low-to-middle-income tropical and subtropical regions is required to understand the full diversity and global ecology of influenza viruses in humans and to inform vaccination strategies within these regions. |
sssHigh seroprevalence of SARS-CoV-2 but low infection fatality ratio eight months after introduction in Nairobi, Kenya.
Ngere I , Dawa J , Hunsperger E , Otieno N , Masika M , Amoth P , Makayotto L , Nasimiyu C , Gunn BM , Nyawanda B , Oluga O , Ngunu C , Mirieri H , Gachohi J , Marwanga D , Munywoki PK , Odhiambo D , Alando MD , Breiman RF , Anzala O , Njenga MK , Bulterys M , Herman-Roloff A , Osoro E . Int J Infect Dis 2021 112 25-34 BACKGROUND: The lower-than-expected COVID-19 morbidity and mortality in Africa has been attributed to multiple factors, including weak surveillance. We estimated the burden of SARS-CoV-2 infections eight months into the epidemic in Nairobi, Kenya. METHODS: We conducted a population-based cross-sectional survey using multi-stage random sampling to select households within Nairobi in November 2020. Sera from consenting household members were tested for antibodies to SARS-CoV-2. Seroprevalence was estimated after adjusting for population structure and test performance. Infection fatality ratios (IFRs) were calculated by comparing study estimates to reported cases and deaths. RESULTS: Among 1,164 individuals, the adjusted seroprevalence was 34.7% (95%CI 31.8-37.6). Half the enrolled households had at least one positive participant. Seropositivity increased in more densely populated areas (spearman's r=0.63; p=0.009). Individuals aged 20-59 years had at least 2-fold higher seropositivity than those aged 0-9 years. The IFR was 40 per 100,000 infections, with individuals ≥60 years old having higher IFRs. CONCLUSION: Over one-third of Nairobi residents had been exposed to SARS-CoV-2 by November 2020, indicating extensive transmission. However, the IFR was >10-fold lower than that reported in Europe and the United States, supporting the perceived lower morbidity and mortality in sub-Saharan Africa. |
Low-Level Middle East Respiratory Syndrome Coronavirus among Camel Handlers, Kenya, 2019.
Munyua PM , Ngere I , Hunsperger E , Kochi A , Amoth P , Mwasi L , Tong S , Mwatondo A , Thornburg N , Widdowson MA , Njenga MK . Emerg Infect Dis 2021 27 (4) 1201-1205 Although seroprevalence of Middle East respiratory coronavirus syndrome is high among camels in Africa, researchers have not detected zoonotic transmission in Kenya. We followed a cohort of 262 camel handlers in Kenya during April 2018-March 2020. We report PCR-confirmed Middle East respiratory coronavirus syndrome in 3 asymptomatic handlers. |
High incidence of human brucellosis in a rural pastoralist community in Kenya, 2015
Munyua P , Osoro E , Hunsperger E , Ngere I , Muturi M , Mwatondo A , Marwanga D , Ngere P , Tiller R , Onyango CO , Njenga K , Widdowson MA . PLoS Negl Trop Dis 2021 15 (2) e0009049 BACKGROUND: Brucellosis occurs globally with highly variable incidence in humans from very low in North America and Western Europe to high in the Middle East and Asia. There are few data in Sub-Saharan Africa. This study estimated the incidence of human brucellosis in a pastoralist community in Kenya. METHODS: Between February 2015 and January 2016, we enrolled persons living in randomly selected households in Kajiado County. Free health care was offered at three facilities in the study area. Those who met the study clinical case definition completed a standardized questionnaire on demographics, clinical history and presentation. A blood sample was collected and tested by Rose Bengal test (RBT), then later tested at the Kenya Medical Research Institute laboratory for Brucella IgG and IgM by ELISA. Those who tested positive by both RBT and ELISA (IgG or IgM antibodies) were classified as confirmed while those that only tested positive for IgG or IgM antibodies were classified as probable. Further, sera were tested by polymerase chain reaction using a TaqMan Array Card (TAC) for a panel of pathogens causing AFI including Brucella spp. Annual incidence of brucellosis was calculated as the number of confirmed cases in one year/total number in the study population. RESULTS: We enrolled a cohort of 4746 persons in 804 households. Over half (52.3%) were males and the median age was 18 years (Interquartile range (IQR) 9 months- 32 years). A total of 236 patients were enrolled at three health facilities; 64% were females and the median age was 40.5 years (IQR 28-53 years). Thirty-nine (16.5%) were positive for Brucella antibodies by IgG ELISA, 5/236 (2.1%) by IgM ELISA and 4/236 (1.7%) by RBT. Ten percent 22/217 were positive by TAC. We confirmed four (1.7%) brucellosis cases giving an annual incidence of 84/100,000 persons/year (95% CI 82, 87). The incidence did not significantly vary by gender, age and location of residence. CONCLUSION: We report a high incidence of brucellosis in humans among members of this pastoralist community. Brucellosis was the most common cause febrile illness in this community. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 07, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure