Last data update: Mar 17, 2025. (Total: 48910 publications since 2009)
Records 1-30 (of 51 Records) |
Query Trace: Hughes HR[original query] |
---|
Two human cases of fatal meningoencephalitis associated with potosi and lone star virus infections, United States, 2020-2023
Chiu CY , Godasi RR , Hughes HR , Servellita V , Foresythe K , Tubati A , Zorn K , Sidhu S , Wilson MR , Bethina SV , Abenroth D , Cheng Y , Grams R , Reese C , Isada C , Thottempudi N . Emerg Infect Dis 2025 31 (2) 215-221 ![]() ![]() We used clinical metagenomic next-generation sequencing of cerebrospinal fluid to investigate bunyavirus infections in 2 immunocompromised patients in the United States who had fatal meningoencephalitis. Potosi virus has been isolated from mosquito vectors and Lone Star virus from tick vectors. These findings highlight the power of metagenomic next-generation sequencing in broad-based, agnostic detection of emerging viral infections that test negative using conventional targeted diagnostic methods. |
Analysis of powassan virus genome sequences from human cases reveals substantial genetic diversity with implications for molecular assay development
Klontz EH , Chowdhury N , Holbrook N , Solomon IH , Telford SR 3rd , Aliota MT , Vogels CBF , Grubaugh ND , Helgager J , Hughes HR , Velez J , Piantadosi A , Chiu CY , Lemieux J , Branda JA . Viruses 2024 16 (11) ![]() ![]() Powassan virus (POWV) is an emerging tick-borne virus that causes severe meningoencephalitis in the United States, Canada, and Russia. Serology is generally the preferred diagnostic modality, but PCR on cerebrospinal fluid, blood, or urine has an important role, particularly in immunocompromised patients who are unable to mount a serologic response. Although the perceived poor sensitivity of PCR in the general population may be due to the biology of infection and health-seeking behavior (with short viremic periods that end before hospital presentation), limitations in assay design may also contribute. Genome sequences from clinical POWV cases are extremely scarce; PCR assay design has been informed by those available, but the numbers are limited. Larger numbers of genome sequences from tick-derived POWV are available, but it is not known if POWV genomes from human infections broadly mirror genomes from tick hosts, or if human infections are caused by a subset of more virulent strains. We obtained viral genomic data from 10 previously unpublished POWV human infections and showed that they broadly mirror the diversity of genome sequences seen in ticks, including all three major clades (lineage I, lineage II Northeast, and lineage II Midwest). These newly published clinical POWV genome sequences include the first confirmed lineage I infection in the United States, highlighting the relevance of all clades in human disease. An in silico analysis of published POWV PCR assays shows that many assays were optimized against a single clade and have mismatches that may affect their sensitivity when applied across clades. This analysis serves as a launching point for improved PCR design for clinical diagnostics and environmental surveillance. |
Chikungunya outbreak risks after the 2014 outbreak, Dominican Republic
Loevinsohn G , Paulino CT , Spring J , Hughes HR , Restrepo AC , Mayfield H , de St Aubin M , Laven J , Panella A , Duke W , Etienne MC , Abdalla G , Garnier S , Iihoshi N , Lopez B , de la Cruz L , Henríquez B , Baldwin M , Peña F , Kucharski AJ , Vasquez M , Gutiérrez EZ , Brault AC , Skewes-Ramm R , Lau CL , Nilles EJ . Emerg Infect Dis 2024 30 (12) 2679-2683 The 2014 chikungunya outbreak in the Dominican Republic resulted in intense local transmission, with high postoutbreak seroprevalence. The resulting population immunity will likely minimize risk for another large outbreak through 2035, but changes in population behavior or environmental conditions or emergence of different virus strains could lead to increased transmission. |
Development of a diagnostic IgM antibody capture ELISA for detection of anti-Cache Valley Virus human IgM
Goodman C , Powers JA , Mikula SR , Hughes HR , Biggerstaff BJ , Fitzpatrick K , Panella AJ , Machain-Williams C , Lee S , Calvert AE . Am J Trop Med Hyg 2024 Cache Valley virus (CVV), a mosquito-borne orthobunyavirus, causes epizootics in ruminants characterized by congenital malformations and fetal death in North America. Only seven human infections have been identified; limited information exists on its potential as a human teratogen. Diagnosis of CVV infections relies on the plaque reduction neutralization test (PRNT), which requires live virus, is time-consuming, and cannot differentiate between recent and past infections. To improve diagnostics for CVV, we developed an IgM antibody capture ELISA (MAC-ELISA) for detection of anti-CVV human IgM in diagnostic specimens that can be performed faster than PRNT and is specific to IgM, which is essential to determine the timing of infection. Conjointly, a cell line constitutively expressing human-murine chimeric antibody with the variable regions of monoclonal antibody CVV-17 and constant regions of human IgM was developed to provide positive control material. The new cell line produced antibody with reactivity in the assay equivalent to that of a human serum sample positive for anti-CVV IgM. Five of seven archived human specimens diagnostically confirmed as CVV positive tested positive in the MAC-ELISA, whereas 44 specimens confirmed positive for another arboviral infection tested negative, showing good initial correlation of the CVV MAC-ELISA. Two of 27 previously collected serum samples from febrile patients in Yucatán, Mexico, who tested negative for a recent flaviviral or alphaviral infection were positive in both the MAC-ELISA and PRNT, indicating a possible recent infection with CVV or related orthobunyavirus. The MAC-ELISA described here will aid in making diagnostics more widely available for CVV in public health laboratories. |
ICTV Virus Taxonomy Profile: Peribunyaviridae 2024
de Souza WM , Calisher CH , Carrera JP , Hughes HR , Nunes MRT , Russell B , Tilson-Lunel NL , Venter M , Xia H . J Gen Virol 2024 105 (11) Peribunyavirids produce enveloped virions with three negative-sense RNA segments comprising 10.7-12.5 kb in total. The family includes globally distributed viruses in multiple genera. While most peribunyavirids are maintained in geographically restricted vertebrate-arthropod transmission cycles, others are arthropod-specific or do not have a known vector. Arthropods can be persistently infected. Human and other vertebrate animal infections occur through blood feeding by an infected vector arthropod, resulting in diverse human and veterinary clinical outcomes in a strain-specific manner. Reassortment can occur between members of the same genus. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Peribunyaviridae, which is available at ictv.global/report/peribunyaviridae. |
Changes to virus taxonomy and the ICTV statutes ratified by the International Committee on Taxonomy of Viruses (2024)
Simmonds P , Adriaenssens EM , Lefkowitz EJ , Oksanen HM , Siddell SG , Zerbini FM , Alfenas-Zerbini P , Aylward FO , Dempsey DM , Dutilh BE , Freitas-Astúa J , García ML , Hendrickson RC , Hughes HR , Junglen S , Krupovic M , Kuhn JH , Lambert AJ , Ĺobocka M , Mushegian AR , Penzes J , Muñoz AR , Robertson DL , Roux S , Rubino L , Sabanadzovic S , Smith DB , Suzuki N , Turner D , Van Doorslaer K , Vandamme AM , Varsani A . Arch Virol 2024 169 (11) 236 ![]() This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2024. The entire ICTV membership was invited to vote on 203 taxonomic proposals that had been approved by the ICTV Executive Committee (EC) in July 2023 at the 55th EC meeting in Jena, Germany, or in the second EC vote in November 2023. All proposals were ratified by online vote. Taxonomic additions include one new phylum (Ambiviricota), one new class, nine new orders, three new suborders, 51 new families, 18 new subfamilies, 820 new genera, and 3547 new species (excluding taxa that have been abolished). Proposals to complete the process of species name replacement to the binomial (genus + species epithet) format were ratified. Currently, a total of 14,690 virus species have been established. |
Reemergence of Oropouche virus in the Americas and risk for spread in the United States and its territories, 2024
Guagliardo SAJ , Connelly CR , Lyons S , Martin SW , Sutter R , Hughes HR , Brault AC , Lambert AJ , Gould CV , Staples JE . Emerg Infect Dis 2024 30 (11) 2241-2249 Oropouche virus has recently caused outbreaks in South America and the Caribbean, expanding into areas to which the virus was previously not endemic. This geographic range expansion, in conjunction with the identification of vertical transmission and reports of deaths, has raised concerns about the broader threat this virus represents to the Americas. We review information on Oropouche virus, factors influencing its spread, transmission risk in the United States, and current status of public health response tools. On the basis of available data, the risk for sustained local transmission in the continental United States is considered low because of differences in vector ecology and in human-vector interactions when compared with Oropouche virus-endemic areas. However, more information is needed about the drivers for the current outbreak to clarify the risk for further expansion of this virus. Timely detection and control of this emerging pathogen should be prioritized to mitigate disease burden and stop its spread. |
Evidence of limited laboratory infection of Culex Tarsalis (Diptera: Culicidae) by Usutu Virus
Byers NM , Ledermann JP , Hughes HR , Powers AM . Vector Borne Zoonotic Dis 2024 Background: Usutu virus (USUV) is an emerging flavivirus, closely related to West Nile virus (WNV), that has spread into Europe from Africa. Since Culex tarsalis Coquillett is an important vector for WNV transmission in the United States, we tested the ability of USUV to replicate in and be transmitted by these mosquitoes. Materials and Methods: USUV was used to infect 3-4 day-old Cx. tarsalis with 5.6 to 7.5 log(10) pfu/ml in goose bloodmeals. Saliva, heads, and bodies were collected on day 13 or 14 and analyzed by RT-qPCR for detection for USUV vRNA. Blotting paper punches were also collected daily to assess viral transmissibility. Results: The low and high dose blood meal resulted in 0% and 19.6% of the mosquitoes having established infections, respectively. All of the high dose had a dissemination of USUV RNA to the heads and none of the filter papers had detectable USUV RNA, but five of the capillary saliva collections were positive, representing 45.5% of the infected mosquitoes. Conclusions: Limited infection of Cx. tarsalis was observed when exposed to bloodmeals with greater than 107 pfu/mL of USUV, indicating this vector is not likely to have a key role in transmission of the virus. |
Promotion of order Bunyavirales to class Bunyaviricetes to accommodate a rapidly increasing number of related polyploviricotine viruses
Kuhn JH , Brown K , Adkins S , de la Torre JC , Digiaro M , Ergünay K , Firth AE , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Shi M , Zhang YZ , Wolf YI , Turina M . J Virol 2024 e0106924 ![]() ![]() Prior to 2017, the family Bunyaviridae included five genera of arthropod and rodent viruses with tri-segmented negative-sense RNA genomes related to the Bunyamwera virus. In 2017, the International Committee on Taxonomy of Viruses (ICTV) promoted the family to order Bunyavirales and subsequently greatly expanded its composition by adding multiple families for non-segmented to polysegmented viruses of animals, fungi, plants, and protists. The continued and accelerated discovery of bunyavirals highlighted that an order would not suffice to depict the evolutionary relationships of these viruses. Thus, in April 2024, the order was promoted to class Bunyaviricetes. This class currently includes two major orders, Elliovirales (Cruliviridae, Fimoviridae, Hantaviridae, Peribunyaviridae, Phasmaviridae, Tospoviridae, and Tulasviridae) and Hareavirales (Arenaviridae, Discoviridae, Konkoviridae, Leishbuviridae, Mypoviridae, Nairoviridae, Phenuiviridae, and Wupedeviridae), for hundreds of viruses, many of which are pathogenic for humans and other animals, plants, and fungi. |
Evidence of lineage 1 and 3 West Nile Virus in person with neuroinvasive disease, Nebraska, USA, 2023
Davis E , Velez J , Hamik J , Fitzpatrick K , Haley J , Eschliman J , Panella A , Staples JE , Lambert A , Donahue M , Brault AC , Hughes HR . Emerg Infect Dis 2024 30 (10) 2090-2098 West Nile virus (WNV) is the most common cause of human arboviral disease in the contiguous United States, where only lineage 1 (L1) WNV had been found. In 2023, an immunocompetent patient was hospitalized in Nebraska with West Nile neuroinvasive disease and multisystem organ failure. Testing at the Centers for Disease Control and Prevention indicated an unusually high viral load and acute antibody response. Upon sequencing of serum and cerebrospinal fluid, we detected lineage 3 (L3) and L1 WNV genomes. L3 WNV had previously only been found in Central Europe in mosquitoes. The identification of L3 WNV in the United States and the observed clinical and laboratory features raise questions about the potential effect of L3 WNV on the transmission dynamics and pathogenicity of WNV infections. Determining the distribution and prevalence of L3 WNV in the United States and any public health and clinical implications is critical. |
Oropouche virus disease among U.S. travelers - United States, 2024
Morrison A , White JL , Hughes HR , Guagliardo SAJ , Velez JO , Fitzpatrick KA , Davis EH , Stanek D , Kopp E , Dumoulin P , Locksmith T , Heberlein L , Zimler R , Lassen J , Bestard C , Rico E , Mejia-Echeverri A , Edwards-Taylor KA , Holt D , Halphen D , Peters K , Adams C , Nichols AM , Ciota AT , Dupuis AP 2nd , Backenson PB , Lehman JA , Lyons S , Padda H , Connelly RC , Tong VT , Martin SW , Lambert AJ , Brault AC , Blackmore C , Staples JE , Gould CV . MMWR Morb Mortal Wkly Rep 2024 73 (35) 769-773 Beginning in late 2023, Oropouche virus was identified as the cause of large outbreaks in Amazon regions with known endemic transmission and in new areas in South America and the Caribbean. The virus is spread to humans by infected biting midges and some mosquito species. Although infection typically causes a self-limited febrile illness, reports of two deaths in patients with Oropouche virus infection and vertical transmission associated with adverse pregnancy outcomes have raised concerns about the threat of this virus to human health. In addition to approximately 8,000 locally acquired cases in the Americas, travel-associated Oropouche virus disease cases have recently been identified in European travelers returning from Cuba and Brazil. As of August 16, 2024, a total of 21 Oropouche virus disease cases were identified among U.S. travelers returning from Cuba. Most patients initially experienced fever, myalgia, and headache, often with other symptoms including arthralgia, diarrhea, nausea or vomiting, and rash. At least three patients had recurrent symptoms after the initial illness, a common characteristic of Oropouche virus disease. Clinicians and public health jurisdictions should be aware of the occurrence of Oropouche virus disease in U.S. travelers and request testing for suspected cases. Travelers should prevent insect bites when traveling, and pregnant persons should consider deferring travel to areas experiencing outbreaks of Oropouche virus disease. |
ICTV Virus Taxonomy Profile: Phasmaviridae 2024
Kuhn JH , Hughes HR . J Gen Virol 2024 105 (7) ![]() ![]() Phasmaviridae is a family for negative-sense RNA viruses with genomes of about 9.7-15.8 kb. These viruses are maintained in and/or transmitted by insects. Phasmavirids produce enveloped virions containing three single-stranded RNA segments that encode a nucleoprotein (N), a glycoprotein precursor (GPC), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Phasmaviridae, which is available at ictv.global/report/phasmaviridae. |
Field-collected ticks from Benton County, Arkansas, and prevalence of associated pathogens
Panella NA , Nicholson WL , Komar N , Burkhalter KL , Hughes HR , Theuret DP , Blocher BH , Sexton C , Connelly R , Rothfeldt L , Kenney JL . J Med Entomol 2024 The recovery of a Haemaphysalis longicornis Neumann (Acari: Ixodidae) tick from a dog in Benton County, Arkansas, in 2018 triggered a significant environmental sampling effort in Hobbs State Park Conservation Area. The objective of the investigation was to assess the tick population density and diversity, as well as identify potential tick-borne pathogens that could pose a risk to public health. During a week-long sampling period in August of 2018, a total of 6,154 ticks were collected, with the majority identified as Amblyomma americanum (L), (Acari: Ixodidae) commonly known as the lone star tick. No H. longicornis ticks were found despite the initial detection of this species in the area. This discrepancy highlights the importance of continued monitoring efforts to understand the dynamics of tick populations and their movements. The investigation also focused on pathogen detection, with ticks being pooled by species, age, and sex before being processed with various bioassays. The results revealed the presence of several tick-borne pathogens, including agents associated with ehrlichiosis (nâ =â 12), tularemia (nâ =â 2), and Bourbon virus (BRBV) disease (nâ =â 1), as well as nonpathogenic rickettsial and anaplasmosis organisms. These findings emphasize the importance of public health messaging to raise awareness of the risks associated with exposure to tick-borne pathogens. Prevention measures, such as wearing protective clothing, using insect repellent, and conducting regular tick checks, should be emphasized to reduce the risk of tick-borne diseases. Continued surveillance efforts and research are also essential to improve our understanding of tick-borne disease epidemiology and develop effective control strategies. |
ICTV virus taxonomy profile: Cruliviridae 2023
Kuhn JH , Adkins S , Brown K , de la Torre JC , Digiaro M , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Turina M , Zhang YZ . J Gen Virol 2023 104 (12) ![]() Cruliviridae is a family of negative-sense RNA viruses with genomes of 10.8-11.5 kb that have been found in crustaceans. The crulivirid genome consists of three RNA segments with ORFs that encode a nucleoprotein (NP), a glycoprotein (GP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and in some family members, a zinc-finger (Z) protein of unknown function. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Cruliviridae, which is available at ictv.global/report/cruliviridae. |
ICTV virus taxonomy profile: Wupedeviridae 2023
Kuhn JH , Adkins S , Brown K , de la Torre JC , Digiaro M , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Turina M , Zhang YZ . J Gen Virol 2023 104 (12) ![]() Wupedeviridae is a family of negative-sense RNA viruses with genomes of about 20.5 kb that have been found in myriapods. The wupedevirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Wupedeviridae, which is available at ictv.global/report/wupedeviridae. |
ICTV virus taxonomy profile: Mypoviridae 2023
Kuhn JH , Adkins S , Brown K , de la Torre JC , Digiaro M , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Turina M , Zhang YZ . J Gen Virol 2023 104 (12) ![]() Mypoviridae is a family of negative-sense RNA viruses with genomes of about 16.0 kb that have been found in myriapods. The mypovirid genome consists of three monocistronic RNA segments that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Mypoviridae, which is available at: ictv.global/report/mypoviridae. |
ICTV virus taxonomy profile: Tulasviridae 2023
Kuhn JH , Adkins S , Brown K , de la Torre JC , Digiaro M , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Zhang YZ , Turina M . J Gen Virol 2023 104 (12) ![]() Tulasviridae is a family of ambisense RNA viruses with genomes of about 12.2 kb that have been found in fungi. The tulasvirid genome is nonsegmented and contains three open reading frames (ORFs) that encode a nucleoprotein (NP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and a protein of unknown function (X). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Tulasviridae, which is available at ictv.global/report/tulasviridae. |
ICTV virus taxonomy profile: Leishbuviridae 2023
Adkins S , Brown K , de la Torre JC , Digiaro M , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Turina M , Zhang YZ , Kuhn JH . J Gen Virol 2023 104 (12) ![]() Leishbuviridae is a family of negative-sense RNA viruses with genomes of about 8.0 kb that have been found in protists. The leishbuvirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Leishbuviridae, which is available at ictv.global/report/leishbuviridae. |
ICTV virus taxonomy profile: Discoviridae 2023
Kuhn JH , Adkins S , Brown K , Carlos de la Torre J , Digiaro M , Hughes HR , Junglen S , Lambert AJ , Maes P , Marklewitz M , Palacios G , Sasaya T , Zhang YZ , Turina M . J Gen Virol 2023 104 (12) ![]() Discoviridae is a family of negative-sense RNA viruses with genomes of 6.2-9.7 kb that have been associated with fungi and stramenopiles. The discovirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a nonstructural protein (Ns), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Discoviridae, which is available at ictv.global/report/discoviridae. |
Cache Valley virus: an emerging arbovirus of public and veterinary health importance
Hughes HR , Kenney JL , Calvert AE . J Med Entomol 2023 60 (6) 1230-1241 ![]() ![]() Cache Valley virus (CVV) is a mosquito-borne virus in the genus Orthobunyavirus (Bunyavirales: Peribunyaviridae) that has been identified as a teratogen in ruminants causing fetal death and severe malformations during epizootics in the U.S. CVV has recently emerged as a viral pathogen causing severe disease in humans. Despite its emergence as a public health and agricultural concern, CVV has yet to be significantly studied by the scientific community. Limited information exists on CVV's geographic distribution, ecological cycle, seroprevalence in humans and animals, and spectrum of disease, including its potential as a human teratogen. Here, we present what is known of CVV's virology, ecology, and clinical disease in ruminants and humans. We discuss the current diagnostic techniques available and highlight gaps in our current knowledge and considerations for future research. |
Characterization of a monoclonal antibody specific to California serogroup orthobunyaviruses and development as a chimeric immunoglobulin M-positive control in human diagnostics
Powers JA , Boroughs KL , Mikula S , Goodman CH , Davis EH , Thrasher EM , Hughes HR , Biggerstaff BJ , Calvert AE . Microbiol Spectr 2023 11 (5) e0196623 California serogroup viruses (CSGVs) of medical importance in the United States include La Crosse virus, Jamestown Canyon virus (JCV), California encephalitis virus, and snowshoe hare virus. Current diagnosis of CSGVs relies heavily on serologic techniques for detecting immunoglobulin M (IgM), an indication of a recent CSGV infection. However, human-positive control sera reactive to viruses in the serogroup are scarce because detection of recent infections is rare. Here, we describe the development of new murine monoclonal antibodies (MAbs) reactive to CSGVs and the engineering of a human-murine chimeric antibody by combining the variable regions of the broadly CSGV cross-reactive murine MAb, 3-3B6/2-3B2 and the constant region of the human IgM. MAb 3-3B6/2-3B2 recognizes a tertiary epitope on the Gn/Gc heterodimer, and epitopes important in JCV neutralization were mapped to the Gc glycoprotein. This engineered human IgM constitutively expressed in a HEK-293 stable cell line can replace human-positive control sera in diagnostic serological techniques such as IgM antibody capture enzyme-linked immunosorbent assay (MAC-ELISA). Compared to the parent murine MAbs, the human-chimeric IgM antibody had identical serological activity to CSGVs in ELISA and demonstrated equivalent reactivity compared to human immune sera in the MAC-ELISA.IMPORTANCEOrthobunyaviruses in the California serogroup cause severe neurological disease in children and adults. While these viruses are known to circulate widely in North America, their occurrence is rare. Serological testing for CSGVs is hindered by the limited availability and volumes of human-positive specimens needed as controls in serologic assays. Here, we described the development of a murine monoclonal antibody cross-reactive to CSGVs engineered to contain the variable regions of the murine antibody on the backbone of human IgM. The chimeric IgM produced from the stably expressing HEK293 cell line was evaluated for use as a surrogate human-positive control in a serologic diagnostic test. |
Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota)
Kuhn JH , Abe J , Adkins S , Alkhovsky SV , AvšiÄ-Ĺ˝upanc T , Ayllón MA , Bahl J , Balkema-Buschmann A , Ballinger MJ , Kumar Baranwal V , Beer M , Bejerman N , Bergeron É , Biedenkopf N , Blair CD , Blasdell KR , Blouin AG , Bradfute SB , Briese T , Brown PA , Buchholz UJ , Buchmeier MJ , Bukreyev A , Burt F , Büttner C , Calisher CH , Cao M , Casas I , Chandran K , Charrel RN , Kumar Chaturvedi K , Chooi KM , Crane A , Dal Bó E , Carlos de la Torre J , de Souza WM , de Swart RL , Debat H , Dheilly NM , Di Paola N , Di Serio F , Dietzgen RG , Digiaro M , Drexler JF , Duprex WP , Dürrwald R , Easton AJ , Elbeaino T , Ergünay K , Feng G , Firth AE , Fooks AR , Formenty PBH , Freitas-Astúa J , Gago-Zachert S , Laura García M , García-Sastre A , Garrison AR , Gaskin TR , Gong W , Gonzalez JJ , de Bellocq J , Griffiths A , Groschup MH , Günther I , Günther S , Hammond J , Hasegawa Y , Hayashi K , Hepojoki J , Higgins CM , HongĹ S , Horie M , Hughes HR , Hume AJ , Hyndman TH , Ikeda K , JiÄng D , Jonson GB , Junglen S , Klempa B , Klingström J , KondĹ H , Koonin EV , Krupovic M , Kubota K , Kurath G , Laenen L , Lambert AJ , LÇ J , Li JM , Liu R , Lukashevich IS , MacDiarmid RM , Maes P , Marklewitz M , Marshall SH , Marzano SL , McCauley JW , Mirazimi A , Mühlberger E , Nabeshima T , Naidu R , Natsuaki T , Navarro B , Navarro JA , Neriya Y , Netesov SV , Neumann G , Nowotny N , Nunes MRT , Ochoa-Corona FM , Okada T , Palacios G , Pallás V , Papa A , Paraskevopoulou S , Parrish CR , Pauvolid-Corrêa A , PawÄska JT , Pérez DR , Pfaff F , Plemper RK , Postler TS , Rabbidge LO , Radoshitzky SR , Ramos-González PL , Rehanek M , Resende RO , Reyes CA , Rodrigues TCS , Romanowski V , Rubbenstroth D , Rubino L , Runstadler JA , Sabanadzovic S , Sadiq S , Salvato MS , Sasaya T , Schwemmle M , Sharpe SR , Shi M , Shimomoto Y , Kavi Sidharthan V , Sironi M , Smither S , Song JW , Spann KM , Spengler JR , Stenglein MD , Takada A , Takeyama S , Tatara A , Tesh RB , Thornburg NJ , Tian X , Tischler ND , Tomitaka Y , Tomonaga K , Tordo N , Tu C , Turina M , Tzanetakis IE , Maria Vaira A , van den Hoogen B , Vanmechelen B , Vasilakis N , Verbeek M , von Bargen S , Wada J , Wahl V , Walker PJ , Waltzek TB , Whitfield AE , Wolf YI , Xia H , Xylogianni E , Yanagisawa H , Yano K , Ye G , Yuan Z , Zerbini FM , Zhang G , Zhang S , Zhang YZ , Zhao L , Økland AL . J Gen Virol 2023 104 (8) ![]() In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV. |
Transmission of yellow fever vaccine virus through blood transfusion and organ transplantation in the USA in 2021: Report of an investigation
Gould CV , Free RJ , Bhatnagar J , Soto RA , Royer TL , Maley WR , Moss S , Berk MA , Craig-Shapiro R , Kodiyanplakkal RPL , Westblade LF , Muthukumar T , Puius YA , Raina A , Hadi A , Gyure KA , Trief D , Pereira M , Kuehnert MJ , Ballen V , Kessler DA , Dailey K , Omura C , Doan T , Miller S , Wilson MR , Lehman JA , Ritter JM , Lee E , Silva-Flannery L , Reagan-Steiner S , Velez JO , Laven JJ , Fitzpatrick KA , Panella A , Davis EH , Hughes HR , Brault AC , St George K , Dean AB , Ackelsberg J , Basavaraju SV , Chiu CY , Staples JE . Lancet Microbe 2023 4 (9) e711-e721 ![]() ![]() BACKGROUND: In 2021, four patients who had received solid organ transplants in the USA developed encephalitis beginning 2-6 weeks after transplantation from a common organ donor. We describe an investigation into the cause of encephalitis in these patients. METHODS: From Nov 7, 2021, to Feb 24, 2022, we conducted a public health investigation involving 15 agencies and medical centres in the USA. We tested various specimens (blood, cerebrospinal fluid, intraocular fluid, serum, and tissues) from the organ donor and recipients by serology, RT-PCR, immunohistochemistry, metagenomic next-generation sequencing, and host gene expression, and conducted a traceback of blood transfusions received by the organ donor. FINDINGS: We identified one read from yellow fever virus in cerebrospinal fluid from the recipient of a kidney using metagenomic next-generation sequencing. Recent infection with yellow fever virus was confirmed in all four organ recipients by identification of yellow fever virus RNA consistent with the 17D vaccine strain in brain tissue from one recipient and seroconversion after transplantation in three recipients. Two patients recovered and two patients had no neurological recovery and died. 3 days before organ procurement, the organ donor received a blood transfusion from a donor who had received a yellow fever vaccine 6 days before blood donation. INTERPRETATION: This investigation substantiates the use of metagenomic next-generation sequencing for the broad-based detection of rare or unexpected pathogens. Health-care workers providing vaccinations should inform patients of the need to defer blood donation for at least 2 weeks after receiving a yellow fever vaccine. Despite mitigation strategies and safety interventions, a low risk of transfusion-transmitted infections remains. FUNDING: US Centers for Disease Control and Prevention (CDC), the Biomedical Advanced Research and Development Authority, and the CDC Epidemiology and Laboratory Capacity Cooperative Agreement for Infectious Diseases. |
Increase in Colorado tick fever virus disease cases and effect of COVID-19 pandemic on behaviors and testing practices, Montana, 2020
Soto RA , Baldry E , Vahey GM , Lehman J , Silver M , Panella A , Brault AC , Hughes HR , Fitzpatrick KA , Velez J , Biggerstaff BJ , Wolff B , Randolph J , Ruth LJ , Staples JE , Gould CV . Emerg Infect Dis 2023 29 (3) 561-568 In 2020, Montana, USA, reported a large increase in Colorado tick fever (CTF) cases. To investigate potential causes of the increase, we conducted a case-control study of Montana residents who tested positive or negative for CTF during 2020, assessed healthcare providers' CTF awareness and testing practices, and reviewed CTF testing methods. Case-patients reported more time recreating outdoors on weekends, and all reported finding a tick on themselves before illness. No consistent changes were identified in provider practices. Previously, only CTF serologic testing was used in Montana. In 2020, because of SARS-CoV-2 testing needs, the state laboratory sent specimens for CTF testing to the Centers for Disease Control and Prevention, where more sensitive molecular methods are used. This change in testing probably increased the number of CTF cases detected. Molecular testing is optimal for CTF diagnosis during acute illness. Tick bite prevention measures should continue to be advised for persons doing outdoor activities. |
2022 taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Kuhn JH , Adkins S , Alkhovsky SV , Avi-upanc T , Aylln MA , Bahl J , Balkema-Buschmann A , Ballinger MJ , Bandte M , Beer M , Bejerman N , Bergeron , Biedenkopf N , Bigarr L , Blair CD , Blasdell KR , Bradfute SB , Briese T , Brown PA , Bruggmann R , Buchholz UJ , Buchmeier MJ , Bukreyev A , Burt F , Bttner C , Calisher CH , Candresse T , Carson J , Casas I , Chandran K , Charrel RN , Chiaki Y , Crane A , Crane M , Dacheux L , B ED , delaTorre JC , deLamballerie X , deSouza WM , deSwart RL , Dheilly NM , DiPaola N , DiSerio F , Dietzgen RG , Digiaro M , Drexler JF , Duprex WP , Drrwald R , Easton AJ , Elbeaino T , Ergnay K , Feng G , Feuvrier C , Firth AE , Fooks AR , Formenty PBH , Freitas-Asta J , Gago-Zachert S , Garca ML , Garca-Sastre A , Garrison AR , Godwin SE , Gonzalez JJ , deBellocq JG , Griffiths A , Groschup MH , Gnther S , Hammond J , Hepojoki J , Hierweger MM , Hong S , Horie M , Horikawa H , Hughes HR , Hume AJ , Hyndman TH , Jing D , Jonson GB , Junglen S , Kadono F , Karlin DG , Klempa B , Klingstrm J , Koch MC , Kond H , Koonin EV , Krsov J , Krupovic M , Kubota K , Kuzmin IV , Laenen L , Lambert AJ , L J , Li JM , Lieffrig F , Lukashevich IS , Luo D , Maes P , Marklewitz M , Marshall SH , Marzano SL , McCauley JW , Mirazimi A , Mohr PG , Moody NJG , Morita Y , Morrison RN , Mhlberger E , Naidu R , Natsuaki T , Navarro JA , Neriya Y , Netesov SV , Neumann G , Nowotny N , Ochoa-Corona FM , Palacios G , Pallandre L , Palls V , Papa A , Paraskevopoulou S , Parrish CR , Pauvolid-Corra A , Pawska JT , Prez DR , Pfaff F , Plemper RK , Postler TS , Pozet F , Radoshitzky SR , Ramos-Gonzlez PL , Rehanek M , Resende RO , Reyes CA , Romanowski V , Rubbenstroth D , Rubino L , Rumbou A , Runstadler JA , Rupp M , Sabanadzovic S , Sasaya T , Schmidt-Posthaus H , Schwemmle M , Seuberlich T , Sharpe SR , Shi M , Sironi M , Smither S , Song JW , Spann KM , Spengler JR , Stenglein MD , Takada A , Tesh RB , Tkov J , Thornburg NJ , Tischler ND , Tomitaka Y , Tomonaga K , Tordo N , Tsunekawa K , Turina M , Tzanetakis IE , Vaira AM , vandenHoogen B , Vanmechelen B , Vasilakis N , Verbeek M , vonBargen S , Wada J , Wahl V , Walker PJ , Whitfield AE , Williams JV , Wolf YI , Yamasaki J , Yanagisawa H , Ye G , Zhang YZ , kland AL . Arch Virol 2022 167 (12) 2857-2906 ![]() In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV. |
Severe arboviral neuroinvasive disease in patients on rituximab therapy: A review
Kapadia RK , Staples JE , Gill CM , Fischer M , Khan E , Laven JJ , Panella A , Velez JO , Hughes HR , Brault A , Pastula DM , Gould CV . Clin Infect Dis 2022 76 (6) 1142-1148 With increasing use of rituximab and other B-cell depleting monoclonal antibodies for multiple indications, infectious complications are being recognized. We summarize clinical findings of patients on rituximab with arboviral diseases identified through literature review or consultation with the Centers for Disease Control and Prevention. We identified 21 patients on recent rituximab therapy who were diagnosed with an arboviral disease caused by West Nile, tick-borne encephalitis, eastern equine encephalitis, Cache Valley, Jamestown Canyon, and Powassan viruses. All reported patients had neuroinvasive disease. The diagnosis of arboviral infection required molecular testing in 20 (95%) patients. Median illness duration was 36 days (range, 12 days-1 year) and 15/19 (79%) patients died from their illness. Patients on rituximab with arboviral disease can have a severe or prolonged course with an absence of serologic response. Patients should be counseled about mosquito and tick bite prevention when receiving rituximab and other B-cell depleting therapies. |
Laboratory evaluation of RealStar Yellow Fever Virus RT-PCR kit 1.0 for potential use in the global yellow fever laboratory network
Basile AJ , Niedrig M , Lambert AJ , Meurant R , Brault AC , Domingo C , Goodman CH , Johnson BW , Mossel EC , Mulders MN , Velez JO , Hughes HR . PLoS Negl Trop Dis 2022 16 (9) e0010770 BACKGROUND: Early detection of human yellow fever (YF) infection in YF-endemic regions is critical to timely outbreak mitigation. African National Laboratories chiefly rely on serological assays that require confirmation at Regional Reference Laboratories, thus delaying results, which themselves are not always definitive often due to antibody cross-reactivity. A positive molecular test result is confirmatory for YF; therefore, a standardized YF molecular assay would facilitate immediate confirmation at National Laboratories. The WHO-coordinated global Eliminate Yellow Fever Epidemics Laboratory Technical Working Group sought to independently evaluate the quality and performance of commercial YF molecular assays relevant to use in countries with endemic YF, in the absence of stringent premarket assessments. This report details a limited laboratory WHO-coordinated evaluation of the altona Diagnostics RealStar Yellow Fever Virus RT-PCR kit 1.0. METHODOLOGY AND PRINCIPAL FINDINGS: Specific objectives were to assess the assay's ability to detect YF virus strains in human serum from YF-endemic regions, determine the potential for interference and cross-reactions, verify the performance claims as stated by the manufacturer, and assess usability. RNA extracted from normal human serum spiked with YF virus showed the assay to be precise with minimal lot-to-lot variation. The 95% limit of detection calculated was approximately 1,245 RNA copies/ml [95% confidence interval 497 to 1,640 copies/ml]. Positive results were obtained with spatially and temporally diverse YF strains. The assay was specific for YF virus, was not subject to endogenous or exogenous interferents, and was clinically sensitive and specific. A review of operational characteristics revealed that a positivity cutoff was not defined in the instructions for use, but otherwise the assay was user-friendly. CONCLUSIONS AND SIGNIFICANCE: The RealStar Yellow Fever Virus RT-PCR kit 1.0 has performance characteristics consistent with the manufacturer's claims and is suitable for use in YF-endemic regions. Its use is expected to decrease YF outbreak detection times and be instrumental in saving lives. |
Transfusion-Transmitted Cache Valley Virus Infection in a Kidney Transplant Recipient with Meningoencephalitis.
Al-Heeti O , Wu EL , Ison MG , Saluja RK , Ramsey G , Matkovic E , Ha K , Hall S , Banach B , Wilson MR , Miller S , Chiu CY , McCabe M , Bari C , Zimler RA , Babiker H , Freeman D , Popovitch J , Annambhotla P , Lehman JA , Fitzpatrick K , Velez JO , Davis EH , Hughes HR , Panella A , Brault A , Erin Staples J , Gould CV , Tanna S . Clin Infect Dis 2022 76 (3) e1320-e1327 ![]() ![]() BACKGROUND: Cache Valley virus (CVV) is a mosquito-borne virus that is a rare cause of disease in humans. In the Fall of 2020, a patient developed encephalitis six weeks following kidney transplantation and receipt of multiple blood transfusions. METHODS: After ruling out more common etiologies, metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) was performed. We reviewed the medical histories of the index kidney recipient, organ donor, and recipients of other organs from the same donor and conducted a blood traceback investigation to evaluate blood transfusion as a possible source of infection in the kidney recipient. We tested patient specimens by reverse transcription-polymerase chain reaction (RT-PCR), plaque reduction neutralization test (PRNT), cell culture, and whole genome sequencing. RESULTS: CVV was detected in CSF from the index patient by mNGS, and this result was confirmed by RT-PCR, viral culture, and additional whole genome sequencing. The organ donor and other organ recipients had no evidence of infection with CVV by molecular or serologic testing. Neutralizing antibodies against CVV were detected in serum from a donor of red blood cells received by the index patient immediately prior to transplant. CVV neutralizing antibodies were also detected in serum from a patient who received the co-component plasma from the same blood donation. CONCLUSION: Our investigation demonstrates probable CVV transmission through blood transfusion. Clinicians should consider arboviral infections in unexplained meningoencephalitis after blood transfusion or organ transplantation. The use of mNGS testing might facilitate detection of rare, unexpected infections, particularly in immunocompromised patients. |
Evaluation of Whatman FTA cards for the preservation of yellow fever virus RNA for use in molecular diagnostics.
Davis EH , Velez JO , Russell BJ , Basile AJ , Brault AC , Hughes HR . PLoS Negl Trop Dis 2022 16 (6) e0010487 ![]() ![]() Yellow fever virus (YFV) is a flavivirus that frequently causes outbreaks of hemorrhagic fever in Africa and South America and is considered a reemerging public health threat. Accurate diagnosis of yellow fever (YF) disease is critical as one confirmed case constitutes an outbreak and may trigger a mass vaccination campaign. Highly sensitive and specific molecular diagnostics have been developed; however, these assays require maintenance of cold-chain during transport of specimens to prevent the degradation of viral RNA prior to testing. Such cold-chain requirements are difficult to meet in some regions. In this study, we investigated Whatman FTA cards as an alternative stabilization method of YFV RNA for use in molecular diagnosis. Using contrived specimens, linear regression analysis showed that RNA detection from a single 6mm FTA card punch was significantly less sensitive than traditional RNA extraction; however, pooling RNA extracted from two FTA punches significantly lowered the limit of detection to be equal to that of the traditional RNA extraction gold standard. In experiments addressing the ability of FTA card methodology to stabilize YFV RNA at variable temperature, RNA could be detected for more than two weeks following storage at 25°C. Even more promising, YFV RNA was detectable on cards held at 37°C from two days to over two weeks depending on viral input. FTA cards were also shown to stabilize YFV RNA at high humidity if cards were desiccated prior to inoculation. These results support that FTA cards could be cost effective and easy to use in molecular diagnosis of YF, preserving viral RNA to allow for positive diagnoses in situations where maintaining cold-chain is not feasible. |
Laboratory Validation of a Real-Time RT-PCR Assay for the Detection of Jamestown Canyon Virus.
Hughes HR , Kenney JL , Russell BJ , Lambert AJ . Pathogens 2022 11 (5) ![]() ![]() The neuroinvasive disease caused by Jamestown Canyon virus (JCV) infection is rare. However, increasing incidence and widespread occurrence of the infection make JCV a growing public health concern. Presently, clinical diagnosis is achieved through serological testing, and mosquito pool surveillance requires virus isolation and identification. A rapid molecular detection test, such as real-time RT-PCR, for diagnosis and surveillance of JCV has not been widely utilized. To enhance testing and surveillance, here, we describe the development and validation of a real-time RT-PCR test for the detection of JCV RNA. Three primer and probe sets were evaluated for analytical sensitivity and specificity. One probe set, JCV132FAM, was found to be the most sensitive test detecting 7.2 genomic equivalents/µL. While less sensitive, a second probe set JCV231cFAM was the most specific test with limited detection of Keystone virus at high RNA loads. Taken together, these data indicate both probe sets can be utilized for a primary sensitive screening assay and a secondary specific confirmatory assay. While both primer and probe sets detected high viral loads of Keystone virus, these assays did not detect any virus in the California encephalitis virus clade, including negative detection of the medically important La Crosse virus (LACV) and snowshoe hare virus (SSHV). The real-time RT-PCR assay described herein could be utilized in diagnosis and surveillance in regions with co-circulation of JCV and LACV or SSHV to inform public health action. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 17, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure