Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-30 (of 38 Records) |
Query Trace: Hubbs A[original query] |
---|
Potent lung tumor promotion by inhaled MWCNT
Porter DW , Orandle MS , Hubbs A , Staska LM , Lowry D , Kashon M , Wolfarth MG , McKinney W , Sargent LM . Nanotoxicology 2024 1-18 In the lung, carcinogenesis is a multi-stage process that includes initiation by a genotoxic agent, promotion that expands the population of cells with damaged DNA to form a tumor, and progression from benign to malignant neoplasms. We have previously shown that Mitsui-7, a long and rigid multi-walled carbon nanotube (MWCNT), promotes pulmonary carcinogenesis in a mouse model. To investigate the potential exposure threshold and dose-response for tumor promotion by this MWCNT, 3-methylcholanthrene (MC) initiated (10 μg/g, i.p., once) or vehicle (corn oil) treated B6C3F1 mice were exposed by inhalation to filtered air or MWCNT (5 mg/m(3)) for 5 h/day for 0, 2, 5, or 10 days and were followed for 17 months post-exposure for evidence of lung tumors. Pulmonary neoplasia incidence in MC-initiated mice significantly increased with each MWCNT exposure duration. Exposure to either MC or MWCNT alone did not affect pulmonary neoplasia incidence compared with vehicle controls. Lung tumor multiplicity in MC-initiated mice also significantly increased with each MWCNT exposure duration. Thus, a significantly higher lung tumor multiplicity was observed after a 10-day MWCNT exposure than following a 2-day exposure. Both bronchioloalveolar adenoma and bronchioloalveolar adenocarcinoma multiplicity in MC-initiated mice were significantly increased following 5- and 10-day MWCNT exposure, while a 2-day MWCNT exposure in MC-initiated mice significantly increased the multiplicity of adenomas but not adenocarcinomas. In this study, even the lowest MWCNT exposure promoted lung tumors in MC-initiated mice. Our findings indicate that exposure to this MWCNT strongly promotes pulmonary carcinogenesis. |
Historical shift in pathological type of progressive massive fibrosis among coal miners in the USA
Go LHT , Rose CS , Zell-Baran LM , Almberg KS , Iwaniuk C , Clingerman S , Richardson DL , Abraham JL , Cool CD , Franko AD , Green FHY , Hubbs AF , Murray J , Orandle MS , Sanyal S , Vorajee NI , Sarver EA , Petsonk EL , Cohen RA . Occup Environ Med 2023 80 (8) 425-430 BACKGROUND: Pneumoconiosis among coal miners in the USA has been resurgent over the past two decades, despite modern dust controls and regulatory standards. Previously published studies have suggested that respirable crystalline silica (RCS) is a contributor to this disease resurgence. However, evidence has been primarily indirect, in the form of radiographic features. METHODS: We obtained lung tissue specimens and data from the National Coal Workers' Autopsy Study. We evaluated specimens for the presence of progressive massive fibrosis (PMF) and used histopathological classifications to type these specimens into coal-type, mixed-type and silica-type PMF. Rates of each were compared by birth cohort. Logistic regression was used to assess demographic and mining characteristics associated with silica-type PMF. RESULTS: Of 322 cases found to have PMF, study pathologists characterised 138 (43%) as coal-type, 129 (40%) as mixed-type and 55 (17%) as silica-type PMF. Among earlier birth cohorts, coal-type and mixed-type PMF were more common than silica-type PMF, but their rates declined in later birth cohorts. In contrast, the rate of silica-type PMF did not decline in cases from more recent birth cohorts. More recent year of birth was significantly associated with silica-type PMF. CONCLUSIONS: Our findings demonstrate a shift in PMF types among US coal miners, from a predominance of coal- and mixed-type PMF to a more commonly encountered silica-type PMF. These results are further evidence of the prominent role of RCS in the pathogenesis of pneumoconiosis among contemporary US coal miners. |
Biological effects of inhaled crude oil vapor. III. Pulmonary inflammation, cytotoxicity, and gene expression profile
Sager TM , Joseph P , Umbright CM , Hubbs AF , Barger M , Kashon ML , Fedan JS , Roberts JR . Inhal Toxicol 2023 35 1-13 ![]() OBJECTIVE: Workers may be exposed to vapors emitted from crude oil in upstream operations in the oil and gas industry. Although the toxicity of crude oil constituents has been studied, there are very few in vivo investigations designed to mimic crude oil vapor (COV) exposures that occur in these operations. The goal of the current investigation was to examine lung injury, inflammation, oxidant generation, and effects on the lung global gene expression profile following a whole-body acute or sub-chronic inhalation exposure to COV. MATERIALS AND METHODS: To conduct this investigation, rats were subjected to either a whole-body acute (6 hr) or a sub-chronic (28 d) inhalation exposure (6 hr/d × 4 d/wk × 4 wk) to COV (300 ppm; Macondo well surrogate oil). Control rats were exposed to filtered air. One and 28 d after acute exposure, and 1, 28, and 90 d following sub-chronic exposure, bronchoalveolar lavage was performed on the left lung to collect cells and fluid for analyses, the apical right lobe was preserved for histopathology, and the right cardiac and diaphragmatic lobes were processed for gene expression analyses. RESULTS: No exposure-related changes were identified in histopathology, cytotoxicity, or lavage cell profiles. Changes in lavage fluid cytokines indicative of inflammation, immune function, and endothelial function after sub-chronic exposure were limited and varied over time. Minimal gene expression changes were detected only at the 28 d post-exposure time interval in both the exposure groups. CONCLUSION: Taken together, the results from this exposure paradigm, including concentration, duration, and exposure chamber parameters, did not indicate significant and toxicologically relevant changes in markers of injury, oxidant generation, inflammation, and gene expression profile in the lung. |
Mining tenure and job duties differ among contemporary and historic underground coal miners with progressive massive fibrosis
Zell-Baran L , Go LHT , Sarver E , Almberg KS , Iwaniuk C , Green FHY , Abraham JL , Cool C , Franko A , Hubbs AF , Murray J , Orandle MS , Sanyal S , Vorajee N , Cohen RA , Rose CS . J Occup Environ Med 2022 65 (4) 315-320 OBJECTIVE: To characterize differences in mining jobs and tenure between contemporary (born 1930+, working primarily with modern mining technologies) and historic coal miners with progressive massive fibrosis (PMF). METHODS: We classified jobs as designated occupations (DOs) and non-DOs based on regulatory sampling requirements. Demographic, occupational characteristics, and histopathological PMF type were compared between groups. RESULTS: Contemporary miners (n = 33) had significantly shorter mean total (30.4 years vs. 37.1 years, p = 0.0006) and underground (28.8 years vs. 35.8 years, p = 0.001) mining tenure compared to historic miners (n = 289). Silica-type PMF was significantly more common among miners in non-DOs (30.1% vs. 15.8%, p = 0.03) and contemporary miners (58.1% vs. 15.2%, p < 0.0001). CONCLUSIONS: Primary jobs changed over time with the introduction of modern mining technologies and likely changed exposures for workers. Elevated crystalline silica exposures are likely in non-DOs and require attention. |
High-fat western diet consumption exacerbates silica-induced pulmonary inflammation and fibrosis
Thompson JA , Johnston RA , Price RE , Hubbs AF , Kashon ML , McKinney W , Fedan JS . Toxicol Rep 2022 9 1045-1053 Consumption of a high-fat Western diet (HFWD) contributes to obesity, disrupted adipose endocrine function, and development of metabolic dysfunction (MetDys). Impaired lung function, pulmonary hypertension, and asthma are all associated with MetDys. Over 35% of adults in the U.S. have MetDys, yet interactions between MetDys and hazardous occupational inhalation exposures are largely unknown. Occupational silica-inhalation leads to chronic lung inflammation, progressive fibrosis, and significant respiratory morbidity and mortality. In this study, we aim to determine the potential of HFWD-consumption to alter silica-induced inflammatory responses in the lung. Six-wk old male F344 rats fed a high fat Western diet (HFWD; 45 kcal % fat, sucrose 22.2% by weight) to induce MetDys, or standard rat chow (STD, controls) for 16 wk were subsequently exposed to silica (6 h/d, 5 d/wk, 39 d; Min-U-Sil 5®, 15 mg/m(3)) or filtered air; animals remained on their assigned diet for the study duration. Indices of lung inflammation and histopathologic assessment of lung tissue were quantified at 0, 4, and 8 wk after cessation of exposure. Combined HFWD+silica exposure increased bronchoalveolar lavage (BAL) total cells, leukocytes, and BAL lactate dehydrogenase compared to STD+silica exposure controls at all timepoints. HFWD+silica exposure increased BAL proinflammatory cytokines at 4 and 8 wk compared to STD+silica exposure. At 8 wk, histopathological analysis confirmed that alveolitis, epithelial cell hypertrophy and hyperplasia, lipoproteinosis, fibrosis, bronchoalveolar lymphoid hyperplasia and granulomas were exacerbated in the HFWD+silica-exposed group compared to STD+silica-exposed controls. Our results suggest an increased susceptibility to silica-induced lung disease caused by HFWD consumption. |
Developing a solution for nasal and olfactory transport of nanomaterials
O'Connell RC , Dodd TM , Clingerman SM , Fluharty KL , Coyle J , Stueckle TA , Porter DW , Bowers L , Stefaniak AB , Knepp AK , Derk R , Wolfarth M , Mercer RR , Boots TE , Sriram K , Hubbs AF . Toxicol Pathol 2022 50 (3) 1926233221089209 With advances in nanotechnology, engineered nanomaterial applications are a rapidly growing sector of the economy. Some nanomaterials can reach the brain through nose-to-brain transport. This transport creates concern for potential neurotoxicity of insoluble nanomaterials and a need for toxicity screening tests that detect nose-to-brain transport. Such tests can involve intranasal instillation of aqueous suspensions of nanomaterials in dispersion media that limit particle agglomeration. Unfortunately, protein and some elements in existing dispersion media are suboptimal for potential nose-to-brain transport of nanomaterials because olfactory transport has size- and ion-composition requirements. Therefore, we designed a protein-free dispersion media containing phospholipids and amino acids in an isotonic balanced electrolyte solution, a solution for nasal and olfactory transport (SNOT). SNOT disperses hexagonal boron nitride nanomaterials with a peak particle diameter below 100 nm. In addition, multiwalled carbon nanotubes (MWCNTs) in an established dispersion medium, when diluted with SNOT, maintain dispersion with reduced albumin concentration. Using stereomicroscopy and microscopic examination of plastic sections, dextran dyes dispersed in SNOT are demonstrated in the neuroepithelium of the nose and olfactory bulb of B6;129P2-Omp(tm3Mom)/MomJ mice after intranasal instillation in SNOT. These findings support the potential for SNOT to disperse nanomaterials in a manner permitting nose-to-brain transport for neurotoxicity studies. |
Pathology and mineralogy demonstrate respirable crystalline silica is a major cause of severe pneumoconiosis in US coal miners
Cohen RA , Rose CS , Go LHT , Zell-Baran LM , Almberg KS , Sarver EA , Lowers HA , Iwaniuk C , Clingerman SM , Richardson DL , Abraham JL , Cool CD , Franko AD , Hubbs AF , Murray J , Orandle MS , Sanyal S , Vorajee NI , Petsonk EL , Zulfikar R , Green FHY . Ann Am Thorac Soc 2022 19 (9) 1469-1478 RATIONALE: The reasons for resurgent coal workers' pneumoconiosis and its most severe forms, rapidly progressive pneumoconiosis and progressive massive fibrosis (PMF), in the United States (US) are not yet fully understood. OBJECTIVE: To compare the pathologic and mineralogic features of contemporary coal miners suffering severe pneumoconiosis to their historical counterparts. METHODS: Lung pathology specimens from 85 coal miners with PMF were included for evaluation and analysis. We compared the proportion of cases with pathologic and mineralogic findings in miners born between 1910 and 1930 (historical) to those born in or after 1930 (contemporary). RESULTS: We found a significantly higher proportion of silica-type PMF (57% vs. 18%, p<0.001) among contemporary miners compared to their historical counterparts. Mineral dust alveolar proteinosis (MDAP) was also more common in contemporary miners compared to their historical counterparts (70% vs. 37%, p<0.01). In situ mineralogic analysis showed the percentage (26.1% vs. 17.8%, p<0.01) and concentration (47.3 x 108 vs. 25.8 X 108 particles/cm3, p=0.036) of silica particles was significantly greater in specimens from contemporary miners compared to their historical counterparts. The concentration of silica particles was significantly greater when silica-type PMF, MDAP, silicotic nodules, or immature silicotic nodules were present (p<0.05). CONCLUSIONS: Exposure to respirable crystalline silica appears causal in the unexpected surge in severe disease in contemporary miners. Our findings underscore the importance of controlling workplace silica exposure in order to prevent the disabling and untreatable adverse health effects afflicting US coal miners. Primary Source of Funding: Alpha Foundation for the Improvement of Mine Safety and Health, Inc. |
Histopathology of the broad class of carbon nanotubes and nanofibers used or produced in U.S. facilities in a murine model
Fraser K , Hubbs A , Yanamala N , Mercer RR , Stueckle TA , Jensen J , Eye T , Battelli L , Clingerman S , Fluharty K , Dodd T , Casuccio G , Bunker K , Lersch TL , Kashon ML , Orandle M , Dahm M , Schubauer-Berigan MK , Kodali V , Erdely A . Part Fibre Toxicol 2021 18 (1) 47 BACKGROUND: Multi-walled carbon nanotubes and nanofibers (CNT/F) have been previously investigated for their potential toxicities; however, comparative studies of the broad material class are lacking, especially those with a larger diameter. Additionally, computational modeling correlating physicochemical characteristics and toxicity outcomes have been infrequently employed, and it is unclear if all CNT/F confer similar toxicity, including histopathology changes such as pulmonary fibrosis. Male C57BL/6 mice were exposed to 40 µg of one of nine CNT/F (MW #1-7 and CNF #1-2) commonly found in exposure assessment studies of U.S. facilities with diameters ranging from 6 to 150 nm. Human fibroblasts (0-20 µg/ml) were used to assess the predictive value of in vitro to in vivo modeling systems. RESULTS: All materials induced histopathology changes, although the types and magnitude of the changes varied. In general, the larger diameter MWs (MW #5-7, including Mitsui-7) and CNF #1 induced greater histopathology changes compared to MW #1 and #3 while MW #4 and CNF #2 were intermediate in effect. Differences in individual alveolar or bronchiolar outcomes and severity correlated with physical dimensions and how the materials agglomerated. Human fibroblast monocultures were found to be insufficient to fully replicate in vivo fibrosis outcomes suggesting in vitro predictive potential depends upon more advanced cell culture in vitro models. Pleural penetrations were observed more consistently in CNT/F with larger lengths and diameters. CONCLUSION: Physicochemical characteristics, notably nominal CNT/F dimension and agglomerate size, predicted histopathologic changes and enabled grouping of materials by their toxicity profiles. Particles of greater nominal tube length were generally associated with increased severity of histopathology outcomes. Larger particle lengths and agglomerates were associated with more severe bronchi/bronchiolar outcomes. Spherical agglomerated particles of smaller nominal tube dimension were linked to granulomatous inflammation while a mixture of smaller and larger dimensional CNT/F resulted in more severe alveolar injury. |
Biological effects of inhaled hydraulic fracturing sand dust. IX. Summary and significance
Anderson SE , Barger M , Batchelor TP , Bowers LN , Coyle J , Cumpston A , Cumpston JL , Cumpston JB , Dey RD , Dozier AK , Fedan JS , Friend S , Hubbs AF , Jackson M , Jefferson A , Joseph P , Kan H , Kashon ML , Knepp AK , Kodali V , Krajnak K , Leonard SS , Lin G , Long C , Lukomska E , Marrocco A , Marshall N , Mc Kinney W , Morris AM , Olgun NS , Park JH , Reynolds JS , Roberts JR , Russ KA , Sager TM , Shane H , Snawder JE , Sriram K , Thompson JA , Umbright CM , Waugh S , Zheng W . Toxicol Appl Pharmacol 2020 409 115330 An investigation into the potential toxicological effects of fracking sand dust (FSD), collected from unconventional gas drilling sites, has been undertaken, along with characterization of their chemical and biophysical properties. Using intratracheal instillation of nine FSDs in rats and a whole body 4-d inhalation model for one of the FSDs, i.e., FSD 8, and related in vivo and in vitro experiments, the effects of nine FSDs on the respiratory, cardiovascular and immune systems, brain and blood were reported in the preceding eight tandem papers. Here, a summary is given of the key observations made in the organ systems reported in the individual studies. The major finding that inhaled FSD 8 elicits responses in extra-pulmonary organ systems is unexpected, as is the observation that the pulmonary effects of inhaled FSD 8 are attenuated relative to forms of crystalline silica more frequently used in animal studies, i.e., MIN-U-SIL®. An attempt is made to understand the basis for the extra-pulmonary toxicity and comparatively attenuated pulmonary toxicity of FSD 8. |
Biological effects of inhaled hydraulic fracturing sand dust. II. Particle characterization and pulmonary effects 30 d following intratracheal instillation
Fedan JS , Hubbs AF , Barger M , Schwegler-Berry D , Friend SA , Leonard SS , Thompson JA , Jackson MC , Snawder JE , Dozier AK , Coyle J , Kashon ML , Park JH , McKinney W , Roberts JR . Toxicol Appl Pharmacol 2020 409 115282 Hydraulic fracturing ("fracking") is used in unconventional gas drilling to allow for the free flow of natural gas from rock. Sand in fracking fluid is pumped into the well bore under high pressure to enter and stabilize fissures in the rock. In the process of manipulating the sand on site, respirable dust (fracking sand dust, FSD) is generated. Inhalation of FSD is a potential hazard to workers inasmuch as respirable crystalline silica causes silicosis, and levels of FSD at drilling work sites have exceeded occupational exposure limits set by OSHA. In the absence of any information about its potential toxicity, a comprehensive rat animal model was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems (Fedan, J.S., Toxicol Appl Pharmacol. 00, 000-000, 2020). The present report, part of the larger investigation, describes: 1) a comparison of the physico-chemical properties of nine FSDs, collected at drilling sites, and MIN-U-SIL® 5, a reference silica dust, and 2) a comparison of the pulmonary inflammatory responses to intratracheal instillation of the nine FSDs and MIN-U-SIL® 5. Our findings indicate that, in many respects, the physico-chemical characteristics, and the biological effects of the FSDs and MIN-U-SIL® 5 after intratracheal instillation, have distinct differences. |
Flavorings-related lung disease: A brief review and new mechanistic data
Hubbs AF , Kreiss K , Cummings KJ , Fluharty KL , O'Connell R , Cole A , Dodd TM , Clingerman SM , Flesher JR , Lee R , Pagel S , Battelli LA , Cumpston A , Jackson M , Kashon M , Orandle MS , Fedan JS , Sriram K . Toxicol Pathol 2019 47 (8) 192623319879906 Flavorings-related lung disease is a potentially disabling and sometimes fatal lung disease of workers making or using flavorings. First identified almost 20 years ago in microwave popcorn workers exposed to butter-flavoring vapors, flavorings-related lung disease remains a concern today. In some cases, workers develop bronchiolitis obliterans, a severe form of fixed airways disease. Affected workers have been reported in microwave popcorn, flavorings, and coffee production workplaces. Volatile alpha-dicarbonyl compounds, particularly diacetyl (2,3-butanedione) and 2,3-pentanedione, are implicated in the etiology. Published studies on diacetyl and 2,3-pentanedione document their ability to cause airway epithelial necrosis, damage biological molecules, and perturb protein homeostasis. With chronic exposure in rats, they produce airway fibrosis resembling bronchiolitis obliterans. To add to this knowledge, we recently evaluated airway toxicity of the 3-carbon alpha-dicarbonyl compound, methylglyoxal. Methylglyoxal inhalation causes epithelial necrosis at even lower concentrations than diacetyl. In addition, we investigated airway toxicity of mixtures of diacetyl, acetoin, and acetic acid, common volatiles in butter flavoring. At ratios comparable to workplace scenarios, the mixtures or diacetyl alone, but not acetic acid or acetoin, cause airway epithelial necrosis. These new findings add to existing data to implicate alpha-dicarbonyl compounds in airway injury and flavorings-related lung disease. |
Role of p53 in the chronic pulmonary immune response to tangled or rod-like multi-walled carbon nanotubes
Duke KS , Thompson EA , Ihrie MD , Taylor-Just AJ , Ash EA , Shipkowski KA , Hall JR , Tokarz DA , Cesta MF , Hubbs AF , Porter DW , Sargent LM , Bonner JC . Nanotoxicology 2018 12 (9) 1-17 The fiber-like shape of multi-walled carbon nanotubes (MWCNTs) is reminiscent of asbestos, suggesting they pose similar health hazards when inhaled, including pulmonary fibrosis and mesothelioma. Mice deficient in the tumor suppressor p53 are susceptible to carcinogenesis. However, the chronic pathologic effect of MWCNTs delivered to the lungs of p53 heterozygous (p53(+/-)) mice has not been investigated. We hypothesized that p53(+/-) mice would be susceptible to lung tumor development after exposure to either tangled (t-) or rod-like (r-) MWCNTs. Wild-type (p53(+/+)) or p53(+/-) mice were exposed to MWCNTs (1 mg/kg) via oropharyngeal aspiration weekly over four consecutive weeks and evaluated for cellular and pathologic outcomes 11-months post-initial exposure. No lung or pleural tumors were observed in p53(+/+) or p53(+/-) mice exposed to either t- or rMWCNTs. In comparison to tMWCNTs, the rMWCNTs induced the formation of larger granulomas, a greater number of lymphoid aggregates and greater epithelial cell hyperplasia in terminal bronchioles in both p53(+/-) and p53(+/+) mice. A constitutively larger area of CD45R(+)/CD3(+) lymphoid tissue was observed in p53(+/-) mice compared to p53(+/+) mice. Importantly, p53(+/-) mice had larger granulomas induced by rMWCNTs as compared to p53(+/+) mice. These findings indicate that a combination of p53 deficiency and physicochemical characteristics including nanotube geometry are factors in susceptibility to MWCNT-induced lymphoid infiltration and granuloma formation. |
The fate of inhaled nanoparticles: Detection and measurement by enhanced dark-field microscopy
Mercer RR , Scabilloni JF , Wang L , Battelli LA , Antonini JM , Roberts JR , Qian Y , Sisler JD , Castranova V , Porter DW , Hubbs AF . Toxicol Pathol 2017 46 (1) 192623317732321 Assessing the potential health risks for newly developed nanoparticles poses a significant challenge. Nanometer-sized particles are not generally detectable with the light microscope. Electron microscopy typically requires high-level doses, above the physiologic range, for particle examination in tissues. Enhanced dark-field microscopy (EDM) is an adaption of the light microscope that images scattered light. Nanoparticles scatter light with high efficiency while normal tissues do not. EDM has the potential to identify the critical target sites for nanoparticle deposition and injury in the lungs and other organs. This study describes the methods for EDM imaging of nanoparticles and applications. Examples of EDM application include measurement of deposition and clearance patterns. Imaging of a wide variety of nanoparticles demonstrated frequent situations where nanoparticles detected by EDM were not visible by light microscopy. EDM examination of colloidal gold nanospheres (10-100 nm diameter) demonstrated a detection size limit of approximately 15 nm in tissue sections. EDM determined nanoparticle volume density was directly proportional to total lung burden of exposed animals. The results confirm that EDM can determine nanoparticle distribution, clearance, transport to lymph nodes, and accumulation in extrapulmonary organs. Thus, EDM substantially improves the qualitative and quantitative microscopic evaluation of inhaled nanoparticles. |
Non-malignant respiratory disease among workers in industries using styrene-A review of the evidence
Nett RJ , Cox-Ganser JM , Hubbs AF , Ruder AM , Cummings KJ , Huang YT , Kreiss K . Am J Ind Med 2017 60 (2) 163-180 BACKGROUND: Asthma and obliterative bronchiolitis (OB) cases have occurred among styrene-exposed workers. We aimed to investigate styrene as a risk factor for non-malignant respiratory disease (NMRD). METHODS: From a literature review, we identified case reports and assessed cross-sectional and mortality studies for strength of evidence of positive association (i.e., strong, intermediate, suggestive, none) between styrene exposure and NMRD-related morbidity and mortality. RESULTS: We analyzed 55 articles and two unpublished case reports. Ten OB cases and eight asthma cases were identified. Six (75%) asthma cases had abnormal styrene inhalation challenges. Thirteen (87%) of 15 cross-sectional studies and 12 (50%) of 24 mortality studies provided at least suggestive evidence that styrene was associated with NMRD-related morbidity or mortality. Six (66%) of nine mortality studies assessing chronic obstructive pulmonary disease-related mortality indicated excess mortality. CONCLUSIONS: Available evidence suggests styrene exposure is a potential risk factor for NMRD. Additional studies of styrene-exposed workers are warranted. |
Accumulation of ubiquitin and sequestosome-1 implicate protein damage in diacetyl-induced cytotoxicity
Hubbs AF , Fluharty KL , Edwards RJ , Barnabei JL , Grantham JT , Palmer SM , Kelly F , Sargent LM , Reynolds SH , Mercer RR , Goravanahally MP , Kashon ML , Honaker JC , Jackson MC , Cumpston AM , Goldsmith WT , McKinney W , Fedan JS , Battelli LA , Munro T , Bucklew-Moyers W , McKinstry K , Schwegler-Berry D , Friend S , Knepp AK , Smith SL , Sriram K . Am J Pathol 2016 186 (11) 2887-2908 Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive alpha-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this alpha-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the alpha-dicarbonyl group in the protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal markers lysosomal-associated membrane protein 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease. |
mRNAs and miRNAs in whole blood associated with lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma after multi-walled carbon nanotube inhalation exposure in mice
Snyder-Talkington BN , Dong C , Sargent LM , Porter DW , Staska LM , Hubbs AF , Raese R , McKinney W , Chen BT , Battelli L , Lowry DT , Reynolds SH , Castranova V , Qian Y , Guo NL . J Appl Toxicol 2015 36 (1) 161-74 Inhalation exposure to multi-walled carbon nanotubes (MWCNT) in mice results in inflammation, fibrosis and the promotion of lung adenocarcinoma; however, the molecular basis behind these pathologies is unknown. This study determined global mRNA and miRNA profiles in whole blood from mice exposed by inhalation to MWCNT that correlated with the presence of lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma. Six-week-old, male, B6C3F1 mice received a single intraperitoneal injection of either the DNA-damaging agent methylcholanthrene (MCA, 10 microg g-1 body weight) or vehicle (corn oil). One week after injections, mice were exposed by inhalation to MWCNT (5 mg m-3 , 5 hours per day, 5 days per week) or filtered air (control) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for the development of pathological changes in the lung, and whole blood was collected and analyzed using microarray analysis for global mRNA and miRNA expression. Numerous mRNAs and miRNAs in the blood were significantly up- or down-regulated in animals developing pathological changes in the lung after MCA/corn oil administration followed by MWCNT/air inhalation, including fcrl5 and miR-122-5p in the presence of hyperplasia, mthfd2 and miR-206-3p in the presence of fibrosis, fam178a and miR-130a-3p in the presence of bronchiolo-alveolar adenoma, and il7r and miR-210-3p in the presence of bronchiolo-alveolar adenocarcinoma, among others. The changes in miRNA and mRNA expression, and their respective regulatory networks, identified in this study may potentially serve as blood biomarkers for MWCNT-induced lung pathological changes. |
Comment on Farsalinos et al., "Evaluation of electronic cigarette liquids and vapour for the presence of selected inhalation toxins"
Hubbs AF , Cummings KJ , McKernan LT , Dankovic DA , Park RM , Kreiss K . Nicotine Tob Res 2015 17 (10) 1288-9 We read with great interest the recent publication, Evaluation of electronic cigarette liquids and aerosol for the presence of selected inhalation toxins.1 We are particularly grateful to the authors for recognizing the high rate of chronic obstructive pulmonary disease and of bronchiolitis, specifically, in smokers and for measuring the concentrations of diacetyl (DA) and acetyl propionyl (AP, also known as 2,3-pentanedione) in electronic cigarette (e-cigarette) liquids and aerosols. However, we would like to clarify two issues: | The National Institute for Occupational Safety and Health (NIOSH) draft document, Criteria for a Recommended Standard: Occupational Exposure to Diacetyl and 2,3-Pentanedione, proposes recommended exposure limits (RELs) to reduce the risk of respiratory impairment (decreased lung function) and the severe irreversible lung disease, constrictive bronchiolitis obliterans, associated with occupational exposure to these chemicals. As noted by Farsalinos and co-workers in their limitations section, it is not intended to establish “safe” exposure concentrations for consumers or the general public.1 | The exposure comparisons between e-cigarette users and traditional cigarette smokers and workers use values that are not widely accepted. |
Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses
Siegrist KJ , Reynolds SH , Kashon ML , Lowry DT , Dong C , Hubbs AF , Young SH , Salisbury JL , Porter DW , Benkovic SA , McCawley M , Keane MJ , Mastovich JT , Bunker KL , Cena LG , Sparrow MC , Sturgeon JL , Dinu CZ , Sargent LM . Part Fibre Toxicol 2014 11 6 ![]() Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 mug/cm(2) MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 mum optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels. |
Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes
Sargent LM , Porter DW , Staska LM , Hubbs AF , Lowry DT , Battelli L , Siegrist KJ , Kashon ML , Mercer RR , Bauer AK , Chen BT , Salisbury JL , Frazer D , McKinney W , Andrew M , Tsuruoka S , Endo M , Fluharty KL , Castranova V , Reynolds SH . Part Fibre Toxicol 2014 11 (1) 3 BACKGROUND: Engineered carbon nanotubes are currently used in many consumer and industrial products such as paints, sunscreens, cosmetics, toiletries, electronic processes and industrial lubricants. Carbon nanotubes are among the more widely used nanoparticles and come in two major commercial forms, single-walled carbon nanotubes (SWCNT) and the more rigid, multi-walled carbon nanotubes (MWCNT). The low density and small size of these particles makes respiratory exposures likely. Many of the potential health hazards have not been investigated, including their potential for carcinogenicity. We, therefore, utilized a two stage initiation/promotion protocol to determine whether inhaled MWCNT act as a complete carcinogen and/or promote the growth of cells with existing DNA damage. Six week old, male, B6C3F1 mice received a single intraperitoneal (ip) injection of either the initiator methylcholanthrene(MCA, 10 mug/g BW, i.p.), or vehicle (corn oil). One week after i.p. injections, mice were exposed by inhalation to MWCNT (5 mg/m3, 5 hours/day, 5 days/week) or filtered air (controls) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for lung tumor formation. RESULTS: Twenty-three percent of the filtered air controls, 26.5% of the MWCNT-exposed, and 51.9% of the MCA-exposed mice, had lung bronchiolo-alveolar adenomas and lung adenocarcinomas. The average number of tumors per mouse was 0.25, 0.81 and 0.38 respectively. By contrast, 90.5% of the mice which received MCA followed by MWCNT had bronchiolo-alveolar adenomas and adenocarcinomas with an average of 2.9 tumors per mouse 17months after exposure. Indeed, 62% of the mice exposed to MCA followed by MWCNT had bronchiolo-alveolar adenocarcinomas compared to 13% of the mice that received filtered air, 22% of the MCA-exposed, or 14% of the MWCNT-exposed. Mice with early morbidity resulting in euthanasia had the highest rate of metastatic disease. Three mice exposed to both MCA and MWCNT that were euthanized early had lung adenocarcinoma with evidence of metastasis (5.5%). Five mice (9%) exposed to MCA and MWCNT and 1 (1.6%) exposed to MCA developed serosal tumors morphologically consistent with sarcomatous mesotheliomas, whereas mice administered MWCNT or air alone did not develop similar neoplasms. CONCLUSIONS: These data demonstrate that some MWCNT exposures promote the growth and neoplastic progression of initiated lung cells in B6C3F1 mice. In this study, the mouse MWCNT lung burden of 31.2 mug/mouse approximates feasible human occupational exposures. Therefore, the results of this study indicate that caution should be used to limit human exposures to MWCNT. |
Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model
Sager TM , Wolfarth MW , Andrew M , Hubbs A , Friend S , Chen TH , Porter DW , Wu N , Yang F , Hamilton RF , Holian A . Nanotoxicology 2014 8 (3) 317-27 The current study tests the hypothesis that multi-walled carbon nanotubes (MWCNT) with different surface chemistries exhibit different bioactivity profiles in vivo. In addition, the study examined the potential contribution of the NLRP3 inflammasome in MWCNT-induced lung pathology. Unmodified (BMWCNT) and MWCNT that were surface functionalised with -COOH (FMWCNT), were instilled into C57BL/6 mice. The mice were then examined for biomarkers of inflammation and injury, as well as examined histologically for development of pulmonary disease as a function of dose and time. Biomarkers for pulmonary inflammation included cytokines, mediators and the presence of inflammatory cells (IL-1beta, IL-18, IL-33, cathepsin B and neutrophils) and markers of injury (albumin and lactate dehydrogenase). The results show that surface modification by the addition of the -COOH group to the MWCNT, significantly reduced the bioactivity and pathogenicity. The results of this study also suggest that in vivo pathogenicity of the BMWCNT and FMWCNT correlates with activation of the NLRP3 inflammasome in the lung. |
Popcorn flavoring effects on reactivity of rat airways in vivo and in vitro
Zaccone EJ , Thompson JA , Ponnoth DS , Cumpston AM , Goldsmith WT , Jackson MC , Kashon ML , Frazer DG , Hubbs AF , Shimko MJ , Fedan JS . J Toxicol Environ Health A 2013 76 (11) 669-89 Popcorn workers' lung is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100-360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism. |
Extrapulmonary transport of MWCNT following inhalation exposure
Mercer RR , Scabilloni JF , Hubbs AF , Wang L , Battelli LA , McKinney W , Castranova V , Porter DW . Part Fibre Toxicol 2013 10 (1) 38 BACKGROUND: Inhalation exposure studies of mice were conducted to determine if multi-walled carbon nanotubes (MWCNT) distribute to the tracheobronchial lymphatics, parietal pleura, respiratory musculature and/or extrapulmonary organs. Male C57BL/6 J mice were exposed in a whole-body inhalation system to a 5 mg/m3 MWCNT aerosol for 5 hours/day for 12 days (4 times/week for 3 weeks, lung burden 28.1 ug/lung). At 1 day and 336 days after the 12 day exposure period, mice were anesthetized and lungs, lymph nodes and extrapulmonary tissues were preserved by whole body vascular perfusion of paraformaldehyde while the lungs were inflated with air. Separate, clean-air control groups were studied at 1 day and 336 days post-exposure. Sirius Red stained sections from lung, tracheobronchial lymph nodes, diaphragm, chest wall, heart, brain, kidney and liver were analyzed. Enhanced darkfield microscopy and morphometric methods were used to detect and count MWCNT in tissue sections. Counts in tissue sections were expressed as number of MWCNT per g of tissue and as a percentage of total lung burden (Mean +/- S.E., N = 8 mice per group). MWCNT burden in tracheobronchial lymph nodes was determined separately based on the volume density in the lymph nodes relative to the volume density in the lungs. Field emission scanning electron microscopy (FESEM) was used to examine MWCNT structure in the various tissues. RESULTS: Tracheobronchial lymph nodes were found to contain 1.08 and 7.34 percent of the lung burden at 1 day and 336 days post-exposure, respectively. Although agglomerates account for approximately 54% of lung burden, only singlet MWCNT were observed in the diaphragm, chest wall, liver, kidney, heart and brain. At one day post exposure, the average length of singlet MWCNT in liver and kidney, was comparable to that of singlet MWCNT in the lungs 8.2 +/- 0.3 versus 7.5 +/- 0.4 um, respectively. On average, there were 15,371 and 109,885 fibers per gram in liver, kidney, heart and brain at 1 day and 336 days post-exposure, respectively. The burden of singlet MWCNT in the lymph nodes, diaphragm, chest wall and extrapulmonary organs at 336 days post-exposure was significantly higher than at 1 day post-exposure. CONCLUSIONS: Inhaled MWCNT, which deposit in the lungs, are transported to the parietal pleura, the respiratory musculature, liver, kidney, heart and brain in a singlet form and accumulate with time following exposure. The tracheobronchial lymph nodes contain high levels of MWCNT following exposure and further accumulate over nearly a year to levels that are a significant fraction of the lung burden 1 day post-exposure. |
Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes
Mercer RR , Scabilloni JF , Hubbs AF , Battelli LA , McKinney W , Friend S , Wolfarth MG , Andrew M , Castranova V , Porter DW . Part Fibre Toxicol 2013 10 (1) 33 BACKGROUND: Prior studies have demonstrated a rapid an progressive acute phase response to bolus aspiration of multi-walled carbon nanotubes (MWCNTs). In this study we sought to test the hypothesis that inhalation exposure to MWCNT produces a fibrotic response and that the response is chronically persistent. To address the hypothesis that inhaled MWCNTs cause persistent morphologic changes, male C57BL/6 J mice were exposed in a whole-body inhalation system to a MWCNT aerosol and the fibrotic response in the alveolar region examined at up to 336 days after termination of exposure. METHODS: Inhalation exposure was to a 5 mcg/m3 MWCNT aerosol for 5 hours/day for 12 days (4 times/week for 3 weeks). At the end of inhalation exposures, lungs were either lavaged for analysis of bronchoalveolar lavage (BAL) or preserved by vascular perfusion of fixative while inflated with air at 1, 14, 84, 168 and 336 days post inhalation exposure. Separate, clean-air control groups were also studied. Light microscopy, enhanced darkfield microscopy and field emission electron microscopy (FESEM) of tissue sections were used to analyze the distribution of lung burden following inhalation exposure. Morphometric measurements of Sirius Red staining for fibrillar collagen were used to assess the connective tissue response. Serial section analysis of enhanced darkfield microscope images was used to examine the redistribution of MWCNT fibers within the lungs during the post-exposure period. RESULTS: At day 1 post-exposure 84 +/- 3 and 16 +/- 2 percent of the lung burden (Mean +/- S.E., N = 5) were in the alveolar and airway regions, respectively. Initial distribution within the alveolar region was 56 +/- 5, 7 +/- 4 and 20 +/- 3 percent of lung burden in alveolar macrophages, alveolar airspaces and alveolar tissue, respectively. Clearance reduced the alveolar macrophage burden of MWCNTs by 35 percent between 1 and 168 days post-exposure, while the content of MWCNTs in the alveolar tissue increased by 63 percent. Large MWCNT structures containing greater than 4 fibers were 53.6 percent of the initial lung burden and accounted for the majority of the decline with clearance, while lung burden of singlet MWCNT was essentially unchanged. The mean linear intercept of alveolar airspace, a measure of the expansion of the lungs, was not significantly different between groups. Pulmonary inflammation and damage, measured as the number of polymorphnuclear leukocytes (PMNs) or lactate dehydrogenase activity (LDH) and albumin in BAL, increased rapidly (1 day post) after inhalation of MWCNTs and declined slowly with time post-exposure. The fibrillar collagen in the alveolar region of MWCNT-exposed mice demonstrated a progressive increase in thickness over time (0.17 +/- 0.02, 0.22 +/-0.02, 0.26 +/- 0.03, 0.25 +/- 0.02 and 0.29 +/- 0.01 microns for 1, 14, 84, 168 and 336 days post-exposure) and was significantly different from clean-air controls (0.16 +/- 0.02) at 84 and (0.15 +/- 0.02) at 336 days post-exposure. CONCLUSIONS: Despite the relatively low fraction of the lung burden being delivered to the alveolar tissue, the average thickness of connective tissue in the alveolar region increased by 70% in the 336 days after inhalation exposure. These results demonstrate that inhaled MWCNTs deposit and are retained within the alveolar tissue where they produce a progressive and persistent fibrotic response up to 336 days post-exposure. |
Diacetyl increases sensory innervation and substance P production in rat trachea
Goravanahally MP , Hubbs AF , Fedan JS , Kashon ML , Battelli LA , Mercer RR , Goldsmith WT , Jackson MC , Cumpston A , Frazer DG , Dey RD . Toxicol Pathol 2013 42 (3) 582-90 ![]() Inhalation of diacetyl, a butter flavoring, causes airway responses potentially mediated by sensory nerves. This study examines diacetyl-induced changes in sensory nerves of tracheal epithelium. Rats (n = 6/group) inhaled 0-, 25-, 249-, or 346-ppm diacetyl for 6 hr. Tracheas and vagal ganglia were removed 1-day postexposure and labeled for substance P (SP) or protein gene product 9.5 (PGP9.5). Vagal ganglia neurons projecting to airway epithelium were identified by axonal transport of fluorescent microspheres intratracheally instilled 14 days before diacetyl inhalation. End points were SP and PGP9.5 nerve fiber density (NFD) in tracheal epithelium and SP-positive neurons projecting to the trachea. PGP9.5-immunoreactive NFD decreased in foci with denuded epithelium, suggesting loss of airway sensory innervation. However, in the intact epithelium adjacent to denuded foci, SP-immunoreactive NFD increased from 0.01 +/- 0.002 in controls to 0.05 +/- 0.01 after exposure to 346-ppm diacetyl. In vagal ganglia, SP-positive airway neurons increased from 3.3 +/- 3.0% in controls to 25.5 +/- 6.6% after inhaling 346-ppm diacetyl. Thus, diacetyl inhalation increases SP levels in sensory nerves of airway epithelium. Because SP release in airways promotes inflammation and activation of sensory nerves mediates reflexes, neural changes may contribute to flavorings-related lung disease pathogenesis. |
Nanotechnology: toxicologic pathology
Hubbs AF , Sargent LM , Porter DW , Sager TM , Chen BT , Frazer DG , Castranova V , Sriram K , Nurkiewicz TR , Reynolds SH , Battelli LA , Schwegler-Berry D , McKinney W , Fluharty KL , Mercer RR . Toxicol Pathol 2013 41 (2) 395-409 Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies. |
Exposure to triclosan augments the allergic response to ovalbumin in a mouse model of asthma
Anderson SE , Franko J , Kashon ML , Anderson KL , Hubbs AF , Lukomska E , Meade BJ . Toxicol Sci 2012 132 (1) 96-106 During the last decade there has been a remarkable and unexplained increase in the prevalence of asthma. These studies were conducted to investigate the role of dermal exposure to triclosan, an endocrine-disrupting compound, on the hypersensitivity response to ovalbumin (OVA) in a murine model of asthma. Triclosan has had widespread use in the general population as an antibacterial and antifungal agent and is commonly found in consumer products such as soaps, deodorants, toothpastes, shaving creams, mouth washes, and cleaning supplies. For these studies, BALB/c mice were exposed dermally to concentrations of triclosan ranging from 0.75-3% (0.375-1.5 mg/mouse/day) for 28 consecutive days. Concordantly, mice were intraperitoneally injected with OVA (0.9 mcg) and aluminum hydroxide (0.5 mg) on days 1 and 10 and challenged with OVA (125 mcg) by pharyngeal aspiration on days 19 and 27. Compared to the animals exposed to OVA alone, increased spleen weights, OVA-specific IgE, Interleukin (IL)-13 cytokine levels, and lung eosinophils were demonstrated when mice were co-exposed to OVA and triclosan. Statistically significant increases in OVA-specific and non-specific airway hyperreactivity (AHR) were observed for all triclosan co-exposed groups when compared to the vehicle and OVA controls. In these studies exposure to triclosan alone was not demonstrated to be allergenic, however; co-exposure with a known allergen resulted in enhancement of the hypersensitivity response to that allergen, suggesting that triclosan exposure may augment the allergic responses to other environmental allergens. |
Differential mouse pulmonary dose- and time course-responses to titanium dioxide nanospheres and nanobelts
Porter DW , Wu N , Hubbs A , Mercer R , Funk K , Meng F , Li J , Wolfarth M , Battelli L , Friend S , Andrew M , Hamilton R , Sriram K , Yang F , Castranova V , Holian A . Toxicol Sci 2012 131 (1) 179-93 Three anatase titanium dioxide (TiO(2)) nanoparticles were prepared; nanospheres (NS), short nanobelts (NB1) and long nanobelts (NB2). These nanoparticles were used to investigate the effect of nanoparticle shape and length on lung toxicity. Mice were exposed (0-30 microg per mouse) by pharyngeal aspiration and pulmonary toxicity was assessed over a 112 day time course. Whole lung lavage data indicated that NB1- and NB2-exposed mice, but not NS-exposed mice, had significant dose- and time-dependent pulmonary inflammation and damage. Histopathological analyses at 112 days post-exposure determined no interstitial fibrosis in any NS-exposed mice, an increased incidence in 30 microg NB1-exposed mice, and significant interstitial fibrosis in 30 microg NB2-exposed mice. At 112 days post-exposure, lung burden of NS was decreased by 96.4% and NB2 by 80.5% from initial deposition levels. At 112 days post-exposure, enhanced dark field microscopy determined that alveolar macrophages were the dominant deposition site, but a fraction of NB1 and NB2 was observed in the alveolar interstitial spaces. For the 30 microg exposure groups at 112 days post-exposure, confocal microscopy and immunofluorescent staining demonstrated that retained NB2 but not NS were present in the interstitium subjacent to the terminal bronchiole near the normal location of the smallest lymphatic capillaries in the lung. These lymphatic capillaries play a critical role in particle clearance, and the accumulation of NB2, but not NS, suggests possible impaired lymphatic clearance by the high aspect ratio particles. In summary, our data indicate that TiO(2) nanoparticle shape alters pulmonary responses, with severity of responses being ranked as NS<NB1<NB2. |
Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes
Porter DW , Hubbs AF , Chen TB , McKinney W , Mercer RR , Wolfarth MG , Battelli L , Wu N , Sriram K , Leonard S , Andrew ME , Willard P , Sujhi T , Morinobu E , Tsuruoka S , Munekane F , Frazier DG , Castranova V . Nanotoxicology 2012 7 (7) 1179-94 This study investigated the in vivopulmonary toxicity of inhaled multi-walled carbon nanotubes (MWCNT). Mice inhaled aerosolized MWCNT (10 mg/m(3), 5 hours/day) for 2, 4, 8 or 12 days. MWCNT lung burden was linearly related to exposure duration. MWCNT-induced pulmonary inflammation was assessed by determining whole lung lavage (WLL) polymorphonuclear leukocytes (PMN). Lung cytotoxicity was assessed by WLL fluid LDH activities. WLL fluid albumin concentrations were determined as a marker of alveolar air-blood barrier integrity. These parameters significantly increased in MWCNT-exposed mice versus controlsand were dose-dependent. Histopathologic alterations identified in the lung included 1) bronciolocentricinflammation, 2) bronchiolar epithelial hyperplasia and hypertrophy, 3) fibrosis, 4) vascular changes and 5) rare pleural penetration. MWCNT translocated to the lymph node where the deep paracortex was expanded after 8 or 12 days. Acute inhalation of MWCNT induced dosedependent pulmonary inflammation and damage with rapid development of pulmonary fibrosis, and also demonstrated that MWCNT can reach the pleura after inhalation exposure. |
Respiratory and olfactory cytotoxicity of inhaled 2,3-pentanedione in Sprague-Dawley rats
Hubbs AF , Cumpston AM , Goldsmith WT , Battelli LA , Kashon ML , Jackson MC , Frazer DG , Fedan JS , Goravanahally MP , Castranova V , Kreiss K , Willard PA , Friend S , Schwegler-Berry D , Fluharty KL , Sriram K . Am J Pathol 2012 181 (3) 829-44 ![]() Flavorings-related lung disease is a potentially disabling disease of food industry workers associated with exposure to the alpha-diketone butter flavoring, diacetyl (2,3-butanedione). To investigate the hypothesis that another alpha-diketone flavoring, 2,3-pentanedione, would cause airway damage, rats that inhaled air, 2,3-pentanedione (112, 241, 318, or 354 ppm), or diacetyl (240 ppm) for 6 hours were sacrificed the following day. Rats inhaling 2,3-pentanedione developed necrotizing rhinitis, tracheitis, and bronchitis comparable to diacetyl-induced injury. To investigate delayed toxicity, additional rats inhaled 318 (range, 317.9-318.9) ppm 2,3-pentanedione for 6 hours and were sacrificed 0 to 2, 12 to 14, or 18 to 20 hours after exposure. Respiratory epithelial injury in the upper nose involved both apoptosis and necrosis, which progressed through 12 to 14 hours after exposure. Olfactory neuroepithelial injury included loss of olfactory neurons that showed reduced expression of the 2,3-pentanedione-metabolizing enzyme, dicarbonyl/L-xylulose reductase, relative to sustentacular cells. Caspase 3 activation occasionally involved olfactory nerve bundles that synapse in the olfactory bulb (OB). An additional group of rats inhaling 270 ppm 2,3-pentanedione for 6 hours 41 minutes showed increased expression of IL-6 and nitric oxide synthase-2 and decreased expression of vascular endothelial growth factor A in the OB, striatum, hippocampus, and cerebellum using real-time PCR. Claudin-1 expression increased in the OB and striatum. We conclude that 2,3-pentanedione is a respiratory hazard that can also alter gene expression in the brain. |
Single-walled carbon nanotube-induced mitotic disruption.
Sargent LM , Hubbs AF , Young SH , Kashon ML , Dinu CZ , Salisbury JL , Benkovic SA , Lowry DT , Murray AR , Kisin ER , Siegrist KJ , Battelli L , Mastovich J , Sturgeon JL , Bunker KL , Shvedova AA , Reynolds SH . Mutat Res 2011 745 28-37 ![]() Carbon nanotubes were among the earliest products of nanotechnology and have many potential applications in medicine, electronics, and manufacturing. The low density, small size, and biological persistence of carbon nanotubes create challenges for exposure control and monitoring and make respiratory exposures to workers likely. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to 24, 48 and 96mcg/cm(2) single-walled carbon nanotubes (SWCNT). To investigate mitotic spindle aberrations at concentrations anticipated in exposed workers, primary and immortalized human airway epithelial cells were exposed to SWCNT for 24-72h at doses equivalent to 20 weeks of exposure at the Permissible Exposure Limit for particulates not otherwise regulated. We have now demonstrated fragmented centrosomes, disrupted mitotic spindles and aneuploid chromosome number at those doses. The data further demonstrated multipolar mitotic spindles comprised 95% of the disrupted mitoses. The increased multipolar mitotic spindles were associated with an increased number of cells in the G2 phase of mitosis, indicating a mitotic checkpoint response. Nanotubes were observed in association with mitotic spindle microtubules, the centrosomes and condensed chromatin in cells exposed to 0.024, 0.24, 2.4 and 24mcg/cm(2) SWCNT. Three-dimensional reconstructions showed carbon nanotubes within the centrosome structure. The lower doses did not cause cytotoxicity or reduction in colony formation after 24h; however, after three days, significant cytotoxicity was observed in the SWCNT-exposed cells. Colony formation assays showed an increased proliferation seven days after exposure. Our results show significant disruption of the mitotic spindle by SWCNT at occupationally relevant doses. The increased proliferation that was observed in carbon nanotube-exposed cells indicates a greater potential to pass the genetic damage to daughter cells. Disruption of the centrosome is common in many solid tumors including lung cancer. The resulting aneuploidy is an early event in the progression of many cancers, suggesting that it may play a role in both tumorigenesis and tumor progression. These results suggest caution should be used in the handling and processing of carbon nanotubes. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure