Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-23 (of 23 Records) |
Query Trace: Hoover MD[original query] |
---|
Integration among databases and data sets to support productive nanotechnology: Challenges and recommendations
Karcher S , Willighagen EL , Rumble J , Ehrhart F , Evelo CT , Fritts M , Gaheen S , Harper SL , Hoover MD , Jeliazkova N , Lewinski N , Marchese Robinson RL , Mills KC , Mustad AP , Thomas DG , Tsiliki G , Hendren CO . NanoImpact 2018 9 85-101 Many groups within the broad field of nanoinformatics are already developing data repositories and analytical tools driven by their individual organizational goals. Integrating these data resources across disciplines and with non-nanotechnology resources can support multiple objectives by enabling the reuse of the same information. Integration can also serve as the impetus for novel scientific discoveries by providing the framework to support deeper data analyses. This article discusses current data integration practices in nanoinformatics and in comparable mature fields, and nanotechnology-specific challenges impacting data integration. Based on results from a nanoinformatics-community-wide survey, recommendations for achieving integration of existing operational nanotechnology resources are presented. Nanotechnology-specific data integration challenges, if effectively resolved, can foster the application and validation of nanotechnology within and across disciplines. This paper is one of a series of articles by the Nanomaterial Data Curation Initiative that address data issues such as data curation workflows, data completeness and quality, curator responsibilities, and metadata. |
Interpreting mobile and handheld air sensor readings in relation to air quality standards and health effect reference values: Tackling the challenges
Woodall GM , Hoover MD , Williams R , Benedict K , Harper M , Soo JC , Jarabek AM , Stewart MJ , Brown JS , Hulla JS , Caudill M , Clements AL , Kaufman A , Parker AJ , Keating M , Balshaw D , Garrahan K , Burton L , Batka S , Limaye VS , Hakkinen PJ , Thompson B . Atmosphere (Basel) 2017 8 (10) 182 The US Environmental Protection Agency (EPA) and other federal agencies face a number of challenges in interpreting and reconciling short-duration (seconds to minutes) readings from mobile and handheld air sensors with the longer duration averages (hours to days) associated with the National Ambient Air Quality Standards (NAAQS) for the criteria pollutants-particulate matter (PM), ozone, carbon monoxide, lead, nitrogen oxides, and sulfur oxides. Similar issues are equally relevant to the hazardous air pollutants (HAPs) where chemical-specific health effect reference values are the best indicators of exposure limits; values which are often based on a lifetime of continuous exposure. A multi-agency, staff-level Air Sensors Health Group (ASHG) was convened in 2013. ASHG represents a multi-institutional collaboration of Federal agencies devoted to discovery and discussion of sensor technologies, interpretation of sensor data, defining the state of sensor-related science across each institution, and provides consultation on how sensors might effectively be used to meet a wide range of research and decision support needs. ASHG focuses on several fronts: improving the understanding of what hand-held sensor technologies may be able to deliver; communicating what hand-held sensor readings can provide to a number of audiences; the challenges of how to integrate data generated by multiple entities using new and unproven technologies; and defining best practices in communicating health-related messages to various audiences. This review summarizes the challenges, successes, and promising tools of those initial ASHG efforts and Federal agency progress on crafting similar products for use with other NAAQS pollutants and the HAPs. NOTE: The opinions expressed are those of the authors and do not necessary represent the opinions of their Federal Agencies or the US Government. Mention of product names does not constitute endorsement. |
Toward the Responsible Development and Commercialization of Sensor Nanotechnologies
Fadel TR , Farrell DF , Friedersdorf LE , Griep MH , Hoover MD , Meador MA , Meyyappan M . ACS Sens 2016 1 (3) 207-216 Nanotechnology-enabled sensors (or nanosensors) will play an important role in enabling the progression toward ubiquitous information systems as the Internet of Things (IoT) emerges. Nanosensors offer new, miniaturized solutions in physiochemical and biological sensing that enable increased sensitivity, specificity, and multiplexing capability, all with the compelling economic drivers of low cost and high-energy efficiency. In the United States, Federal agencies participating in the National Nanotechnology Initiative (NNI) "Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment" Nanotechnology Signature Initiative (the Sensors NSI), address both the opportunity of using nanotechnology to advance sensor development and the challenges of developing sensors to keep pace with the increasingly widespread use of engineered nanomaterials. This perspective article will introduce and provide background on the NNI signature initiative on sensors. Recent efforts by the Sensors NSI aimed at promoting the successful development and commercialization of nanosensors will be reviewed and examples of sensor nanotechnologies will be highlighted. Future directions and critical challenges for sensor development will also be discussed. |
Adaptive Visual Sort and Summary of Micrographic Images of Nanoparticles for Forensic Analysis
Jurrus E , Hodas N , Baker N , Marrinan T , Hoover MD . IEEE Int Symp Technol Homel Security HST 2016 2016 Image classification of nanoparticles from scanning electron microscopes for nuclear forensic analysis is a long, time consuming process. Months of analyst time may initially be required to sift through images in order to categorize morphological characteristics associated with nanoparticle identification. Subsequent assessment of newly acquired images against identified characteristics can be equally time consuming. We present INStINCt, our Intelligent Signature Canvas, as a framework for quickly organizing image data in a web-based canvas framework that partitions images based on features derived from convolutional neural networks. This work is demonstrated using particle images from an aerosol study conducted by Pacific Northwest National Laboratory under the auspices of the U.S. Army Public Health Command to determine depleted uranium aerosol doses and risks. |
Use of the "exposome" in the practice of epidemiology: A primer on -omic technologies
DeBord DG , Carreon T , Lentz TJ , Middendorf PJ , Hoover MD , Schulte PA . Am J Epidemiol 2016 184 (4) 302-14 The exposome has been defined as the totality of exposures individuals experience over the course of their lives and how those exposures affect health. Three domains of the exposome have been identified: internal, specific external, and general external. Internal factors are those that are unique to the individual, and specific external factors include occupational exposures and lifestyle factors. The general external domain includes sociodemographic factors such as educational level and financial status. Eliciting information on the exposome is daunting and not feasible at present; the undertaking may never be fully realized. A variety of tools have been identified to measure the exposome. Biomarker measurements will be one of the major tools in exposomic studies. However, exposure data can also be obtained from other sources such as sensors, geographic information systems, and conventional tools such as survey instruments. Proof-of-concept studies are being conducted that show the promise of exposomic investigation and the integration of different kinds of data. The inherent value of exposomic data in epidemiologic studies is that they can provide greater understanding of the relationships among a broad range of chemical and other risk factors and health conditions and ultimately lead to more effective and efficient disease prevention and control. |
Taking stock of the occupational safety and health challenges of nanotechnology: 2000–2015
Schulte PA , Roth G , Hodson LL , Murashov V , Hoover MD , Zumwalde R , Kuempel ED , Geraci CL , Stefaniak AB , Castranova V , Howard J . J Nanopart Res 2016 18 159 Engineered nanomaterials significantly entered commerce at the beginning of the 21st century. Concerns about serious potential health effects of nanomaterials were widespread. Now, approximately 15 years later, it is worthwhile to take stock of research and efforts to protect nanomaterial workers from potential risks of adverse health effects. This article provides and examines timelines for major functional areas (toxicology, metrology, exposure assessment, engineering controls and personal protective equipment, risk assessment, risk management, medical surveillance, and epidemiology) to identify significant contributions to worker safety and health. The occupational safety and health field has responded effectively to identify gaps in knowledge and practice, but further research is warranted and is described. There is now a greater, if imperfect, understanding of the mechanisms underlying nanoparticle toxicology, hazards to workers, and appropriate controls for nanomaterials, but unified analytical standards and exposure characterization methods are still lacking. The development of control-banding and similar strategies has compensated for incomplete data on exposure and risk, but it is unknown how widely such approaches are being adopted. Although the importance of epidemiologic studies and medical surveillance is recognized, implementation has been slowed by logistical issues. Responsible development of nanotechnology requires protection of workers at all stages of the technological life cycle. In each of the functional areas assessed, progress has been made, but more is required. |
Soft law and nanotechnology: sources of guidance for risk management.
Baker J , Barrie MD , Geraci CL , Hoover MD . Synergist (Akron) 2016 27 (4) 30-33 What should industrial hygienists do when the legislative and regulatory process can't keep pace with technology? Our profession is charged with protecting workers and public health. The industrial hygienists' Code of Ethics provides guidance that must be supplemented by new knowledge. If we act only when regulations are issued, we would be doing very little to promote safe and responsible development of the technology. This is especially true for an evolving and rapidly expanding field like nanotechnology. This article reviews current standards of behavior, guidance, regulations, and law related to nanomaterials. |
Inhaled aerosol dosimetry: Some current research needs
Darquenne C , Hoover MD , Phalen RF . J Aerosol Sci 2016 99 1-5 After the presentation of 60 papers at the conference "Advancing Aerosol Dosimetry Research" (October 24-25, 2014 in Irvine, CA, USA), attendees submitted written descriptions of needed research. About 40 research needs were submitted. The suggestions fell into six broad categories: 1) Access to detailed anatomic data; 2) Access to subject-specific aerosol deposition datasets; 3) Improving current inhaled aerosol deposition models; 4) Some current experimental data needs and hot topics; 5) Linking exposure and deposition modeling to health endpoints; and 6) Developing guidelines for appropriate validation of dosimetry and risk assessment models. Summaries of suggestions are provided here as an update on research needs related to inhaled aerosol dosimetry modeling. Taken together, the recommendations support the overarching need for increased collaborations between dose modelers and those that use the models for risk assessments, aerosol medicine applications, design of toxicology experiments, and extrapolation across species. This paper is only a snapshot in time of perceived research needs from the conference attendees; it does not carry the approval of any agency or other group that plans research priorities or that funds research. |
Bridging the gap between exposure assessment and inhalation toxicology: Some insights from the carbon nanotube experience
Erdely A , Dahm MM , Schubauer-Berigan MK , Chen BT , Antonini JM , Hoover MD . J Aerosol Sci 2016 99 157-162 The early incorporation of exposure assessment can be invaluable to help design, prioritize, and interpret toxicological studies or outcomes. The sum total of the exposure assessment findings combined with preliminary toxicology results allows for exposure-informed toxicological study design and the findings can then be integrated, together with available epidemiologic data, to provide health effect relevance. With regard to engineered nanomaterial inhalation toxicology in particular, a single type of material (e.g. carbon nanotube, graphene) can have a vast array of physicochemical characteristics resulting in the potential for varying toxicities. To compound the matter, the methodologies necessary to establish a material adequate for in vivo exposure testing raises questions on the applicability of the outcomes. From insights gained from evaluating carbon nanotubes, we recommend the following integrated approach involving exposure-informed hazard assessment and hazard-informed exposure assessment especially for materials as diverse as engineered nanomaterials: 1) market-informed identification of potential hazards and potentially exposed populations, 2) initial toxicity screening to drive prioritized assessments of exposure, 3) development of exposure assessment-informed chronic and sub-chronic in vivo studies, and 4) conduct of exposure- and hazard-informed epidemiological studies. |
How should the completeness and quality of curated nanomaterial data be evaluated?
Marchese Robinson RL , Lynch I , Peijnenburg W , Rumble J , Klaessig F , Marquardt C , Rauscher H , Puzyn T , Purian R , Aberg C , Karcher S , Vriens H , Hoet P , Hoover MD , Hendren CO , Harper SL . Nanoscale 2016 8 (19) 9919-43 Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials' behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated? |
Specific blood absorption parameters for 239PUO2 and 238PUO2 nanoparticles and impacts on bioassay interpretation
Cash LJ , Hoover MD , Guilmette RA , Breysse PN , Bertelli L . Radiat Prot Dosimetry 2016 173 (4) 318-324 Specific absorption parameters for239PuO2and238PuO2have been determined based on available biokinetic data from studies in rodents, and the impacts of these parameters on bioassay interpretation and dosimetry after inhalation of nanoPuO2materials have been evaluated. Calculations of activities after an acute intake of nanoparticles of239PuO2and238PuO2are compared with the corresponding calculations using standard default absorption parameters using the International Commission on Radiological Protection (ICRP) 66 respiratory tract model. Committed effective doses are also evaluated and compared. In this case, it was found that interpretation of bioassay measurements with the assumption that the biokinetic behaviour of PuO2nanoparticles is the same as that of micrometre-sized particles can result in an overprediction of the committed effective dose by two orders of magnitude. Although in this case the use of the default assumptions (5 microm AMAD, Type S) for assessing dose following inhalation exposure to airborne PuO2nanoparticles appears to be conservative, the evaluation of situations involving PuO2nanoparticles that may have different particle size and solubility properties should prudently follow the ICRP recommendation to obtain and use additional, material-specific information whenever possible. |
Turning Numbers into Knowledge: Sensors for Safety, Health, Well-being, and Productivity
Hoover MD , Debord DG . Synergist (Akron) 2015 26 (3) 22-26 The industrial hygiene community has witnessed exponential growth in the use of sensors, especially by individuals. Remote wireless sensors are now monitoring worker health, the environment, agriculture, work sites, disaster relief, and "smart" buildings and facilities. |
The Nanomaterial Data Curation Initiative: a collaborative approach to assessing, evaluating, and advancing the state of the field
Hendren CO , Powers CM , Hoover MD , Harper SL . Beilstein J Nanotechnol 2015 6 1752-62 The Nanomaterial Data Curation Initiative (NDCI), a project of the National Cancer Informatics Program Nanotechnology Working Group (NCIP NanoWG), explores the critical aspect of data curation within the development of informatics approaches to understanding nanomaterial behavior. Data repositories and tools for integrating and interrogating complex nanomaterial datasets are gaining widespread interest, with multiple projects now appearing in the US and the EU. Even in these early stages of development, a single common aspect shared across all nanoinformatics resources is that data must be curated into them. Through exploration of sub-topics related to all activities necessary to enable, execute, and improve the curation process, the NDCI will provide a substantive analysis of nanomaterial data curation itself, as well as a platform for multiple other important discussions to advance the field of nanoinformatics. This article outlines the NDCI project and lays the foundation for a series of papers on nanomaterial data curation. The NDCI purpose is to: 1) present and evaluate the current state of nanomaterial data curation across the field on multiple specific data curation topics, 2) propose ways to leverage and advance progress for both individual efforts and the nanomaterial data community as a whole, and 3) provide opportunities for similar publication series on the details of the interactive needs and workflows of data customers, data creators, and data analysts. Initial responses from stakeholder liaisons throughout the nanoinformatics community reveal a shared view that it will be critical to focus on integration of datasets with specific orientation toward the purposes for which the individual resources were created, as well as the purpose for integrating multiple resources. Early acknowledgement and undertaking of complex topics such as uncertainty, reproducibility, and interoperability is proposed as an important path to addressing key challenges within the nanomaterial community, such as reducing collateral negative impacts and decreasing the time from development to market for this new class of technologies. |
Commentary on the contributions and future role of occupational exposure science in a vision and strategy for the discipline of exposure science
Harper M , Weis C , Pleil JD , Blount BC , Miller A , Hoover MD , Jahn S . J Expo Sci Environ Epidemiol 2015 25 (4) 381-7 Exposure science is a holistic concept without prejudice to exposure source. Traditionally, measurements aimed at mitigating environmental exposures have not included exposures in the workplace, instead considering such exposures to be an internal affair between workers and their employers. Similarly, occupational (or industrial) hygiene has not typically accounted for environmental contributions to poor health at work. Many persons spend a significant amount of their lifetime in the workplace, where they maybe exposed to more numerous chemicals at higher levels than elsewhere in their environment. In addition, workplace chemical exposures and other exogenous stressors may increase epigenetic and germline modifications that are passed on to future generations. We provide a brief history of the development of exposure science from its roots in the assessment of workplace exposures, including an appendix where we detail current resources for education and training in exposure science offered through occupational hygiene organizations. We describe existing successful collaborations between occupational and environmental practitioners in the field of exposure science, which may serve as a model for future interactions. Finally, we provide an integrated vision for the field of exposure science, emphasizing interagency collaboration, the need for complete exposure information in epidemiological studies, and the importance of integrating occupational, environmental, and residential assessments. Our goal is to encourage communication and spur additional collaboration between the fields of occupational and environmental exposure assessment. Providing a more comprehensive approach to exposure science is critical to the study of the "exposome", which conceptualizes the totality of exposures throughout a person's life, not only chemical, but also from diet, stress, drugs, infection, and so on, and the individual response. |
Application of an informatics-based decision-making framework and process to the assessment of radiation safety in nanotechnology
Hoover MD , Myers DS , Cash LJ , Guilmette RA , Kreyling WG , Oberdorster G , Smith R , Cassata JR , Boecker BB , Grissom MP . Health Phys 2015 108 (2) 179-94 The National Council on Radiation Protection and Measurements (NCRP) established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100 nm, where unique phenomena enable novel applications. While the full report is in preparation, this paper presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are already present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities. |
Opportunities and challenges of nanotechnology in the green economy
Iavicoli I , Leso V , Ricciardi W , Hodson LL , Hoover MD . Environ Health 2014 13 78 In a world of finite resources and ecosystem capacity, the prevailing model of economic growth, founded on ever-increasing consumption of resources and emission pollutants, cannot be sustained any longer. In this context, the "green economy" concept has offered the opportunity to change the way that society manages the interaction of the environmental and economic domains. To enable society to build and sustain a green economy, the associated concept of "green nanotechnology" aims to exploit nano-innovations in materials science and engineering to generate products and processes that are energy efficient as well as economically and environmentally sustainable. These applications are expected to impact a large range of economic sectors, such as energy production and storage, clean up-technologies, as well as construction and related infrastructure industries. These solutions may offer the opportunities to reduce pressure on raw materials trading on renewable energy, to improve power delivery systems to be more reliable, efficient and safe as well as to use unconventional water sources or nano-enabled construction products therefore providing better ecosystem and livelihood conditions.However, the benefits of incorporating nanomaterials in green products and processes may bring challenges with them for environmental, health and safety risks, ethical and social issues, as well as uncertainty concerning market and consumer acceptance. Therefore, our aim is to examine the relationships among guiding principles for a green economy and opportunities for introducing nano-applications in this field as well as to critically analyze their practical challenges, especially related to the impact that they may have on the health and safety of workers involved in this innovative sector. These are principally due to the not fully known nanomaterial hazardous properties, as well as to the difficulties in characterizing exposure and defining emerging risks for the workforce. Interestingly, this review proposes action strategies for the assessment, management and communication of risks aimed to precautionary adopt preventive measures including formation and training of employees, collective and personal protective equipment, health surveillance programs to protect the health and safety of nano-workers. It finally underlines the importance that occupational health considerations will have on achieving an effectively sustainable development of nanotechnology. |
Exposures and cross-shift lung function declines in wildland firefighters
Gaughan DM , Piacitelli CA , Chen BT , Law BF , Virji MA , Edwards NT , Enright PL , Schwegler-Berry DE , Leonard SS , Wagner GR , Kobzik L , Kales SN , Hughes MD , Christiani DC , Siegel PD , Cox-Ganser JM , Hoover MD . J Occup Environ Hyg 2014 11 (9) 591-603 Respiratory problems are common among wildland firefighters. However, there are few studies directly linking occupational exposures to respiratory effects in this population. Our objective was to characterize wildland fire fighting occupational exposures and assess their associations with cross-shift changes in lung function. We studied 17 members of the Alpine Interagency Hotshot Crew with environmental sampling and pulmonary function testing during a large wildfire. We characterized particles by examining size distribution and mass concentration, and conducting elemental and morphological analyses. We examined associations between cross-shift lung function change and various analytes, including levoglucosan, an indicator of wood smoke from burning biomass. The levoglucosan component of the wildfire aerosol showed a predominantly bimodal size distribution: a coarse particle mode with a mass median aerodynamic diameter about 12 mum and a fine particle mode with a mass median aerodynamic diameter < 0.5 mum. Levoglucosan was found mainly in the respirable fraction and its concentration was higher for fire line construction operations than for mop-up operations. Larger cross-shift declines in forced expiratory volume in one second were associated with exposure to higher concentrations of respirable levoglucosan (p < 0.05). Paired analyses of real-time personal air sampling measurements indicated that higher carbon monoxide (CO) concentrations were correlated with higher particulate concentrations when examined by mean values, but not by individual data points. However, low CO concentrations did not provide reliable assurance of concomitantly low particulate concentrations. We conclude that inhalation of fine smoke particles is associated with acute lung function decline in some wildland firefighters. Based on short-term findings, it appears important to address possible long-term respiratory health issues for wildland firefighters. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resources: a file containing additional information on historical studies of wildland fire exposures, a file containing the daily-exposure-severity questionnaire completed by wildland firefighter participants at the end of each day, and a file containing additional details of the investigation of correlations between carbon monoxide concentrations and other measured exposure factors in the current study.]. |
Regulatory T cells modulate granulomatous inflammation in an HLA-DP2 transgenic murine model of beryllium-induced disease
Mack DG , Falta MT , McKee AS , Martin AK , Simonian PL , Crawford F , Gordon T , Mercer RR , Hoover MD , Marrack P , Kappler JW , Tuder RM , Fontenot AP . Proc Natl Acad Sci U S A 2014 111 (23) 8553-8 Susceptibility to chronic beryllium disease (CBD) is linked to certain HLA-DP molecules, including HLA-DP2. To elucidate the molecular basis of this association, we exposed mice transgenic (Tg) for HLA-DP2 to beryllium oxide (BeO) via oropharyngeal aspiration. As opposed to WT mice, BeO-exposed HLA-DP2 Tg mice developed mononuclear infiltrates in a peribronchovascular distribution that were composed of CD4(+) T cells and included regulatory T (Treg) cells. Beryllium-responsive, HLA-DP2-restricted CD4(+) T cells expressing IFN-gamma and IL-2 were present in BeO-exposed HLA-DP2 Tg mice and not in WT mice. Using Be-loaded HLA-DP2-peptide tetramers, we identified Be-specific CD4(+) T cells in the mouse lung that recognize identical ligands as CD4(+) T cells derived from the human lung. Importantly, a subset of HLA-DP2 tetramer-binding CD4(+) T cells expressed forkhead box P3, consistent with the expansion of antigen-specific Treg cells. Depletion of Treg cells in BeO-exposed HLA-DP2 Tg mice exacerbated lung inflammation and enhanced granuloma formation. These findings document, for the first time to our knowledge, the development of a Be-specific adaptive immune response in mice expressing HLA-DP2 and the ability of Treg cells to modulate the beryllium-induced granulomatous immune response. |
Occupational safety and health criteria for responsible development of nanotechnology
Schulte PA , Geraci CL , Murashov V , Kuempel ED , Zumwalde RD , Castranova V , Hoover MD , Hodson L , Martinez KF . J Nanopart Res 2013 16 2153 Organizations around the world have called for the responsible development of nanotechnology. The goals of this approach are to emphasize the importance of considering and controlling the potential adverse impacts of nanotechnology in order to develop its capabilities and benefits. A primary area of concern is the potential adverse impact on workers, since they are the first people in society who are exposed to the potential hazards of nanotechnology. Occupational safety and health criteria for defining what constitutes responsible development of nanotechnology are needed. This article presents five criterion actions that should be practiced by decision-makers at the business and societal levels-if nanotechnology is to be developed responsibly. These include (1) anticipate, identify, and track potentially hazardous nanomaterials in the workplace; (2) assess workers' exposures to nanomaterials; (3) assess and communicate hazards and risks to workers; (4) manage occupational safety and health risks; and (5) foster the safe development of nanotechnology and realization of its societal and commercial benefits. All these criteria are necessary for responsible development to occur. Since it is early in the commercialization of nanotechnology, there are still many unknowns and concerns about nanomaterials. Therefore, it is prudent to treat them as potentially hazardous until sufficient toxicology, and exposure data are gathered for nanomaterial-specific hazard and risk assessments. In this emergent period, it is necessary to be clear about the extent of uncertainty and the need for prudent actions. |
Preparation, certification and interlaboratory analysis of workplace air filters spiked with high-fired beryllium oxide
Oatts TJ , Hicks CE , Adams AR , Brisson MJ , Youmans-McDonald LD , Hoover MD , Ashley K . J Environ Monit 2011 14 (2) 391-401 Occupational sampling and analysis for multiple elements is generally approached using various approved methods from authoritative government sources such as the National Institute for Occupational Safety and Health (NIOSH), the Occupational Safety and Health Administration (OSHA) and the Environmental Protection Agency (EPA), as well as consensus standards bodies such as ASTM International. The constituents of a sample can exist as unidentified compounds requiring sample preparation to be chosen appropriately, as in the case of beryllium in the form of beryllium oxide (BeO). An interlaboratory study was performed to collect analytical data from volunteer laboratories to examine the effectiveness of methods currently in use for preparation and analysis of samples containing calcined BeO powder. NIST SRM((R)) 1877 high-fired BeO powder (1100 to 1200 degrees C calcining temperature; count median primary particle diameter 0.12 mcm) was used to spike air filter media as a representative form of beryllium particulate matter present in workplace sampling that is known to be resistant to dissolution. The BeO powder standard reference material was gravimetrically prepared in a suspension and deposited onto 37 mm mixed cellulose ester air filters at five different levels between 0.5 mcg and 25 mcg of Be (as BeO). Sample sets consisting of five BeO-spiked filters (in duplicate) and two blank filters, for a total of twelve unique air filter samples per set, were submitted as blind samples to each of 27 participating laboratories. Participants were instructed to follow their current process for sample preparation and utilize their normal analytical methods for processing samples containing substances of this nature. Laboratories using more than one sample preparation and analysis method were provided with more than one sample set. Results from 34 data sets ultimately received from the 27 volunteer laboratories were subjected to applicable statistical analyses. The observed performance data show that sample preparations using nitric acid alone, or combinations of nitric and hydrochloric acids, are not effective for complete extraction of Be from the SRM 1877 refractory BeO particulate matter spiked on air filters; but that effective recovery can be achieved by using sample preparation procedures utilizing either sulfuric or hydrofluoric acid, or by using methodologies involving ammonium bifluoride with heating. Laboratories responsible for quantitative determination of Be in workplace samples that may contain high-fired BeO should use quality assurance schemes that include BeO-spiked sampling media, rather than solely media spiked with soluble Be compounds, and should ensure that methods capable of quantitative digestion of Be from the actual material present are used. |
Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum
Pfefferkorn FE , Bello D , Haddad G , Park JY , Powell M , McCarthy J , Bunker KL , Fehrenbacher A , Jeon Y , Virji MA , Gruetzmacher G , Hoover MD . Ann Occup Hyg 2010 54 (5) 486-503 Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 microm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 microm) with 1-s resolution, lung deposited surface areas, and PM(2.5) concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 microm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at approximately 30 and approximately 550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at approximately 4.0 x 10(5) particles cm(-3), whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm(-3), depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10-100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) microg m(-3); the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may exist, especially in larger scale industrial operations. |
Influence of artificial gastric juice composition on bioaccessibility of cobalt- and tungsten-containing powders
Stefaniak AB , Abbas Virji M , Harvey CJ , Sbarra DC , Day GA , Hoover MD . Int J Hyg Environ Health 2010 213 (2) 107-15 The dissolution of metal-containing particles in the gastric compartment is poorly understood. The purpose of this study was to elucidate the influence of artificial gastric juice chemical composition on bioaccessibility of metals associated with ingestion-based health concerns. Dissolution rates were evaluated for well-characterized feedstock cobalt, tungsten metal, and tungsten carbide powders, chemically bonded pre-sintered (spray dryer material) and post-sintered (chamfer grinder) cemented tungsten carbide materials, and an admixture of pure cobalt and pure tungsten carbide, prepared by mechanically blending the two feedstock powders. Dissolution of each study material was evaluated in three different formulations of artificial gastric juice (from simplest to most chemically complex): American Society of Testing Materials (ASTM), U.S. Pharmacopoeia (USP), and National Institute for Occupational Safety and Health (NIOSH). Approximately 20% of cobalt dissolved in the first dissolution phase (t(1/2) = 0.02 days) and the remaining 80% was released in the second long-term dissolution phase (t(1/2) = 0.5 to 1 days). Artificial gastric juice chemical composition did not influence dissolution rate constant values (k, g/cm(2)day) of cobalt powder, either alone or as an admixture. Approximately 100% of the tungsten and tungsten carbide that dissolved was released in a single dissolution phase; k-values of each material differed significantly in the solvents: NIOSH > ASTM > USP (p<0.05). The k-values of cobalt and tungsten carbide in pre- and post-sintered cemented tungsten carbide powders were significantly different from values for the pure feedstock powders. Solvent composition had little influence on oral bioaccessibility of highly soluble cobalt and our data support consideration of the oral exposure route as a contributing pathway to total-body exposure. Solvent composition appeared to influence bioaccessibility of the low soluble tungsten compounds, though differences may be due to variability in the data associated with the small masses of materials that dissolved. Nonetheless, ingestion exposure may not contribute appreciably to total body burden given the short residence time of material in the stomach and relatively long dissolution half-times of these materials (t(1/2) = 60 to 380 days). |
Validation of analytical methods and instrumentation for beryllium measurement: review and summary of available guides, procedures, and protocols
Ekechukwu A , Hendricks W , White KT , Liabastre A , Archuleta M , Hoover MD . J Occup Environ Hyg 2009 6 (12) 766-74 This document provides a listing of available sources that can be used to validate analytical methods and/or instrumentation for beryllium determination. A literature review was conducted of available standard methods and publications used for method validation and/or quality control. An annotated listing of the articles, papers, and books reviewed is given in the Appendix. Available validation documents and guides are listed therein; each has a brief description of application and use. In the referenced sources, there are varying approaches to validation and varying descriptions of the validation process at different stages in method development. This discussion focuses on validation and verification of fully developed methods and instrumentation that have been offered for use or approval by other laboratories or official consensus bodies such as ASTM International, the International Standards Organization, the International Electrotechnical Commission, and the Association of Official Analytical Chemists. This review was conducted as part of a collaborative effort to investigate and improve the state of validation for measuring beryllium in the workplace and the environment. Documents and publications from the United States and Europe are included. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure