Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-30 (of 77 Records) |
Query Trace: Hoffmaster AR[original query] |
---|
Notes from the field: Anthrax on a sheep farm in winter - Texas, December 2023-January 2024
Thompson JM , Spencer K , Maass M , Rollo S , Beesley CA , Marston CK , Hoffmaster AR , Bower WA , Candela MG , Barr JR , Boyer AE , Weiner ZP , Negrón ME , Swaney E , O'Sullivan B . MMWR Morb Mortal Wkly Rep 2024 73 (22) 517-520 |
Examination of SARS-CoV-2 serological test results from multiple commercial and laboratory platforms with an in-house serum panel
Lester SN , Stumpf M , Freeman BD , Mills L , Schiffer J , Semenova V , Jia T , Desai R , Browning P , Alston B , Ategbole M , Bolcen S , Chen A , David E , Manitis P , Tatum H , Qin Y , Zellner B , Drobeniuc J , Tejada-Strop A , Chatterjee P , Shrivastava-Ranjan P , Jenks MH , McMullan LK , Flint M , Spiropoulou CF , Niemeyer GP , Werner BJ , Bean CJ , Johnson JA , Hoffmaster AR , Satheshkumar PS , Schuh AJ , Owen SM , Thornburg NJ . Access Microbiol 2024 6 (2) Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that was identified in 2019. SARS-CoV-2 infection results in an acute, severe respiratory disease called coronavirus disease 2019 (COVID-19). The emergence and rapid spread of SARS-CoV-2 has led to a global public health crisis, which continues to affect populations across the globe. Real time reverse transcription polymerase chain reaction (rRT-PCR) is the reference standard test for COVID-19 diagnosis. Serological tests are valuable tools for serosurveillance programs and establishing correlates of protection from disease. This study evaluated the performance of one in-house enzyme linked immunosorbent assay (ELISA) utilizing the pre-fusion stabilized ectodomain of SARS-CoV-2 spike (S), two commercially available chemiluminescence assays Ortho VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagent Pack and Abbott SARS-CoV-2 IgG assay and one commercially available Surrogate Virus Neutralization Test (sVNT), GenScript USA Inc., cPass SARS-CoV-2 Neutralization Antibody Detection Kit for the detection of SARS-CoV-2 specific antibodies. Using a panel of rRT-PCR confirmed COVID-19 patients' sera and a negative control group as a reference standard, all three immunoassays demonstrated high comparable positivity rates and low discordant rates. All three immunoassays were highly sensitive with estimated sensitivities ranging from 95.4-96.6 %. ROC curve analysis indicated that all three immunoassays had high diagnostic accuracies with area under the curve (AUC) values ranging from 0.9698 to 0.9807. High positive correlation was demonstrated among the conventional microneutralization test (MNT) titers and the sVNT inhibition percent values. Our study indicates that independent evaluations are necessary to optimize the overall utility and the interpretation of the results of serological tests. Overall, we demonstrate that all serological tests evaluated in this study are suitable for the detection of SARS-CoV-2 antibodies. |
Locally acquired melioidosis linked to environment - Mississippi, 2020-2023
Petras JK , Elrod MG , Ty MC , Dawson P , O'Laughlin K , Gee JE , Hanson J , Boutwell C , Ainsworth G , Beesley CA , Saile E , Tiller R , Gulvik CA , Ware D , Sokol T , Balsamo G , Taylor K , Salzer JS , Bower WA , Weiner ZP , Negrón ME , Hoffmaster AR , Byers P . N Engl J Med 2023 389 (25) 2355-2362 Melioidosis, caused by Burkholderia pseudomallei, is a rare but potentially fatal bacterial disease endemic to tropical and subtropical regions worldwide. It is typically acquired through contact with contaminated soil or fresh water. Before this investigation, B. pseudomallei was not known to have been isolated from the environment in the continental United States. Here, we report on three patients living in the same Mississippi Gulf Coast county who presented with melioidosis within a 3-year period. They were infected by the same Western Hemisphere B. pseudomallei strain that was discovered in three environmental samples collected from the property of one of the patients. These findings indicate local acquisition of melioidosis from the environment in the Mississippi Gulf Coast region. |
Burkholderia thailandensis Isolated from the Environment, United States.
Hall CM , Stone NE , Martz M , Hutton SM , Santana-Propper E , Versluis L , Guidry K , Ortiz M , Busch JD , Maness T , Stewart J , Sidwa T , Gee JE , Elrod MG , Petras JK , Ty MC , Gulvik C , Weiner ZP , Salzer JS , Hoffmaster AR , Rivera-Garcia S , Keim P , Kieffer A , Sahl JW , Soltero F , Wagner DM . Emerg Infect Dis 2023 29 (3) 618-621 Burkholderia thailandensis, an opportunistic pathogen found in the environment, is a bacterium closely related to B. pseudomallei, the cause of melioidosis. Human B. thailandensis infections are uncommon. We isolated B. thailandensis from water in Texas and Puerto Rico and soil in Mississippi in the United States, demonstrating a potential public health risk. |
Comprehensive characterization of toxins during progression of inhalation anthrax in a non-human primate model
Boyer AE , Gallegos-Candela M , Lins RC , Solano MI , Woolfitt AR , Lee JS , Sanford DC , Knostman KAB , Quinn CP , Hoffmaster AR , Pirkle JL , Barr JR . PLoS Pathog 2022 18 (12) e1010735 Inhalation anthrax has three clinical stages: early-prodromal, intermediate-progressive, and late-fulminant. We report the comprehensive characterization of anthrax toxins, including total protective antigen (PA), total lethal factor (LF), total edema factor (EF), and their toxin complexes, lethal toxin and edema toxin in plasma, during the course of inhalation anthrax in 23 cynomolgus macaques. The toxin kinetics were predominantly triphasic with an early rise (phase-1), a plateau/decline (phase-2), and a final rapid rise (phase-3). Eleven animals had shorter survival times, meanstandard deviation of 58.77.6 hours (fast progression), 11 animals had longer survival times, 11334.4 hours (slow progression), and one animal survived. Median (lower-upper quartile) LF levels at the end-of-phase-1 were significantly higher in animals with fast progression [138 (54.9-326) ng/mL], than in those with slow progression [23.8 (15.6-26.3) ng/mL] (p = 0.0002), and the survivor (11.1 ng/mL). The differences were also observed for other toxins and bacteremia. Animals with slow progression had an extended phase-2 plateau, with low variability of LF levels across all time points and animals. Characterization of phase-2 toxin levels defined upper thresholds; critical levels for exiting phase-2 and entering the critical phase-3, 342 ng/mL (PA), 35.8 ng/mL (LF), and 1.10 ng/mL (EF). The thresholds were exceeded earlier in animals with fast progression (38.57.4 hours) and later in animals with slow progression (78.715.2 hours). Once the threshold was passed, toxin levels rose rapidly in both groups to the terminal stage. The time from threshold to terminal was rapid and similar; 20.87.4 hours for fast and 19.97.5 hours for slow progression. The three toxemic phases were aligned with the three clinical stages of anthrax for fast and slow progression which showed that anthrax progression is toxin- rather than time-dependent. This first comprehensive evaluation of anthrax toxins provides new insights into disease progression. |
Notes from the field: Burkholderia pseudomallei detected in a raccoon carcass linked to a multistate aromatherapy-associated melioidosis outbreak - Texas, 2022
Petras JK , Elrod MG , Ty M , Adams P , Zahner D , Adams A , Calfee MW , Tomlinson C , Serre S , Ryan S , Jakabhazy E , Gee JE , Weiner Z , Bower WA , Negron ME , Hoffmaster AR , Honza H . MMWR Morb Mortal Wkly Rep 2022 71 (50) 1597-1598 Burkholderia pseudomallei, the causative agent of melioidosis, is an environmental gram-negative bacterium endemic in tropical and subtropical regions worldwide. B. pseudomallei can infect humans and a wide range of animals through percutaneous inoculation, inhalation, or ingestion (1). Melioidosis symptoms are nonspecific and vary widely because B. pseudomallei can infect any organ of the body, including the brain. In October 2021, the source of a multistate outbreak of melioidosis that involved four human cases in Georgia, Kansas, Minnesota, and Texas was identified as an aromatherapy room spray imported from India* (2). | | After the discovery of the aromatherapy spray as the outbreak source, the Texas Department of State Health Services (DSHS) learned that a previously healthy pet raccoon, owned by the family of the Texas patient, had broken a bottle of the implicated aromatherapy spray and walked through the liquid. On April 3, 2021, approximately 2 weeks after this exposure, the raccoon displayed acute neurologic symptoms consistent with neurologic melioidosis† and died from an undetermined cause 3 days later. The carcass was wrapped in a cloth robe and buried on the family’s property. The strain found in the aromatherapy bottle (ATS2021) and linked to the outbreak contained a genetic variant, the bimABm allele, which is a virulence factor associated with neurologic melioidosis (3). |
Responding to the threat posed by anthrax: Updated evidence to improve preparedness
Honein MA , Hoffmaster AR . Clin Infect Dis 2022 75 S339-s340 For many Americans, awareness of the threat posed by anthrax is closely tied to the attacks of October 2001 and November 2001 when 22 persons were diagnosed with anthrax from exposure to intentionally contaminated mail [1]. That event highlighted the critical need to strengthen preparedness for this biothreat in the United States. Anthrax is a bacterial disease caused by Bacillus anthracis. The US Department of Health and Human Services designated B. anthracis as a tier 1 select agent, signifying that it presents the greatest risk of deliberate misuse with significant potential for mass causalities and poses a severe threat to public health and safety [2]. |
Outbreak of cutaneous anthrax associated with handling meat of dead cows in Southwestern Uganda, May 2018
Musewa A , Mirembe BB , Monje F , Birungi D , Nanziri C , Aceng FL , Kabwama SN , Kwesiga B , Ndumu DB , Nyakarahuka L , Buule J , Cossaboom CM , Lowe D , Kolton CB , Marston CK , Stoddard RA , Hoffmaster AR , Ario AR , Zhu BP . Trop Med Health 2022 50 (1) 52 BACKGROUND: Anthrax is a zoonotic infection caused by the bacteria Bacillus anthracis. Humans acquire cutaneous infection through contact with infected animals or animal products. On May 6, 2018, three cows suddenly died on a farm in Kiruhura District. Shortly afterwards, a sub-county chief in Kiruhura District received reports of humans with suspected cutaneous anthrax in the same district. The patients had reportedly participated in the butchery and consumption of meat from the dead cows. We investigated to determine the magnitude of the outbreak, identify exposures associated with illness, and suggest evidence-based control measures. METHODS: We conducted a retrospective cohort study among persons whose households received any of the cow meat. We defined a suspected human cutaneous anthrax case as new skin lesions (e.g., papule, vesicle, or eschar) in a resident of Kiruhura District from 1 to 26 May 2018. A confirmed case was a suspected case with a lesion testing positive for B. anthracis by polymerase chain reaction (PCR). We identified cases through medical record review at Engari Health Centre and active case finding in the community. RESULTS: Of the 95 persons in the cohort, 22 were case-patients (2 confirmed and 20 suspected, 0 fatal cases) and 73 were non-case household members. The epidemic curve indicated multiple point-source exposures starting on May 6, when the dead cows were butchered. Among households receiving cow meat, participating in slaughtering (RR = 5.3, 95% CI 3.2-8.3), skinning (RR = 4.7, 95% CI = 3.1-7.0), cleaning waste (RR = 4.5, 95% CI = 3.1-6.6), and carrying meat (RR = 3.9, 95% CI = 2.2-7.1) increased the risk of infection. CONCLUSIONS: This cutaneous anthrax outbreak was caused by handling infected animal carcasses. We suggested to the Ministry of Agriculture, Animal Industry and Fisheries to strengthen surveillance for possible veterinary anthrax and ensure that communities do not consume carcasses of livestock that died suddenly. We also suggested that the Ministry of Health equip health facilities with first-line antibiotics for community members during outbreaks. |
Low risk of acquiring melioidosis from the environment in the continental United States
Hall CM , Romero-Alvarez D , Martz M , Santana-Propper E , Versluis L , Jiménez L , Alkishe A , Busch JD , Maness T , Stewart J , Sidwa T , Gee JE , Elrod MG , Weiner Z , Hoffmaster AR , Sahl JW , Salzer JS , Peterson AT , Kieffer A , Wagner DM . PLoS One 2022 17 (7) e0270997 Melioidosis is an underreported human disease of tropical and sub-tropical regions caused by the saprophyte Burkholderia pseudomallei. Although most global melioidosis cases are reported from tropical regions in Southeast Asia and northern Australia, there are multiple occurrences from sub-tropical regions, including the United States (U.S.). Most melioidosis cases reported from the continental U.S. are the result of acquiring the disease during travel to endemic regions or from contaminated imported materials. Only two human melioidosis cases from the continental U.S. have likely acquired B. pseudomallei directly from local environments and these cases lived only ~7 km from each other in rural Texas. In this study, we assessed the risk of acquiring melioidosis from the environment within the continental U.S. by surveying for B. pseudomallei in the environment in Texas where these two human melioidosis cases likely acquired their infections. We sampled the environment near the homes of the two cases and at additional sampling locations in surrounding counties in Texas that were selected based on ecological niche modeling. B. pseudomallei was not detected at the residences of these two cases or in the surrounding region. These negative data are important to demonstrate that B. pseudomallei is rare in the environment in the U.S. even at locations where locally acquired human cases likely have occurred, documenting the low risk of acquiring B. pseudomallei infection from the environment in the continental U.S. |
Epidemiologic Investigation of Two Welder's Anthrax Cases Caused by Bacillus Cereus Group Bacteria: Occupational Link Established by Environmental Detection.
Dawson P , Salzer JS , Schrodt CA , Feldmann K , Kolton CB , Gee JE , Marston CK , Gulvik CA , Elrod MG , Villarma A , Traxler RM , Negrón ME , Hendricks KA , Moulton-Meissner H , Rose LJ , Byers P , Taylor K , Ware D , Balsamo GA , Sokol T , Barrett B , Payne E , Zaheer S , Jung GO , Long S , Quijano R , LeBouf L , O'Sullivan B , Swaney E , Antonini JM , Perio MA , Weiner Z , Bower WA , Hoffmaster AR . Pathogens 2022 11 (8) Abstract Bacillus cereus group bacteria containing the anthrax toxin genes can cause fatal anthrax pneumonia in welders. Two welder's anthrax cases identified in 2020 were investigated to determine the source of each patient's exposure. Environmental sampling was performed at locations where each patient had recent exposure to soil and dust. Samples were tested for the anthrax toxin genes by real-time PCR, and culture was performed on positive samples to identify whether any environmental isolates matched the patient's clinical isolate. A total of 185 environmental samples were collected in investigation A for patient A and 108 samples in investigation B for patient B. All samples from investigation B were real-time PCR-negative, but 14 (8%) samples from investigation A were positive, including 10 from patient A's worksite and 4 from his work-related clothing and gear. An isolate genetically matching the one recovered from patient A was successfully cultured from a worksite soil sample. All welder's anthrax cases should be investigated to determine the source of exposure, which may be linked to their worksite. Welding and metalworking employers should consider conducting a workplace hazard assessment and implementing controls to reduce the risk of occupationally associated illnesses including welder's anthrax. |
Evaluation of a Multiplex Bead Assay against Single-Target Assays for Detection of IgG Antibodies to SARS-CoV-2.
Mitchell KF , Carlson CM , Nace D , Wakeman BS , Drobeniuc J , Niemeyer GP , Werner B , Hoffmaster AR , Satheshkumar PS , Schuh AJ , Udhayakumar V , Rogier E . Microbiol Spectr 2022 10 (3) e0105422 Serological assays for SARS-CoV-2 antibodies must be validated for performance with a large panel of clinical specimens. Most existing assays utilize a single antigen target and may be subject to reduced diagnostic specificity. This study evaluated a multiplex assay that detects antibodies to three SARS-CoV-2 targets. Human serum specimens (n = 323) with known previous SARS-CoV-2 exposure status were tested on a commercially available multiplex bead assay (MBA) measuring IgG to SARS-CoV-2 spike protein receptor-binding domain (RBD), nucleocapsid protein (NP), and RBD/NP fusion antigens. Assay performance was evaluated against reverse transcriptase PCR (RT-PCR) results and also compared with test results for two single-target commercial assays. The MBA had a diagnostic sensitivity of 89.8% and a specificity of 100%, with serum collection at >28 days following COVID-19 symptom onset showing the highest seropositivity rates (sensitivity: 94.7%). The MBA performed comparably to single-target assays with the ability to detect IgG against specific antigen targets, with 19 (5.9%) discrepant specimens compared to the NP IgG assay and 12 (3.7%) compared to the S1 RBD IgG assay (kappa coefficients 0.92 and 0.88 compared to NP IgG and S1 RBD IgG assays, respectively. These findings highlight inherent advantages of using a SARS-CoV-2 serological test with multiple antigen targets; specifically, the ability to detect IgG against RBD and NP antigens simultaneously. In particular, the 100.0% diagnostic specificity exhibited by the MBA in this study is important for its implementation in populations with low SARS-CoV-2 seroprevalence or where background antibody reactivity to SARS-CoV-2 antigens has been detected. IMPORTANCE Reporting of SARS-CoV-2 infections through nucleic acid or antigen based diagnostic tests severely underestimates the true burden of exposure in a population. Serological data assaying for antibodies against SARS-CoV-2 antigens offers an alternative source of data to estimate population exposure, but most current immunoassays only include a single target for antibody detection. This report outlines a direct comparison of a multiplex bead assay to two other commercial single-target assays in their ability to detect IgG against SARS-CoV-2 antigens. Against a well-defined panel of 323 serum specimens, diagnostic sensitivity and specificity were very high for the multiplex assay, with strong agreement in IgG detection for single targets compared to the single-target assays. Collection of more data for individual- and population-level seroprofiles allows further investigation into more accurate exposure estimates and research into the determinants of infection and convalescent responses. |
Rapid capsular antigen immunoassay for diagnosis of inhalational anthrax: Preclinical studies and evaluation in a nonhuman primate model
Gates-Hollingsworth MA , Kolton CB , Hoffmaster AR , Meister GT , Moore AE , Green HR , Pogoda JM , Pillai SP , Kozel TR . mBio 2022 13 (3) e0093122 Inhalational anthrax is a fatal infectious disease. Rapid and effective treatment is critically dependent on early and accurate diagnosis. Blood culture followed by identification and confirmation may take days to provide clinically relevant information. In contrast, immunoassay for a shed antigen, the capsular polypeptide gamma-d-polyglutamate (γDPGA), can provide rapid results at the point of care. In this study, a lateral flow immunoassay for γDPGA was evaluated in a robust nonhuman primate model of inhalational anthrax. The results showed that the time to a positive result with the rapid test using either serum or blood as a clinical specimen was similar to the time after infection when a blood culture became positive. In vitro testing showed that the test was equally sensitive with cultures of the three major clades of Bacillus anthracis. Cultures from other Bacillus spp. that are known to produce γDPGA also produced positive results. The test was negative with human sera from 200 normal subjects and 45 subjects with culture-confirmed nonanthrax bacterial or fungal sepsis. Taken together, the results showed that immunoassay for γDPGA is an effective surrogate for blood culture in a relevant cynomolgus monkey model of inhalational anthrax. The test would be a valuable aid in early diagnosis of anthrax, which is critical for rapid intervention and a positive outcome. Use of the test could facilitate triage of patients with signs and symptoms of anthrax in a mass-exposure incident and in low-resource settings where laboratory resources are not readily available. IMPORTANCE Patient outcome in anthrax is critically dependent on early diagnosis followed by effective treatment. We describe a rapid lateral flow immunoassay that detects capsular antigen of Bacillus anthracis that is shed into blood during infection. The test was evaluated in a robust cynomolgus monkey model of inhalational anthrax. Rapid detection of capsular antigen is an effective surrogate for the time-consuming and laboratory-intensive diagnosis by blood culture, direct fluorescent antibody staining, or other molecular testing. The test can be performed at the point of patient contact, is rapid and inexpensive, and can be used by individuals with minimal training. |
Welders anthrax: A review of an occupational disease
de Perio MA , Hendricks KA , Dowell CH , Bower WA , Burton NC , Dawson P , Schrodt CA , Salzer JS , Marston CK , Feldmann K , Hoffmaster AR , Antonini JM . Pathogens 2022 11 (4) Since 1997, nine cases of severe pneumonia, caused by species within the B. cereus group and with a presentation similar to that of inhalation anthrax, were reported in seemingly immunocompetent metalworkers, with most being welders. In seven of the cases, isolates were found to harbor a plasmid similar to the B. anthracis pXO1 that encodes anthrax toxins. In this paper, we review the literature on the B. cereus group spp. pneumonia among welders and other metalworkers, which we term welder’s anthrax. We describe the epidemiology, including more information on two cases of welder’s anthrax in 2020. We also describe the health risks associated with welding, potential mechanisms of infection and pathological damage, prevention measures according to the hierarchy of controls, and clinical and public health considerations. Considering occupational risk factors and controlling exposure to welding fumes and gases among workers, according to the hierarchy of controls, should help prevent disease transmission in the workplace. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
Multistate Outbreak of Melioidosis Associated with Imported Aromatherapy Spray.
Gee JE , Bower WA , Kunkel A , Petras J , Gettings J , Bye M , Firestone M , Elrod MG , Liu L , Blaney DD , Zaldivar A , Raybern C , Ahmed FS , Honza H , Stonecipher S , O'Sullivan BJ , Lynfield R , Hunter M , Brennan S , Pavlick J , Gabel J , Drenzek C , Geller R , Lee C , Ritter JM , Zaki SR , Gulvik CA , Wilson WW , Beshearse E , Currie BJ , Webb JR , Weiner ZP , Negrón ME , Hoffmaster AR . N Engl J Med 2022 386 (9) 861-868 Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an uncommon infection that is typically associated with exposure to soil and water in tropical and subtropical environments. It is rarely diagnosed in the continental United States. Patients with melioidosis in the United States commonly report travel to regions where melioidosis is endemic. We report a cluster of four non-travel-associated cases of melioidosis in Georgia, Kansas, Minnesota, and Texas. These cases were caused by the same strain of B. pseudomallei that was linked to an aromatherapy spray product imported from a melioidosis-endemic area. |
Human Melioidosis Caused by Novel Transmission of Burkholderia pseudomallei from Freshwater Home Aquarium, United States
Dawson P , Duwell MM , Elrod MG , Thompson RJ , Crum DA , Jacobs RM , Gee JE , Kolton CB , Liu L , Blaney DD , Thomas LG , Sockwell D , Weiner Z , Bower WA , Hoffmaster AR , Salzer JS . Emerg Infect Dis 2021 27 (12) 3030-3035 Nearly all cases of melioidosis in the continental United States are related to international travel to areas to which Burkholderia pseudomallei, the bacterium that causes melioidosis, is endemic. We report the diagnosis and clinical course of melioidosis in a patient from the United States who had no international travel history and the public health investigation to determine the source of exposure. We tested environmental samples collected from the patient's home for B. pseudomallei by PCR and culture. Whole-genome sequencing was conducted on PCR-positive environmental samples, and results were compared with sequences from the patient's clinical specimen. Three PCR-positive environmental samples, all collected from a freshwater home aquarium that had contained imported tropical fish, were a genetic match to the clinical isolate from the patient. This finding suggests a novel route of exposure and a potential for importation of B. pseudomallei, a select agent, into the United States from disease-endemic areas. |
Notes from the Field: Fatal Anthrax Pneumonia in Welders and Other Metalworkers Caused by Bacillus cereus Group Bacteria Containing Anthrax Toxin Genes - U.S. Gulf Coast States, 1994-2020.
Dawson P , Schrodt CA , Feldmann K , Traxler RM , Gee JE , Kolton CB , Marston CK , Gulvik CA , Antonini JM , Negrón ME , McQuiston JR , Hendricks K , Weiner Z , Balsamo GA , Sokol T , Byers P , Taylor K , Zaheer S , Long S , O'Sullivan B , de Perio MA , Hoffmaster AR , Salzer JS , Bower WA . MMWR Morb Mortal Wkly Rep 2021 70 (41) 1453-1454 In 2020, CDC confirmed two cases of pneumonia (one fatal) in welders caused by rare Bacillus cereus group bacteria containing anthrax toxin genes typically associated with Bacillus anthracis. B. cereus group bacteria are gram-positive facultative anaerobes, often toxin-producing, that are ubiquitous in the environment and reside naturally in soil and dust (1). B. cereus can also be found in food, and although infection typically causes illnesses characterized by diarrhea or vomiting, B. cereus can have other clinical manifestations (e.g., pulmonary, ocular, or cutaneous). Among seven persons in the United States reported to be infected with B. cereus group bacteria containing anthrax toxin genes resulting in pneumonia since 1994, five patients died and two had critical illness with prolonged hospitalization and recovery (2–5). All persons with pneumonia were welders or other metalworkers who had worked in Louisiana or Texas (Table). In addition to the seven pneumonia cases, a cutaneous infection with B. cereus group bacteria containing anthrax toxin genes has been reported in a patient with an anthrax eschar in Florida.† |
Genomic Diversity of Burkholderia pseudomallei in Ceara, Brazil.
Gee JE , Gulvik CA , Castelo-Branco Dscm , Sidrim JJC , Rocha MFG , Cordeiro RA , Brilhante RSN , Bandeira Tjpg , Patrício I , Alencar LP , da Costa Ribeiro AK , Sheth M , Deka MA , Hoffmaster AR , Rolim D . mSphere 2021 6 (1) Burkholderia pseudomallei is a Gram-negative bacterium that causes the sapronotic disease melioidosis. An outbreak in 2003 in the state of Ceara, Brazil, resulted in subsequent surveillance and environmental sampling which led to the recognition of B. pseudomallei as an endemic pathogen in that area. From 2003 to 2015, 24 clinical and 12 environmental isolates were collected across Ceara along with one from the state of Alagoas. Using next-generation sequencing, multilocus sequence typing, and single nucleotide polymorphism analysis, we characterized the genomic diversity of this collection to better understand the population structure of B. pseudomallei associated with Ceara. We found that the isolates in this collection form a distinct subclade compared to other examples from the Western Hemisphere. Substantial genetic diversity among the clinical and environmental isolates was observed, with 14 sequence types (STs) identified among the 37 isolates. Of the 31,594 core single-nucleotide polymorphisms (SNPs) identified, a high proportion (59%) were due to recombination. Because recombination events do not follow a molecular clock, the observation of high occurrence underscores the importance of identifying and removing recombination SNPs prior to evolutionary reconstructions and inferences in public health responses to B. pseudomallei outbreaks. Our results suggest long-term B. pseudomallei prevalence in this recently recognized region of melioidosis endemicity.IMPORTANCE B. pseudomallei causes significant morbidity and mortality, but its geographic prevalence and genetic diversity are not well characterized, especially in the Western Hemisphere. A better understanding of the genetic relationships among clinical and environmental isolates will improve knowledge of the population structure of this bacterium as well as the ability to conduct epidemiological investigations of cases of melioidosis. |
Burkholderia pseudomallei in soil, US Virgin Islands, 2019
Stone NE , Hall CM , Browne AS , Sahl JW , Hutton SM , Santana-Propper E , Celona KR , Guendel I , Harrison CJ , Gee JE , Elrod MG , Busch JD , Hoffmaster AR , Ellis EM , Wagner DM . Emerg Infect Dis 2020 26 (11) 2773-2775 The distribution of Burkholderia pseudomallei in the Caribbean is poorly understood. We isolated B. pseudomallei from US Virgin Islands soil. The soil isolate was genetically similar to other isolates from the Caribbean, suggesting that B. pseudomallei might have been introduced to the islands multiple times through severe weather events. |
Investigation of melioidosis using blood culture and indirect hemagglutination assay serology among patients with fever, Northern Tanzania
Maze MJ , Elrod MG , Biggs HM , Bonnewell J , Carugati M , Hoffmaster AR , Lwezaula BF , Madut DB , Maro VP , Mmbaga BT , Morrissey AB , Saganda W , Sakasaka P , Rubach MP , Crump JA . Am J Trop Med Hyg 2020 103 (6) 2510-2514 Prediction models indicate that melioidosis may be common in parts of East Africa, but there are few empiric data. We evaluated the prevalence of melioidosis among patients presenting with fever to hospitals in Tanzania. Patients with fever were enrolled at two referral hospitals in Moshi, Tanzania, during 2007-2008, 2012-2014, and 2016-2019. Blood was collected from participants for aerobic culture. Bloodstream isolates were identified by conventional biochemical methods. Non-glucose-fermenting Gram-negative bacilli were further tested using a Burkholderia pseudomallei latex agglutination assay. Also, we performed B. pseudomallei indirect hemagglutination assay (IHA) serology on serum samples from participants enrolled from 2012 to 2014 and considered at high epidemiologic risk of melioidosis on the basis of admission within 30 days of rainfall. We defined confirmed melioidosis as isolation of B. pseudomallei from blood culture, probable melioidosis as a ≥ 4-fold rise in antibody titers between acute and convalescent sera, and seropositivity as a single antibody titer ≥ 40. We enrolled 3,716 participants and isolated non-enteric Gram-negative bacilli in five (2.5%) of 200 with bacteremia. As none of these five isolates was B. pseudomallei, there were no confirmed melioidosis cases. Of 323 participants tested by IHA, 142 (44.0%) were male, and the median (range) age was 27 (0-70) years. We identified two (0.6%) cases of probable melioidosis, and 57 (17.7%) were seropositive. The absence of confirmed melioidosis from 9 years of fever surveillance indicates melioidosis was not a major cause of illness. |
Melioidosis in a resident of Texas with no recent travel history, United States
Cossaboom CM , Marinova-Petkova A , Strysko J , Rodriguez G , Maness T , Ocampo J , Gee JE , Elrod MG , Gulvik CA , Liu L , Bower WA , Hoffmaster AR , Blaney DD , Salzer JS , Yoder JS , Mattioli MC , Sidwa TJ , Ringsdorf L , Morrow G , Ledezma E , Kieffer A . Emerg Infect Dis 2020 26 (6) 1295-1299 To our knowledge, environmental isolation of Burkholderia pseudomallei, the causative agent of melioidosis, from the continental United States has not been reported. We report a case of melioidosis in a Texas resident. Genomic analysis indicated that the isolate groups with B. pseudomallei isolates from patients in the same region, suggesting possible endemicity to this region. |
Rapid nanopore whole-genome sequencing for anthrax emergency preparedness
McLaughlin HP , Bugrysheva JV , Conley AB , Gulvik CA , Cherney B , Kolton CB , Marston CK , Saile E , Swaney E , Lonsway D , Gargis AS , Kongphet-Tran T , Lascols C , Michel P , Villanueva J , Hoffmaster AR , Gee JE , Sue D . Emerg Infect Dis 2020 26 (2) 358-361 Human anthrax cases necessitate rapid response. We completed Bacillus anthracis nanopore whole-genome sequencing in our high-containment laboratory from a human anthrax isolate hours after receipt. The de novo assembled genome showed no evidence of known antimicrobial resistance genes or introduced plasmid(s). Same-day genomic characterization enhances public health emergency response. |
Melioidosis after Hurricanes Irma and Maria, St. Thomas/St. John District, US Virgin Islands, October 2017
Guendel I , Ekpo LL , Hinkle MK , Harrison CJ , Blaney DD , Gee JE , Elrod MG , Boyd S , Gulvik CA , Liu L , Hoffmaster AR , Ellis BR , Hunte-Ceasar T , Ellis EM . Emerg Infect Dis 2019 25 (10) 1952-1955 We report 2 cases of melioidosis in women with diabetes admitted to an emergency department in the US Virgin Islands during October 2017. These cases emerged after Hurricanes Irma and Maria and did not have a definitively identified source. Poor outcomes were observed when septicemia and pulmonary involvement were present. |
Burkholderia pseudomallei, the causative agent of melioidosis, is rare but ecologically established and widely dispersed in the environment in Puerto Rico.
Hall CM , Jaramillo S , Jimenez R , Stone NE , Centner H , Busch JD , Bratsch N , Roe CC , Gee JE , Hoffmaster AR , Rivera-Garcia S , Soltero F , Ryff K , Perez-Padilla J , Keim P , Sahl JW , Wagner DM . PLoS Negl Trop Dis 2019 13 (9) e0007727 BACKGROUND: Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. The global burden and distribution of melioidosis is poorly understood, including in the Caribbean. B. pseudomallei was previously isolated from humans and soil in eastern Puerto Rico but the abundance and distribution of B. pseudomallei in Puerto Rico as a whole has not been thoroughly investigated. METHODOLOGY/PRINCIPAL FINDINGS: We collected 600 environmental samples (500 soil and 100 water) from 60 sites around Puerto Rico. We identified B. pseudomallei by isolating it via culturing and/or using PCR to detect its DNA within complex DNA extracts. Only three adjacent soil samples from one site were positive for B. pseudomallei with PCR; we obtained 55 isolates from two of these samples. The 55 B. pseudomallei isolates exhibited fine-scale variation in the core genome and contained four novel genomic islands. Phylogenetic analyses grouped Puerto Rico B. pseudomallei isolates into a monophyletic clade containing other Caribbean isolates, which was nested inside a larger clade containing all isolates from Central/South America. Other Burkholderia species were commonly observed in Puerto Rico; we cultured 129 isolates from multiple soil and water samples collected at numerous sites around Puerto Rico, including representatives of B. anthina, B. cenocepacia, B. cepacia, B. contaminans, B. glumae, B. seminalis, B. stagnalis, B. ubonensis, and several unidentified novel Burkholderia spp. CONCLUSIONS/SIGNIFICANCE: B. pseudomallei was only detected in three soil samples collected at one site in north central Puerto Rico with only two of those samples yielding isolates. All previous human and environmental B. pseudomallei isolates were obtained from eastern Puerto Rico. These findings suggest B. pseudomallei is ecologically established and widely dispersed in the environment in Puerto Rico but rare. Phylogeographic patterns suggest the source of B. pseudomallei populations in Puerto Rico and elsewhere in the Caribbean may have been Central or South America. |
First reported human cases of leptospirosis in the United States Virgin Islands in the aftermath of Hurricanes Irma and Maria, September-November 2017
Marinova-Petkova A , Guendel I , Strysko JP , Ekpo LL , Galloway R , Yoder J , Kahler A , Artus A , Hoffmaster AR , Bower WA , Walke H , Ellis BR , Hunte-Ceasar T , Ellis EM , Schafer IJ . Open Forum Infect Dis 2019 6 (7) ofz261 Objective: Following Hurricanes Irma and Maria, the first case of human leptospirosis ever identified in the US Virgin Islands (USVI) was reported to the Virgin Islands Department of Health. Leptospirosis is a potentially fatal bacterial disease caused by Leptospira species found in animal urine and urine-contaminated water and soil. Outbreaks can occur following extreme weather events. Method: Additional cases of leptospirosis were identified in the 2.5 months post-hurricanes by reviewing emergency department (ED) records from territorial hospitals for patients demonstrating leptospirosis-consistent symptoms, testing symptomatic patients previously enrolled in the USVI arbovirus surveillance system (VIASS), and adding leptospirosis testing prospectively to VIASS. Available patient sera underwent local rapid diagnostic testing for anti-Leptospira IgM followed by confirmatory microscopic agglutination testing at the US Centers for Disease Control and Prevention. Water was collected from cisterns with epidemiologic links to confirmed cases and tested by real-time PCR (qPCR) for pathogenic Leptospira spp. Results: Sixteen retrospectively identified symptomatic patients were enrolled in VIASS; 15 with available samples tested negative. Based on review of 5226 ED charts, 6 patients were further investigated; of these, 5 were tested of which 1 was positive. Prospective leptospirosis surveillance tested 57 additional patients; of these, 1 was positive. Water from 1 of 5 tested cisterns was found positive by qPCR. Conclusions: This investigation documents the first 3 cases of leptospirosis reported in the USVI and demonstrates how VIASS successfully was adapted to establish leptospirosis surveillance. Contaminated cistern water was identified as a potential source for Leptospira spp. transmission, highlighting the need for additional post-hurricane remediation and disinfection guidance. |
Zeptomole per milliliter detection and quantification of edema factor in plasma by LC-MS/MS yields insights into toxemia and the progression of inhalation anthrax
Lins RC , Boyer AE , Kuklenyik Z , Woolfitt AR , Goldstein J , Hoffmaster AR , Gallegos-Candela M , Leysath CE , Chen Z , Brumlow JO , Quinn CP , Bagarozzi DA Jr , Leppla SH , Barr JR . Anal Bioanal Chem 2019 411 (12) 2493-2509 Inhalation of Bacillus anthracis spores can cause a rapidly progressing fatal infection. B. anthracis secretes three protein toxins: lethal factor (LF), edema factor (EF), and protective antigen (PA). EF and LF may circulate as free or PA-bound forms. Both free EF (EF) and PA-bound-EF (ETx) have adenylyl cyclase activity converting ATP to cAMP. We developed an adenylyl cyclase activity-based method for detecting and quantifying total EF (EF+ETx) in plasma. The three-step method includes magnetic immunocapture with monoclonal antibodies, reaction with ATP generating cAMP, and quantification of cAMP by isotope-dilution HPLC-MS/MS. Total EF was quantified from 5PL regression of cAMP vs ETx concentration. The detection limit was 20 fg/mL (225 zeptomoles/mL for the 89 kDa protein). Relative standard deviations for controls with 0.3, 6.0, and 90 pg/mL were 11.7-16.6% with 91.2-99.5% accuracy. The method demonstrated 100% specificity in 238 human serum/plasma samples collected from unexposed healthy individuals, and 100% sensitivity in samples from 3 human and 5 rhesus macaques with inhalation anthrax. Analysis of EF in the rhesus macaques showed that it was detected earlier post-exposure than B. anthracis by culture and PCR. Similar to LF, the kinetics of EF over the course of infection were triphasic, with an initial rise (phase-1), decline (phase-2), and final rapid rise (phase-3). EF levels were ~ 2-4 orders of magnitude lower than LF during phase-1 and phase-2 and only ~ 6-fold lower at death/euthanasia. Analysis of EF improves early diagnosis and adds to our understanding of anthrax toxemia throughout infection. The LF/EF ratio may also indicate the stage of infection and need for advanced treatments. |
Detection of Bacillus anthracis in animal tissues using InBios Active Anthrax Detect Rapid Test lateral flow immunoassay
Kolton CB , Marston CK , Stoddard RA , Cossaboom C , Salzer JS , Kozel TR , Gates-Hollingsworth MA , Cleveland CA , Thompson AT , Dalton MF , Yabsley MJ , Hoffmaster AR . Lett Appl Microbiol 2019 68 (6) 480-484 The Active Anthrax Detect (AAD) Rapid Test lateral flow immunoassay is a point-of-care assay that was under investigational use for detecting Bacillus anthracis capsular polypeptide (polyglutamic acid) in human blood, serum, and plasma. Small sample volumes, rapid results, and no refrigeration required allow for easy use in either the field or laboratory. Although the test was developed for use in suspect cases of human inhalation anthrax, its features also make it a potentially powerful tool for testing suspect animal cases. We tested animal tissue samples that were confirmed or ruled out for B. anthracis. The AAD Rapid Tests were also deployed in the field, testing animal carcasses during an anthrax outbreak in hippopotami (Hippopotamus amphibius) and Cape buffalo (Syncerus caffer) in Namibia. Evaluation of all samples showed a specificity of 82% and sensitivity of 98%. However, when the assay was used on specimens from only fresh carcasses (dead for less than 24 hours), the specificity increased to 96%. The AAD Rapid Test is a rapid and simple screening assay, but confirmatory testing needs to be done, especially when the age of the sample (days animal has been deceased) is unknown. This article is protected by copyright. All rights reserved. |
Genome Sequences of Penicillin-Resistant Bacillus anthracis Strains.
Gargis AS , Lascols C , McLaughlin HP , Conley AB , Hoffmaster AR , Sue D . Microbiol Resour Announc 2019 8 (2) Bacillus anthracis, the etiologic agent of anthrax, is characteristically susceptible to penicillin despite containing two chromosomal beta-lactamase genes. Few naturally occurring penicillin-resistant B. anthracis isolates have been reported. Here, we report the draft genome sequences for three penicillin-resistant B. anthracis strains, strain 32, UT308, and SK57. |
Analysis of Whole-Genome Sequences for the Prediction of Penicillin Resistance and ß-Lactamase Activity in Bacillus anthracis .
Gargis AS , McLaughlin HP , Conley AB , Lascols C , Michel PA , Gee JE , Marston CK , Kolton CB , Rodriguez RLm , Hoffmaster AR , Weigel LM , Sue D . mSystems 2018 3 (6) Penicillin (PEN) is a low-cost option for anthrax treatment, but naturally occurring resistance has been reported. beta-Lactamase expression (bla1, bla2) in Bacillus anthracis is regulated by a sigma factor (SigP) and its cognate anti-sigma factor (RsiP). Mutations leading to truncation of RsiP were previously described as a basis for PEN resistance. Here, we analyze whole-genome sequencing (WGS) data and compare the chromosomal sigP-bla1 regions from 374 B. anthracis strains to determine the frequency of mutations, identify mutations associated with PEN resistance, and evaluate the usefulness of WGS for predicting PEN resistance. Few (3.5%) strains contained at least 1 of 11 different mutations in sigP, rsiP, or bla1. Nine of these mutations have not been previously associated with PEN resistance. Four strains showed PEN resistance (PEN-R) by conventional broth microdilution, including 1 strain with a novel frameshift in rsiP. One strain that carries the same rsiP frameshift mutation as that found previously in a PEN-R strain showed a PEN-susceptible (PEN-S) phenotype and exhibited decreased bla1 and bla2 transcription. An unexpectedly small colony size, a reduced growth rate, and undetectable beta-lactamase activity levels (culture supernatant and cell lysate) were observed in this PEN-S strain. Sequence analysis revealed mutations in genes associated with growth defects that may contribute to this phenotype. While B. anthracis rsiP mutations cannot be exclusively used to predict resistance, four of the five strains with rsiP mutations were PEN-R. Therefore, the B. anthracis sigP-bla1 region is a useful locus for WGS-based PEN resistance prediction, but phenotypic testing remains essential. IMPORTANCE Determination of antimicrobial susceptibility of B. anthracis is essential for the appropriate distribution of antimicrobial agents for postexposure prophylaxis (PEP) and treatment of anthrax. Analysis of WGS data allows for the rapid detection of mutations in antimicrobial resistance (AMR) genes in an isolate, but the presence of a mutation in an AMR gene does not always accurately predict resistance. As mutations in the anti-sigma factor RsiP have been previously associated with high-level penicillin resistance in a limited number of strains, we investigated WGS assemblies from 374 strains to determine the frequency of mutations and performed functional antimicrobial susceptibility testing. Of the five strains that contained mutations in rsiP, only four were PEN-R by functional antimicrobial susceptibility testing. We conclude that while sequence analysis of this region is useful for AMR prediction in B. anthracis, genetic analysis should not be used exclusively and phenotypic susceptibility testing remains essential. |
Burkholderia thailandensis isolated from infected wound, Arkansas, USA
Gee JE , Elrod MG , Gulvik CA , Haselow DT , Waters C , Liu L , Hoffmaster AR . Emerg Infect Dis 2018 24 (11) 2091-2094 The bacterium Burkholderia thailandensis, a member of the Burkholderia pseudomallei complex, is generally considered nonpathogenic; however, on rare occasions, B. thailandensis infections have been reported. We describe a clinical isolate of B. thailandensis, BtAR2017, recovered from a patient with an infected wound in Arkansas, USA, in 2017. |
Genomic Characterization and Copy Number Variation of Bacillus anthracis Plasmids pXO1 and pXO2 in a Historical Collection of 412 Strains.
Pena-Gonzalez A , Rodriguez RLm , Marston CK , Gee JE , Gulvik CA , Kolton CB , Saile E , Frace M , Hoffmaster AR , Konstantinidis KT . mSystems 2018 3 (4) Bacillus anthracis plasmids pXO1 and pXO2 carry the main virulence factors responsible for anthrax. However, the extent of copy number variation within the species and how the plasmids are related to pXO1/pXO2-like plasmids in other species of the Bacillus cereus sensu lato group remain unclear. To gain new insights into these issues, we sequenced 412 B. anthracis strains representing the total phylogenetic and ecological diversity of the species. Our results revealed that B. anthracis genomes carried, on average, 3.86 and 2.29 copies of pXO1 and pXO2, respectively, and also revealed a positive linear correlation between the copy numbers of pXO1 and pXO2. No correlation between the plasmid copy number and the phylogenetic relatedness of the strains was observed. However, genomes of strains isolated from animal tissues generally maintained a higher plasmid copy number than genomes of strains from environmental sources (P < 0.05 [Welch two-sample t test]). Comparisons against B. cereus genomes carrying complete or partial pXO1-like and pXO2-like plasmids showed that the plasmid-based phylogeny recapitulated that of the main chromosome, indicating limited plasmid horizontal transfer between or within these species. Comparisons of gene content revealed a closed pXO1 and pXO2 pangenome; e.g., plasmids encode <8 unique genes, on average, and a single large fragment deletion of pXO1 in one B. anthracis strain (2000031682) was detected. Collectively, our results provide a more complete view of the genomic diversity of B. anthracis plasmids, their copy number variation, and the virulence potential of other Bacillus species carrying pXO1/pXO2-like plasmids. IMPORTANCE Bacillus anthracis microorganisms are of historical and epidemiological importance and are among the most homogenous bacterial groups known, even though the B. anthracis genome is rich in mobile elements. Mobile elements can trigger the diversification of lineages; therefore, characterizing the extent of genomic variation in a large collection of strains is critical for a complete understanding of the diversity and evolution of the species. Here, we sequenced a large collection of B. anthracis strains (>400) that were recovered from human, animal, and environmental sources around the world. Our results confirmed the remarkable stability of gene content and synteny of the anthrax plasmids and revealed no signal of plasmid exchange between B. anthracis and pathogenic B. cereus isolates but rather predominantly vertical descent. These findings advance our understanding of the biology and pathogenomic evolution of B. anthracis and its plasmids. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure