Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-6 (of 6 Records) |
Query Trace: Hodson LL[original query] |
---|
Launching the dialogue: Safety and innovation as partners for success in advanced manufacturing
Geraci CL , Tinkle SS , Brenner SA , Hodson LL , Pomeroy-Carter CA , Neu-Baker N . J Occup Environ Hyg 2018 15 (6) 1-14 Emerging and novel technologies, materials, and information integrated into increasingly automated and networked manufacturing processes or into traditional manufacturing settings are enhancing the efficiency and productivity of manufacturing. Globally, there is a move toward a new era in manufacturing that is characterized by: (1) the ability to create and deliver more complex designs of products; (2) the creation and use of materials with new properties that meet a design need; (3) the employment of new technologies, such as additive and digital techniques that improve on conventional manufacturing processes; and (4) a compression of the time from initial design concept to the creation of a final product. Globally, this movement has many names, but "advanced manufacturing" has become the shorthand for this complex integration of material and technology elements that enable new ways to manufacture existing products, as well as new products emerging from new technologies and new design methods. As the breadth of activities associated with advanced manufacturing suggests, there is no single advanced manufacturing industry. Instead, aspects of advanced manufacturing can be identified across a diverse set of business sectors that use manufacturing technologies, ranging from the semiconductors and electronics to the automotive and pharmaceutical industries. The breadth and diversity of advanced manufacturing may change the occupational and environmental risk profile, challenge the basic elements of comprehensive health and safety (material, process, worker, environment, product, and general public health and safety), and provide an opportunity for development and dissemination of occupational and environmental health and safety (OEHS) guidance and best practices. It is unknown how much the risk profile of different elements of OEHS will change, thus requiring an evolution of health and safety practices. These changes may be accomplished most effectively through multi-disciplinary, multi-sector, public-private dialogue that identifies issues and offers solutions. |
Taking stock of the occupational safety and health challenges of nanotechnology: 2000–2015
Schulte PA , Roth G , Hodson LL , Murashov V , Hoover MD , Zumwalde R , Kuempel ED , Geraci CL , Stefaniak AB , Castranova V , Howard J . J Nanopart Res 2016 18 159 Engineered nanomaterials significantly entered commerce at the beginning of the 21st century. Concerns about serious potential health effects of nanomaterials were widespread. Now, approximately 15 years later, it is worthwhile to take stock of research and efforts to protect nanomaterial workers from potential risks of adverse health effects. This article provides and examines timelines for major functional areas (toxicology, metrology, exposure assessment, engineering controls and personal protective equipment, risk assessment, risk management, medical surveillance, and epidemiology) to identify significant contributions to worker safety and health. The occupational safety and health field has responded effectively to identify gaps in knowledge and practice, but further research is warranted and is described. There is now a greater, if imperfect, understanding of the mechanisms underlying nanoparticle toxicology, hazards to workers, and appropriate controls for nanomaterials, but unified analytical standards and exposure characterization methods are still lacking. The development of control-banding and similar strategies has compensated for incomplete data on exposure and risk, but it is unknown how widely such approaches are being adopted. Although the importance of epidemiologic studies and medical surveillance is recognized, implementation has been slowed by logistical issues. Responsible development of nanotechnology requires protection of workers at all stages of the technological life cycle. In each of the functional areas assessed, progress has been made, but more is required. |
Refinement of the nanoparticle emission assessment technique into the Nanomaterial Exposure Assessment Technique (NEAT 2.0)
Eastlake AC , Beaucham C , Martinez KF , Dahm MM , Sparks C , Hodson LL , Geraci CL . J Occup Environ Hyg 2016 13 (9) 0 Engineered nanomaterial emission and exposure characterization studies have been completed at more than 60 different facilities by the National Institute for Occupational Safety and Health (NIOSH). These experiences have provided NIOSH the opportunity to refine an earlier published technique, the Nanoparticle Emission Assessment Technique (NEAT 1.0), into a more comprehensive technique for assessing worker and workplace exposures to engineered nanomaterials. This change is reflected in the new name Nanomaterial Exposure Assessment Technique (NEAT 2.0) which distinguishes it from NEAT 1.0. NEAT 2.0 places a stronger emphasis on time-integrated, filter-based sampling (i.e., elemental mass analysis and particle morphology) in the worker's breathing zone (full shift and task specific) and area samples to develop job exposure matrices. NEAT 2.0 includes a comprehensive assessment of emissions at processes and job tasks, using direct-reading instruments (i.e., particle counters) in data-logging mode to better understand peak emission periods. Evaluation of worker practices, ventilation efficacy, and other engineering exposure control systems and risk management strategies serve to allow for a comprehensive exposure assessment. |
Opportunities and challenges of nanotechnology in the green economy
Iavicoli I , Leso V , Ricciardi W , Hodson LL , Hoover MD . Environ Health 2014 13 78 In a world of finite resources and ecosystem capacity, the prevailing model of economic growth, founded on ever-increasing consumption of resources and emission pollutants, cannot be sustained any longer. In this context, the "green economy" concept has offered the opportunity to change the way that society manages the interaction of the environmental and economic domains. To enable society to build and sustain a green economy, the associated concept of "green nanotechnology" aims to exploit nano-innovations in materials science and engineering to generate products and processes that are energy efficient as well as economically and environmentally sustainable. These applications are expected to impact a large range of economic sectors, such as energy production and storage, clean up-technologies, as well as construction and related infrastructure industries. These solutions may offer the opportunities to reduce pressure on raw materials trading on renewable energy, to improve power delivery systems to be more reliable, efficient and safe as well as to use unconventional water sources or nano-enabled construction products therefore providing better ecosystem and livelihood conditions.However, the benefits of incorporating nanomaterials in green products and processes may bring challenges with them for environmental, health and safety risks, ethical and social issues, as well as uncertainty concerning market and consumer acceptance. Therefore, our aim is to examine the relationships among guiding principles for a green economy and opportunities for introducing nano-applications in this field as well as to critically analyze their practical challenges, especially related to the impact that they may have on the health and safety of workers involved in this innovative sector. These are principally due to the not fully known nanomaterial hazardous properties, as well as to the difficulties in characterizing exposure and defining emerging risks for the workforce. Interestingly, this review proposes action strategies for the assessment, management and communication of risks aimed to precautionary adopt preventive measures including formation and training of employees, collective and personal protective equipment, health surveillance programs to protect the health and safety of nano-workers. It finally underlines the importance that occupational health considerations will have on achieving an effectively sustainable development of nanotechnology. |
Overview of risk management for engineered nanomaterials
Schulte PA , Geraci CL , Hodson LL , Zumwalde RD , Kuempel ED , Murashov V , Martinez KF , Heidel DS . J Phys Conf Ser 2013 429 (1) 012062 Occupational exposure to engineered nanomaterials (ENMs) is considered a new and challenging occurrence. Preliminary information from laboratory studies indicates that workers exposed to some kinds of ENMs could be at risk of adverse health effects. To protect the nanomaterial workforce, a precautionary risk management approach is warranted and given the newness of ENMs and emergence of nanotechnology, a naturalistic view of risk management is useful. Employers have the primary responsibility for providing a safe and healthy workplace. This is achieved by identifying and managing risks which include recognition of hazards, assessing exposures, characterizing actual risk, and implementing measures to control those risks. Following traditional risk management models for nanomaterials is challenging because of uncertainties about the nature of hazards, issues in exposure assessment, questions about appropriate control methods, and lack of occupational exposure limits (OELs) or nano-specific regulations. In the absence of OELs specific for nanomaterials, a precautionary approach has been recommended in many countries. The precautionary approach entails minimizing exposures by using engineering controls and personal protective equipment (PPE). Generally, risk management utilizes the hierarchy of controls. Ideally, risk management for nanomaterials should be part of an enterprise-wide risk management program or system and this should include both risk control and a medical surveillance program that assesses the frequency of adverse effects among groups of workers exposed to nanomaterials. In some cases, the medical surveillance could include medical screening of individual workers to detect early signs of work-related illnesses. All medical surveillance should be used to assess the effectiveness of risk management; however, medical surveillance should be considered as a second line of defense to ensure that implemented risk management practices are effective. |
Introduction to the JOEM supplement Nanomaterials and Worker Health: medical surveillance, exposure registries, and epidemiologic research
Schulte PA , Trout DB , Hodson LL . J Occup Environ Med 2011 53 S1-S2 This issue presents selected articles from the Nanomaterial Workers' Health Conference held in Keystone, Colorado, July 21 to 23, 2010. The conference addressed three critical and related topics: medical surveillance; formation of exposure registries; and the conduct of epidemiologic research. Each topic was introduced with a plenary session followed by group breakout sessions to obtain input from the approximately 120 attendees. This supplement issue of the Journal of Occupational and Environmental Medicine includes selected peer reviewed articles from the conference and summaries of the breakout sessions. The conference was initiated with a general session, and there are articles that provide an overview of the topics (Schulte and Trout) and describe lessons from air pollution particulate epidemiology (Peters et al) and the state-of-the-art of nanotoxicology (Castranova), both of which contributed to the initial concern about potential hazards of nanomaterials. The opening session also included an overview of medical surveillance in the context in which occupational physicians must regularly work and at a time when uncertainties about hazards and risks make decisions about medical surveillance of workers difficult (Nasterlack). |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure