Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-18 (of 18 Records) |
Query Trace: Harcourt BH[original query] |
---|
Addressing Personal Protective Equipment (PPE) Decontamination: Methylene Blue and Light Inactivates SARS-CoV-2 on N95 Respirators and Masks with Maintenance of Integrity and Fit (preprint)
Lendvay TS , Chen J , Harcourt BH , Scholte FE , Lin YL , Kilinc-Balci FS , Lamb MM , Homdayjanakul K , Cui Y , Price A , Heyne B , Sahni J , Kabra KB , Lin YC , Evans D , Mores CN , Page K , Chu LF , Haubruge E , Thiry E , Ludwig-Begall LF , Wielick C , Clark T , Wagner T , Timm E , Gallagher T , Faris P , Macia N , Mackie CJ , Simmons SM , Reader S , Malott R , Hope K , Davies JM , Tritsch SR , Dams L , Nauwynck H , Willaert JF , De Jaeger S , Liao L , Zhao M , Laperre J , Jolois O , Smit SJ , Patel AN , Mayo M , Parker R , Molloy-Simard V , Lemyre JL , Chu S , Conly JM , Chu MC . medRxiv 2020 2020.12.11.20236919 Background The coronavirus disease 2019 (COVID-19) pandemic has resulted in severe shortages of personal protective equipment (PPE) necessary to protect front-line healthcare personnel. These shortages underscore the urgent need for simple, efficient, and inexpensive methods to decontaminate SARS-CoV-2-exposed PPE enabling safe reuse of masks and respirators. Efficient decontamination must be available not only in low-resourced settings, but also in well-resourced settings affected by PPE shortages. Methylene blue (MB) photochemical treatment, hitherto with many clinical applications including those used to inactivate virus in plasma, presents a novel approach for widely applicable PPE decontamination. Dry heat (DH) treatment is another potential low-cost decontamination method.Methods MB and light (MBL) and DH treatments were used to inactivate coronavirus on respirator and mask material. We tested three N95 filtering facepiece respirators (FFRs), two medical masks (MMs), and one cloth community mask (CM). FFR/MM/CM materials were inoculated with SARS-CoV-2 (a Betacoronavirus), murine hepatitis virus (MHV) (a Betacoronavirus), or porcine respiratory coronavirus (PRCV) (an Alphacoronavirus), and treated with 10 µM MB followed by 50,000 lux of broad-spectrum light or 12,500 lux of red light for 30 minutes, or with 75°C DH for 60 minutes. In parallel, we tested respirator and mask integrity using several standard methods and compared to the FDA-authorized vaporized hydrogen peroxide plus ozone (VHP+O3) decontamination method. Intact FFRs/MMs/CM were subjected to five cycles of decontamination (5CD) to assess integrity using International Standardization Organization (ISO), American Society for Testing and Materials (ASTM) International, National Institute for Occupational Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA) test methods.Findings Overall, MBL robustly and consistently inactivated all three coronaviruses with at least a 4-log reduction. DH yielded similar results, with the exception of MHV, which was only reduced by 2-log after treatment. FFR/MM integrity was maintained for 5 cycles of MBL or DH treatment, whereas one FFR failed after 5 cycles of VHP+O3. Baseline performance for the CM was variable, but reduction of integrity was minimal.Interpretation Methylene blue with light and DH treatment decontaminated masks and respirators by inactivating three tested coronaviruses without compromising integrity through 5CD. MBL decontamination of masks is effective, low-cost and does not require specialized equipment, making it applicable in all-resource settings. These attractive features support the utilization and continued development of this novel PPE decontamination method.Competing Interest StatementAuthors Thomas S. Lendvay, James Chen are Co-Founders and equity owners of Singletto, Inc. (Seattle, WA, USA) Authors Yi Cui and Steven Chu are Co-Founders and equity owners of 4C Air, Inc. (Sunnyvale, CA)Funding StatementThis study was funded by Open Philanthropy; Amazon Inc./University of Washington Catalyst Award; University of Liege (Belgium) and the Walloon Region, Belgium; Li Ka Shing Institute; Alberta Health Services; and an Anonymous donor to the University of Washington, Department of Urology.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Stanford University and Alberta Health Services/University of Calgary were exempt from IRB as the human fit testing was considered Quality Improvement. ERB for clinical specimen use: A clinical saliva specimen with a SARS-CoV-2 was provided by Dr. John Conly from Calgary, Alberta with Calgary ERB approval (ID# Pro00099761).All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective inte ventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData will be freely shared post publication on reasonable request by contacting the corresponding author of the study. |
Of masks and methylene blue - The use of methylene blue photochemical treatment to decontaminate surgical masks contaminated with a tenacious small non-enveloped norovirus (preprint)
Wielick C , Fries A , Dams L , Razafimahefa RM , Heyne B , Harcourt BH , Lendvay TS , Willaert JF , de Jaeger S , Haubruge E , Thiry E , Ludwig-Begall LF . medRxiv 2021 04 Background In the context of the SARS-CoV-2 pandemic, reuse of personal protective equipment, specifically that of medical face coverings, has been recommended. The reuse of these typically single-use only items necessitates procedures to inactivate contaminating human respiratory and gastrointestinal pathogens. We previously demonstrated decontamination of surgical masks and respirators contaminated with infectious SARS-CoV-2 and various animal coronaviruses via low concentration- and short exposure methylene blue photochemical treatment (10 microM methylene blue, 30 minutes of 12,500-lux red light or 50,000 lux white light exposure). Methods Here, we describe the adaptation of this protocol to the decontamination of a more resistant, non-enveloped gastrointestinal virus and demonstrate efficient photodynamic inactivation of murine norovirus, a human norovirus surrogate. Results Methylene blue photochemical treatment (100 microM methylene blue, 30 minutes of 12,500-lux red light exposure) of murine norovirus-contaminated masks reduced infectious viral titres by over four orders of magnitude on surgical mask surfaces. Discussion and Conclusions Inactivation of a norovirus, the most difficult to inactivate of the respiratory and gastrointestinal human viruses, can predict the inactivation of any less resistant viral mask contaminant. The protocol developed here thus solidifies the position of methylene blue photochemical decontamination as an important tool in the package of practical pandemic preparedness. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. |
Direct Real-Time PCR for the Detection and Serotyping of Haemophilus influenzae without DNA Extraction.
Marasini D , Whaley MJ , Jenkins LT , Hu F , Jiang W , Topaz N , Chen A , Schmink S , DolanThomas J , Harcourt BH , Marjuki H , Wang X . J Clin Microbiol 2022 60 (4) e0211121 To monitor the burden and changes in Haemophilus influenzae (Hi) disease, direct real-time PCR (drt-PCR) assays have been developed for Hi detection in monoplex form and its six serotypes in triplex form, directly from cerebrospinal fluid (CSF) specimens. These assays target the phoB gene for the species detection (Hi-phoB) and serotype-specific genes in region II of the capsule biosynthesis locus (Hi-abf and Hi-cde), identified through comparative analysis of Hi and non-Hi whole-genome sequences. The lower limit of detection (LLD) is 293 CFU/mL for the Hi-phoB assay and ranged from 11 to 130 CFU/mL for the triplex serotyping assays. Using culture as a reference method, the sensitivity and specificity of Hi-phoB, Hi-abf, and Hi-cde were 100%. Triplex serotyping assays also showed 100% agreement for each serotype compared to their corresponding monoplex serotyping assay. These highly sensitive and specific drt-PCR assays do not require DNA extraction and thereby reduce the time, cost, and handling required to process CSF specimens. Furthermore, triplex drt-PCR assays combine the detection of three serotypes in a single reaction, further improving testing efficiency, which is critical for laboratories that process high volumes of Hi specimens for surveillance and diagnostic purposes. |
Use of Ebola vaccine: Expansion of recommendations of the Advisory Committee on Immunization Practices to include two additional populations - United States, 2021
Malenfant JH , Joyce A , Choi MJ , Cossaboom CM , Whitesell AN , Harcourt BH , Atmar RL , Villanueva JM , Bell BP , Hahn C , Loehr J , Davey RT , Sprecher A , Kraft CS , Shoemaker T , Montgomery JM , Helfand R , Damon IK , Frey SE , Chen WH . MMWR Morb Mortal Wkly Rep 2022 71 (8) 290-292 On December 19, 2019, the Food and Drug Administration (FDA) approved rVSVΔG-ZEBOV-GP Ebola vaccine (ERVEBO, Merck) for the prevention of Ebola virus disease (EVD) caused by infection with Ebola virus, species Zaire ebolavirus, in adults aged ≥18 years. In February 2020, the Advisory Committee on Immunization Practices (ACIP) recommended preexposure vaccination with ERVEBO for adults aged ≥18 years in the United States who are at highest risk for potential occupational exposure to Ebola virus because they are responding to an outbreak of EVD, work as health care personnel at federally designated Ebola treatment centers in the United States, or work as laboratorians or other staff members at biosafety level 4 facilities in the United States (1). |
Addressing personal protective equipment (PPE) decontamination: Methylene blue and light inactivates severe acute respiratory coronavirus virus 2 (SARS-CoV-2) on N95 respirators and medical masks with maintenance of integrity and fit.
Lendvay TS , Chen J , Harcourt BH , Scholte FE , Lin YL , Kilinc-Balci FS , Lamb MM , Homdayjanakul K , Cui Y , Price A , Heyne B , Sahni J , Kabra KB , Lin YC , Evans D , Mores CN , Page K , Chu LF , Haubruge E , Thiry E , Ludwig-Begall LF , Wielick C , Clark T , Wagner T , Timm E , Gallagher T , Faris P , Macia N , Mackie CJ , Simmons SM , Reader S , Malott R , Hope K , Davies JM , Tritsch SR , Dams L , Nauwynck H , Willaert JF , De Jaeger S , Liao L , Zhao M , Laperre J , Jolois O , Smit SJ , Patel AN , Mayo M , Parker R , Molloy-Simard V , Lemyre JL , Chu S , Conly JM , Chu MC . Infect Control Hosp Epidemiol 2021 43 (7) 1-83 OBJECTIVE: The coronavirus disease 2019 (COVID-19) pandemic has resulted in shortages of personal protective equipment (PPE) underscoring the urgent need for simple, efficient, and inexpensive methods to decontaminate SARS-CoV-2-exposed masks and respirators. We hypothesized that methylene blue (MB) photochemical treatment, which has various clinical applications, could decontaminate PPE contaminated with coronavirus. DESIGN: The two arms of the study included: 1) PPE inoculation with coronaviruses followed by MB with light (MBL) decontamination treatment, and 2) PPE treatment with MBL for 5 cycles of decontamination (5CD) to determine maintenance of PPE performance. METHODS: MBL treatment was used to inactivate coronaviruses on three N95 filtering facepiece respirator (FFR) and two medical mask (MM) models. We inoculated FFR and MM materials with three coronaviruses, including SARS-CoV-2, and treated with 10 µM MB and exposed to 50,000 lux of white light or 12,500 lux of red light for 30 minutes. In parallel, integrity was assessed after 5CD using multiple US and international test methods and compared to the FDA-authorized vaporized hydrogen peroxide plus ozone (VHP+O3) decontamination method. RESULTS: Overall, MBL robustly and consistently inactivated all three coronaviruses with 99.8 - to >99.9% virus inactivation across all FFRs and MMs tested. FFR and MM integrity was maintained after 5 cycles of MBL treatment, whereas one FFR model failed after 5 cycles of VHP+O3. CONCLUSIONS: MBL treatment decontaminated respirators and masks by inactivating three tested coronaviruses without compromising integrity through 5CD. MBL decontamination is effective, low-cost and does not require specialized equipment, making it applicable in all-resource settings. |
Use of Ebola vaccine: Recommendations of the Advisory Committee on Immunization Practices, United States, 2020
Choi MJ , Cossaboom CM , Whitesell AN , Dyal JW , Joyce A , Morgan RL , Campos-Outcalt D , Person M , Ervin E , Yu YC , Rollin PE , Harcourt BH , Atmar RL , Bell BP , Helfand R , Damon IK , Frey SE . MMWR Recomm Rep 2021 70 (1) 1-12 This report summarizes the recommendations of the Advisory Committee on Immunization Practices (ACIP) for use of the rVSVΔG-ZEBOV-GP Ebola vaccine (Ervebo) in the United States. The vaccine contains rice-derived recombinant human serum albumin and live attenuated recombinant vesicular stomatitis virus (VSV) in which the gene encoding the glycoprotein of VSV was replaced with the gene encoding the glycoprotein of Ebola virus species Zaire ebolavirus. Persons with a history of severe allergic reaction (e.g., anaphylaxis) to rice protein should not receive Ervebo. This is the first and only vaccine currently licensed by the Food and Drug Administration for the prevention of Ebola virus disease (EVD). These guidelines will be updated based on availability of new data or as new vaccines are licensed to protect against EVD.ACIP recommends preexposure vaccination with Ervebo for adults aged ≥18 years in the U.S. population who are at highest risk for potential occupational exposure to Ebola virus species Zaire ebolavirus because they are responding to an outbreak of EVD, work as health care personnel at federally designated Ebola treatment centers in the United States, or work as laboratorians or other staff at biosafety level 4 facilities in the United States. Recommendations for use of Ervebo in additional populations at risk for exposure and other settings will be considered and discussed by ACIP in the future. |
Lessons Learned from a COVID-19 Biohazard Spill During Swabbing at a Quarantine Facility.
Mayer O , Pfundt T , Fortenberry GZ , Harcourt BH , Bower WA . Disaster Med Public Health Prep 2020 16 (3) 1-9 The need for increased testing for SARS-CoV-2, the virus that causes COVID-19, has resulted in an increase of testing facilities outside of traditional clinical settings and sample handling by individuals without appropriate biohazard and biocontainment training. During the repatriation and quarantine of passengers from the Grand Princess cruise ship at a U.S. military base, biocontainment of a potentially infectious sample from a passenger was compromised. This paper describes the steps taken to contain the spill, decontaminate the area, and discusses the needs for adequate training in a biohazard response. |
Penicillin use in meningococcal disease management: Active Bacterial Core surveillance sites, 2009
Blain AE , Mandal S , Wu H , MacNeil JR , Harrison LH , Farley MM , Lynfield R , Miller L , Nichols M , Petit S , Reingold A , Schaffner W , Thomas A , Zansky SM , Anderson R , Harcourt BH , Mayer LW , Clark TA , Cohn AC . Open Forum Infect Dis 2016 3 (3) ofw152 In 2009, in the Active Bacterial Core surveillance sites, penicillin was not commonly used to treat meningococcal disease. This is likely because of inconsistent availability of antimicrobial susceptibility testing and ease of use of third-generation cephalosporins. Consideration of current practices may inform future meningococcal disease management guidelines. |
Population-Based Surveillance of Neisseria meningitidis Antimicrobial Resistance in the United States.
Harcourt BH , Anderson RD , Wu HM , Cohn AC , MacNeil JR , Taylor TH , Wang X , Clark TA , Messonnier NE , Mayer LW . Open Forum Infect Dis 2015 2 (3) ofv117 BACKGROUND: Antimicrobial treatment and chemoprophylaxis of patients and their close contacts is critical to reduce the morbidity and mortality and prevent secondary cases of meningococcal disease. Through the 1990's, the prevalence of antimicrobial resistance to commonly used antimicrobials among Neisseria meningitidis was low in the United States. Susceptibility testing was performed to ascertain whether the proportions of isolates with reduced susceptibility to antimicrobials commonly used for N meningitidis have increased since 2004 in the United States. METHODS: Antimicrobial susceptibility testing was performed by broth microdilution on 466 isolates of N meningitidis collected in 2004, 2008, 2010, and 2011 from an active, population-based surveillance system for susceptibility to ceftriaxone, ciprofloxacin, penicillin G, rifampin, and azithromycin. The molecular mechanism of reduced susceptibility was investigated for isolates with intermediate or resistant phenotypes. RESULTS: All isolates were susceptible to ceftriaxone and azithromycin, 10.3% were penicillin G intermediate (range, 8% in 2008-16.7% in 2010), and <1% were ciprofloxacin, rifampin, or penicillin G resistant. Of the penicillin G intermediate or resistant isolates, 63% contained mutations in the penA gene associated with reduced susceptibility to penicillin G. All ciprofloxacin-resistant isolates contained mutations in the gyrA gene associated with reduced susceptibility. CONCLUSIONS:. Resistance of N meningitidis to antimicrobials used for empirical treatment of meningitis in the United States has not been detected, and resistance to penicillin G and chemoprophylaxis agents remains uncommon. Therapeutic agent recommendations remain valid. Although periodic surveillance is warranted to monitor trends in susceptibility, routine clinical testing may be of little use. |
Cell culture and electron microscopy for identifying viruses in diseases of unknown cause
Goldsmith CS , Ksiazek TG , Rollin PE , Comer JA , Nicholson WL , Peret TC , Erdman DD , Bellini WJ , Harcourt BH , Rota PA , Bhatnagar J , Bowen MD , Erickson BR , McMullan LK , Nichol ST , Shieh WJ , Paddock CD , Zaki SR . Emerg Infect Dis 2013 19 (6) 864-9 During outbreaks of infectious diseases or in cases of severely ill patients, it is imperative to identify the causative agent. This report describes several events in which virus isolation and identification by electron microscopy were critical to initial recognition of the etiologic agent, which was further analyzed by additional laboratory diagnostic assays. Examples include severe acute respiratory syndrome coronavirus, and Nipah, lymphocytic choriomeningitis, West Nile, Cache Valley, and Heartland viruses. These cases illustrate the importance of the techniques of cell culture and electron microscopy in pathogen identification and recognition of emerging diseases. |
Accuracy of real-time PCR, Gram stain and culture for Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae meningitis diagnosis.
Wu HM , Cordeiro SM , Harcourt BH , Carvalho M , Azevedo J , Oliveira TQ , Leite MC , Salgado K , Reis MG , Plikaytis BD , Clark TA , Mayer LW , Ko AI , Martin SW , Reis JN . BMC Infect Dis 2013 13 26 BACKGROUND: Although cerebrospinal fluid (CSF) culture is the diagnostic reference standard for bacterial meningitis, its sensitivity is limited, particularly when antibiotics were previously administered. CSF Gram staining and real-time PCR are theoretically less affected by antibiotics; however, it is difficult to evaluate these tests with an imperfect reference standard. METHODS AND FINDINGS: CSF from patients with suspected meningitis from Salvador, Brazil were tested with culture, Gram stain, and real-time PCR using S. pneumoniae, N. meningitidis, and H. influenzae specific primers and probes. An antibiotic detection disk bioassay was used to test for the presence of antibiotic activity in CSF. The diagnostic accuracy of tests were evaluated using multiple methods, including direct evaluation of Gram stain and real-time PCR against CSF culture, evaluation of real-time PCR against a composite reference standard, and latent class analysis modeling to evaluate all three tests simultaneously. RESULTS: Among 451 CSF specimens, 80 (17.7%) had culture isolation of one of the three pathogens (40 S. pneumoniae, 36 N. meningitidis, and 4 H. influenzae), and 113 (25.1%) were real-time PCR positive (51 S. pneumoniae, 57 N. meningitidis, and 5 H. influenzae). Compared to culture, real-time PCR sensitivity and specificity were 95.0% and 90.0%, respectively. In a latent class analysis model, the sensitivity and specificity estimates were: culture, 81.3% and 99.7%; Gram stain, 98.2% and 98.7%; and real-time PCR, 95.7% and 94.3%, respectively. Gram stain and real-time PCR sensitivity did not change significantly when there was antibiotic activity in the CSF. CONCLUSION: Real-time PCR and Gram stain were highly accurate in diagnosing meningitis caused by S. pneumoniae, N. meningitidis, and H. influenzae, though there were few cases of H. influenzae. Furthermore, real-time PCR and Gram staining were less affected by antibiotic presence and might be useful when antibiotics were previously administered. Gram staining, which is inexpensive and commonly available, should be encouraged in all clinical settings. |
Genomic basis of a polyagglutinating isolate of Neisseria meningitidis.
Rishishwar L , Katz LS , Sharma NV , Rowe L , Frace M , Thomas JD , Harcourt BH , Mayer LW , Jordan IK . J Bacteriol 2012 194 (20) 5649-56 Containment strategies for outbreaks of invasive Neisseria meningitidis disease are informed by serogroup assays that characterize the polysaccharide capsule. We sought to uncover the genomic basis of conflicting serogroup assay results for an isolate (M16917) from a patient with acute meningococcal disease. To this end, we characterized the complete genome sequence of the M16917 isolate and performed a variety of comparative sequence analyses against N. meningitidis reference genome sequences of known serogroups. Multilocus sequence typing and whole-genome sequence comparison revealed that M16917 is a member of the ST-11 sequence group, which is most often associated with serogroup C. However, sequence similarity comparisons and phylogenetic analysis showed that the serogroup diagnostic capsule polymerase gene (synD) of M16917 belongs to serogroup B. These results suggest that a capsule-switching event occurred based on homologous recombination at or around the capsule locus of M16917. Detailed analysis of this locus uncovered the locations of recombination breakpoints in the M16917 genome sequence, which led to the introduction of an approximately 2-kb serogroup B sequence cassette into the serogroup C genomic background. Since there is no currently available vaccine for serogroup B strains of N. meningitidis, this kind capsule-switching event could have public health relevance as a vaccine escape mutant. |
Serologically confirmed household transmission of 2009 pandemic influenza A (H1N1) virus during the first pandemic wave--New York City, April-May 2009
Jackson ML , France AM , Hancock K , Lu X , Veguilla V , Sun H , Liu F , Hadler J , Harcourt BH , Esposito DH , Zimmerman CM , Katz JM , Fry AM , Schrag SJ . Clin Infect Dis 2011 53 (5) 455-62 BACKGROUND: Understanding transmissibility of influenza viruses within households is critical for guiding public health response to pandemics. We studied serologically confirmed infection and disease among household contacts of index case patients with 2009 pandemic influenza A (H1N1) virus (pH1N1) infection in a setting of minimal community pH1N1 transmission. METHODS: We defined index case patients as students and staff of a New York City high school with laboratory-confirmed pH1N1 infection during the earliest phase of the pH1N1 outbreak in April 2009. We visited households of index case patients twice, once in early May and again in June/July 2009. At each visit, household members (both index case patents and household contacts) provided serum samples and completed questionnaires about illness and possible risk factors. Serologic testing was performed using microneutralization and hemagglutination-inhibition assays. RESULTS: Of 79 eligible household contacts in 28 households, 19% had serologically confirmed pH1N1 infection, and 28% of those infected were asymptomatic. Serologically confirmed infection varied by age among household contacts: 36% of contacts younger than 10 years were infected, compared with 46% of contacts age 10-18 years, 8% of contacts aged 19-54 years, and 22% of contacts aged 55 years and older. CONCLUSIONS: Infection rates were high for household contacts of persons with confirmed pH1N1, particularly for contacts aged 10-18 years, and asymptomatic infection was common. Efforts to reduce household transmission during influenza pandemics are important adjuncts to strategies to reduce community illness. |
Using single-nucleotide polymorphisms to discriminate disease-associated from carried genomes of Neisseria meningitidis.
Katz LS , Sharma NV , Harcourt BH , Thomas JD , Wang X , Mayer LW , Jordan IK . J Bacteriol 2011 193 (14) 3633-41 Neisseria meningitidis is one of the main agents of bacterial meningitis, causing substantial morbidity and mortality worldwide. However, most of the time N. meningitidis is carried as a commensal not associated with invasive disease. The genomic basis of the difference between disease-associated and carried isolates of N. meningitidis may provide critical insight into mechanisms of virulence, yet it has remained elusive. Here, we have taken a comparative genomics approach to interrogate the difference between disease-associated and carried isolates of N. meningitidis at the level of individual nucleotide variations (i.e., single nucleotide polymorphisms [SNPs]). We aligned complete genome sequences of 8 disease-associated and 4 carried isolates of N. meningitidis to search for SNPs that show mutually exclusive patterns of variation between the two groups. We found 63 SNPs that distinguish the 8 disease-associated genomes from the 4 carried genomes of N. meningitidis, which is far more than can be expected by chance alone given the level of nucleotide variation among the genomes. The putative list of SNPs that discriminate between disease-associated and carriage genomes may be expected to change with increased sampling or changes in the identities of the isolates being compared. Nevertheless, we show that these discriminating SNPs are more likely to reflect phenotypic differences than shared evolutionary history. Discriminating SNPs were mapped to genes, and the functions of the genes were evaluated for possible connections to virulence mechanisms. A number of overrepresented functional categories related to virulence were uncovered among SNP-associated genes, including genes related to the category "symbiosis, encompassing mutualism through parasitism." |
Detection of bacterial pathogens in Mongolia meningitis surveillance with a new real-time PCR assay to detect Haemophilus influenzae.
Wang X , Mair R , Hatcher C , Theodore MJ , Edmond K , Wu HM , Harcourt BH , Carvalho MD , Pimenta F , Nymadawa P , Altantsetseg D , Kirsch M , Satola SW , Cohn A , Messonnier NE , Mayer LW . Int J Med Microbiol 2011 301 (4) 303-9 Since the implementation of Haemophilus influenzae (Hi) serotype b vaccine, other serotypes and non-typeable strains have taken on greater importance as a cause of Hi diseases. A rapid and accurate method is needed to detect all Hi regardless of the encapsulation status. We developed 2 real-time PCR (rt-PCR) assays to detect specific regions of the protein D gene (hpd). Both hpd assays are very specific and sensitive for detection of Hi. Of the 63 non-Hi isolates representing 21 bacterial species, none was detected by the hpd #1 assay, and only one of 2 H. aphrophilus isolates was detected by the hpd #3 assay. The hpd #1 and #3 assays detected 97% (229/237) and 99% (234/237) of Hi isolates, respectively, and were superior for detection of both typeable and non-typeable Hi isolates, as compared to previously developed rt-PCR targeting ompP2 or bexA. The diagnostic sensitivity and specificity of these rt-PCR assays were assessed on cerebrospinal fluid specimens collected as part of meningitis surveillance in Ulaanbaatar, Mongolia. The etiology (Neisseria meningitidis, Hi, and Streptococcus pneumoniae) of 111 suspected meningitis cases was determined by conventional methods (culture and latex agglutination), previously developed rt-PCR assays, and the new hpd assays. The rt-PCR assays were more sensitive for detection of meningitis pathogens than other classical methods and improved detection from 50% (56/111) to 75% (83/111). The hpd #3 assay identified a non-b Hi that was missed by the bexA assay and other methods. A sensitive rt-PCR assay to detect both typeable and non-typeable Hi is a useful tool for improving Hi disease surveillance especially after Hib vaccine introduction. |
Population structure and capsular switching of invasive neisseria meningitidis isolates in the pre-meningococcal conjugate vaccine era-United States, 2000-2005
Harrison LH , Shutt KA , Schmink SE , Marsh JW , Harcourt BH , Wang X , Whitney AM , Stephens DS , Cohn AA , Messonnier NE , Mayer LW . J Infect Dis 2010 201 (8) 1208-24 BACKGROUND: A quadrivalent meningococcal conjugate vaccine (MCV4) was licensed in the United States in 2005; no serogroup B vaccine is available. Neisseria meningitidis changes its capsular phenotype through capsular switching, which has implications for vaccines that do not protect against all serogroups. METHODS: Meningococcal isolates from 10 Active Bacterial Core surveillance sites from 2000 through 2005 were analyzed to identify changes occurring after MCV4 licensure. Isolates were characterized by multilocus sequence typing (MLST) and outer membrane protein gene sequencing. Isolates expressing capsular polysaccharide different from that associated with the MLST lineage were considered to demonstrate capsular switching. RESULTS: Among 1160 isolates, the most common genetic lineages were the sequence type (ST)-23, ST-32, ST-11, and ST-41/44 clonal complexes. Of serogroup B and Y isolates, 8 (1.5%) and 3 (0.9%), respectively, demonstrated capsular switching, compared with 36 (12.9%) for serogroup C ([Formula: see text]); most serogroup C switches were from virulent serogroup B and/or serogroup Y lineages. CONCLUSIONS: A limited number of genetic lineages caused the majority of invasive meningococcal infections. A substantial proportion of isolates had evidence of capsular switching. The high prevalence of capsular switching requires surveillance to detect changes in the meningococcal population structure that may affect the effectiveness of meningococcal vaccines. |
Meningococcus genome informatics platform: a system for analyzing multilocus sequence typing data
Katz LS , Bolen CR , Harcourt BH , Schmink S , Wang X , Kislyuk A , Taylor RT , Mayer LW , Jordan IK . Nucleic Acids Res 2009 37 W606-11 The Meningococcus Genome Informatics Platform (MGIP) is a suite of computational tools for the analysis of multilocus sequence typing (MLST) data, at http://mgip.biology.gatech.edu. MLST is used to generate allelic profiles to characterize strains of Neisseria meningitidis, a major cause of bacterial meningitis worldwide. Neisseria meningitidis strains are characterized with MLST as specific sequence types (ST) and clonal complexes (CC) based on the DNA sequences at defined loci. These data are vital to molecular epidemiology studies of N. meningitidis, including outbreak investigations and population biology. MGIP analyzes DNA sequence trace files, returns individual allele calls and characterizes the STs and CCs. MGIP represents a substantial advance over existing software in several respects: (i) ease of use-MGIP is user friendly, intuitive and thoroughly documented; (ii) flexibility--because MGIP is a website, it is compatible with any computer with an internet connection, can be used from any geographic location, and there is no installation; (iii) speed--MGIP takes just over one minute to process a set of 96 trace files; and (iv) expandability--MGIP has the potential to expand to more loci than those used in MLST and even to other bacterial species. |
Development of a neutralization assay for Nipah virus using pseudotype particles
Tamin A , Harcourt BH , Lo MK , Roth JA , Wolf MC , Lee B , Weingartl H , Audonnet JC , Bellini WJ , Rota PA . J Virol Methods 2009 160 1-6 Nipah virus (NiV) and Hendra virus (HeV) are zoonotic paramyxoviruses capable of causing severe disease in humans and animals. These viruses require biosafety level 4 (BSL-4) containment. Like other paramyxoviruses, the plaque reduction neutralization test (PRNT) can be used to detect antibodies to the surface glycoproteins, fusion (F) and attachment (G), and PRNT titers give an indication of protective immunity. Unfortunately, for NiV and HeV, the PRNT must be performed in BSL-4 containment and takes several days to complete. Thus, we have developed a neutralization assay using VSV pseudotype particles expressing the F and G proteins of NiV (pVSV-NiV-F/G) as target antigens. This rapid assay, which can be performed at BSL-2, was evaluated using serum samples from outbreak investigations and more than 300 serum samples from an experimental NiV vaccination study in swine. The results of the neutralization assays with pVSV-NiV-F/G as antigen showed a good correlation with those of standard PRNT. Therefore, this new method has the potential to be a rapid and cost-effective diagnostic method, especially in locations that lack high containment facilities, and will provide a valuable tool for basic research and vaccine development. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure