Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-4 (of 4 Records) |
Query Trace: Hamlin KL[original query] |
---|
Comparison of antigen and antibody responses in repeat lymphatic filariasis transmission assessment surveys in American Samoa
Won KY , Robinson K , Hamlin KL , Tufa J , Seespesara M , Wiegand RE , Gass K , Kubofcik J , Nutman TB , Lammie PJ , Fuimaono S . PLoS Negl Trop Dis 2018 12 (3) e0006347 BACKGROUND: Current WHO recommendations for lymphatic filariasis (LF) surveillance advise programs to implement activities to monitor for new foci of transmission after stopping mass drug administration (MDA). A current need in the global effort to eliminate LF is to standardize diagnostic tools and surveillance activities beyond the recommended transmission assessment survey (TAS). METHODOLOGY: TAS was first conducted in American Samoa in 2011 (TAS 1) and a repeat TAS was carried out in 2015 (TAS 2). Circulating filarial antigen (CFA) and serologic results from both surveys were analyzed to determine whether interruption of LF transmission has been achieved in American Samoa. PRINCIPAL FINDINGS: A total of 1,134 and 864 children (5-10 years old) were enrolled in TAS 1 and TAS 2, respectively. Two CFA-positive children were identified in TAS 1, and one CFA-positive child was identified in TAS 2. Results of both surveys were below the threshold for which MDA was warranted. Additionally, 1,112 and 836 dried blood spots from TAS 1 and TAS 2, respectively were tested for antibodies to Wb123, Bm14 and Bm33 by luciferase immunoprecipitation system (LIPS) assay and multiplex bead assay. In 2011, overall prevalence of responses to Wb123, Bm14, and Bm33 was 1.0%, 6.8% and 12.0%, respectively. In 2015, overall prevalence of positive Bm14 and Bm33 responses declined significantly to 3.0% (p<0.001) and 7.8% (p = 0.013), respectively. CONCLUSIONS/SIGNIFICANCE: Although passing TAS 1 and TAS 2 and an overall decline in the prevalence of antibodies to Bm14 and Bm33 between these surveys suggests decreased exposure and infection among young children, there were persistent responses in some schools. Clustering and persistence of positive antibody responses in schools may be an indication of ongoing transmission. There is a need to better understand the limitations of current antibody tests, but our results suggest that serologic tools can have a role in guiding programmatic decision making. |
Measuring changes in transmission of neglected tropical diseases, malaria, and enteric pathogens from quantitative antibody levels.
Arnold BF , van der Laan MJ , Hubbard AE , Steel C , Kubofcik J , Hamlin KL , Moss DM , Nutman TB , Priest JW , Lammie PJ . PLoS Negl Trop Dis 2017 11 (5) e0005616 BACKGROUND: Serological antibody levels are a sensitive marker of pathogen exposure, and advances in multiplex assays have created enormous potential for large-scale, integrated infectious disease surveillance. Most methods to analyze antibody measurements reduce quantitative antibody levels to seropositive and seronegative groups, but this can be difficult for many pathogens and may provide lower resolution information than quantitative levels. Analysis methods have predominantly maintained a single disease focus, yet integrated surveillance platforms would benefit from methodologies that work across diverse pathogens included in multiplex assays. METHODS/PRINCIPAL FINDINGS: We developed an approach to measure changes in transmission from quantitative antibody levels that can be applied to diverse pathogens of global importance. We compared age-dependent immunoglobulin G curves in repeated cross-sectional surveys between populations with differences in transmission for multiple pathogens, including: lymphatic filariasis (Wuchereria bancrofti) measured before and after mass drug administration on Mauke, Cook Islands, malaria (Plasmodium falciparum) before and after a combined insecticide and mass drug administration intervention in the Garki project, Nigeria, and enteric protozoans (Cryptosporidium parvum, Giardia intestinalis, Entamoeba histolytica), bacteria (enterotoxigenic Escherichia coli, Salmonella spp.), and viruses (norovirus groups I and II) in children living in Haiti and the USA. Age-dependent antibody curves fit with ensemble machine learning followed a characteristic shape across pathogens that aligned with predictions from basic mechanisms of humoral immunity. Differences in pathogen transmission led to shifts in fitted antibody curves that were remarkably consistent across pathogens, assays, and populations. Mean antibody levels correlated strongly with traditional measures of transmission intensity, such as the entomological inoculation rate for P. falciparum (Spearman's rho = 0.75). In both high- and low transmission settings, mean antibody curves revealed changes in population mean antibody levels that were masked by seroprevalence measures because changes took place above or below the seropositivity cutoff. CONCLUSIONS/SIGNIFICANCE: Age-dependent antibody curves and summary means provided a robust and sensitive measure of changes in transmission, with greatest sensitivity among young children. The method generalizes to pathogens that can be measured in high-throughput, multiplex serological assays, and scales to surveillance activities that require high spatiotemporal resolution. Our results suggest quantitative antibody levels will be particularly useful to measure differences in exposure for pathogens that elicit a transient antibody response or for monitoring populations with very high- or very low transmission, when seroprevalence is less informative. The approach represents a new opportunity to conduct integrated serological surveillance for neglected tropical diseases, malaria, and other infectious diseases with well-defined antigen targets. |
Serological measures of malaria transmission in Haiti: comparison of longitudinal and cross-sectional methods
Arnold BF , Priest JW , Hamlin KL , Moss DM , Colford JM Jr , Lammie PJ . PLoS One 2014 9 (4) e93684 BACKGROUND: Efforts to monitor malaria transmission increasingly use cross-sectional surveys to estimate transmission intensity from seroprevalence data using malarial antibodies. To date, seroconversion rates estimated from cross-sectional surveys have not been compared to rates estimated in prospective cohorts. Our objective was to compare seroconversion rates estimated in a prospective cohort with those from a cross-sectional survey in a low-transmission population. METHODS AND FINDINGS: The analysis included two studies from Haiti: a prospective cohort of 142 children ages ≤11 years followed for up to 9 years, and a concurrent cross-sectional survey of 383 individuals ages 0-90 years old. From all individuals, we analyzed 1,154 blood spot specimens for the malaria antibody MSP-119 using a multiplex bead antigen assay. We classified individuals as positive for malaria using a cutoff derived from the mean plus 3 standard deviations in antibody responses from a negative control set of unexposed individuals. We estimated prospective seroconversion rates from the longitudinal cohort based on 13 incident seroconversions among 646 person-years at risk. We also estimated seroconversion rates from the cross-sectional survey using a reversible catalytic model fit with maximum likelihood. We found the two approaches provided consistent results: the seroconversion rate for ages ≤11 years was 0.020 (0.010, 0.032) estimated prospectively versus 0.023 (0.001, 0.052) in the cross-sectional survey. CONCLUSIONS: The estimation of seroconversion rates using cross-sectional data is a widespread and generalizable problem for many infectious diseases that can be measured using antibody titers. The consistency between these two estimates lends credibility to model-based estimates of malaria seroconversion rates using cross-sectional surveys. This study also demonstrates the utility of including malaria antibody measures in multiplex assays alongside targets for vaccine coverage and other neglected tropical diseases, which together could comprise an integrated, large-scale serological surveillance platform. |
Longitudinal monitoring of the development of antifilarial antibodies and acquisition of Wuchereria bancrofti in a highly endemic area of Haiti
Hamlin KL , Moss DM , Priest JW , Roberts J , Kubofcik J , Gass K , Streit TG , Nutman TB , Eberhard ML , Lammie PJ . PLoS Negl Trop Dis 2012 6 (12) e1941 Antifilarial antibody testing has been established as a sensitive and specific method of diagnosing lymphatic filariasis. However, the development of serological responses to specific filarial antigens and their relationship to acquisition of infection is poorly understood. In order to evaluate whether the development of antigen specific antifilarial antibodies precedes microfilaremia and antigenemia, we compared the antibody responses of serum samples collected between 1990 and 1999 from a cohort of 142 Haitian children followed longitudinally. Antigen status was determined using the Og4C3 ELISA and the presence of microfilaremia was detected using microscopy. Antibody responses to Wb123, a Wuchereria bancrofti L3 antigen, were measured using a Luciferase Immunoprecipitation System (LIPS) assay. Antibody responses to Bm14 and Bm33, Brugia malayi antigens and to a major surface protein (WSP) from Wolbachia were analyzed using a multiplex bead assay. Over follow-up, 80 (56%) of the children became antigen-positive and 30 (21%) developed microfilaremia. Detectable antibody responses to Bm14, Bm33, Wb123, and WSP developed in 95%, 100%, 92%, and 29% of children, respectively. With the exception of WSP, the development of antibody responses generally preceded detection of filarial antigen. Our results show that antifilarial antibody responses can serve as an important epidemiological indicator in a sentinel population of young children and thus, may be valuable as tool for surveillance in the context of lymphatic filariasis elimination programs. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure