Last data update: Apr 28, 2025. (Total: 49156 publications since 2009)
Records 1-5 (of 5 Records) |
Query Trace: Greer PW[original query] |
---|
Malignant Transformation of Hymenolepis nana in a Human Host.
Muehlenbachs A , Bhatnagar J , Agudelo CA , Hidron A , Eberhard ML , Mathison BA , Frace MA , Ito A , Metcalfe MG , Rollin DC , Visvesvara GS , Pham CD , Jones TL , Greer PW , Velez Hoyos A , Olson PD , Diazgranados LR , Zaki SR . N Engl J Med 2015 373 (19) 1845-52 ![]() Neoplasms occur naturally in invertebrates but are not known to develop in tapeworms. We observed nests of monomorphic, undifferentiated cells in samples from lymph-node and lung biopsies in a man infected with the human immunodeficiency virus (HIV). The morphologic features and invasive behavior of the cells were characteristic of cancer, but their small size suggested a nonhuman origin. A polymerase-chain-reaction (PCR) assay targeting eukaryotes identified Hymenolepis nana DNA. Although the cells were unrecognizable as tapeworm tissue, immunohistochemical staining and probe hybridization labeled the cells in situ. Comparative deep sequencing identified H. nana structural genomic variants that are compatible with mutations described in cancer. Invasion of human tissue by abnormal, proliferating, genetically altered tapeworm cells is a novel disease mechanism that links infection and cancer. |
Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses
Martines RB , Ng DL , Greer PW , Rollin PE , Zaki SR . J Pathol 2015 235 (2) 153-74 Ebola viruses and Marburg viruses include some of the most virulent and fatal pathogens known to humans. These viruses cause severe haemorrhagic fevers, with case fatality rates in the range 25-90%. The diagnosis of filovirus using formalin-fixed tissues from fatal cases poses a significant challenge. The most characteristic histopathological findings are seen in the liver; however, the findings overlap with many other viral and non-viral haemorrhagic diseases. The need to distinguish filovirus infections from other haemorrhagic fevers, particularly in areas with multiple endemic viral haemorrhagic agents, is of paramount importance. In this review we discuss the current state of knowledge of filovirus infections and their pathogenesis, including histopathological findings, epidemiology, modes of transmission and filovirus entry and spread within host organisms. The pathogenesis of filovirus infections is complex and involves activation of the mononuclear phagocytic system, with release of pro-inflammatory cytokines, chemokines and growth factors, endothelial dysfunction, alterations of the innate and adaptive immune systems, direct organ and endothelial damage from unrestricted viral replication late in infection, and coagulopathy. Although our understanding of the pathogenesis of filovirus infections has rapidly increased in the past few years, many questions remain unanswered. |
Exserohilum infections associated with contaminated steroid injections: a clinicopathologic review of 40 cases
Ritter JM , Muehlenbachs A , Blau DM , Paddock CD , Shieh WJ , Drew CP , Batten BC , Bartlett JH , Metcalfe MG , Pham CD , Lockhart SR , Patel M , Liu L , Jones TL , Greer PW , Montague JL , White E , Rollin DC , Seales C , Stewart D , Deming MV , Brandt ME , Zaki SR . Am J Pathol 2013 183 (3) 881-92 September 2012 marked the beginning of the largest reported outbreak of infections associated with epidural and intra-articular injections. Contamination of methylprednisolone acetate with the black mold, Exserohilum rostratum, was the primary cause of the outbreak, with >13,000 persons exposed to the potentially contaminated drug, 741 confirmed drug-related infections, and 55 deaths. Fatal meningitis and localized epidural, paraspinal, and peripheral joint infections occurred. Tissues from 40 laboratory-confirmed cases representing these various clinical entities were evaluated by histopathological analysis, special stains, and IHC to characterize the pathological features and investigate the pathogenesis of infection, and to evaluate methods for detection of Exserohilum in formalin-fixed, paraffin-embedded (FFPE) tissues. Fatal cases had necrosuppurative to granulomatous meningitis and vasculitis, with thrombi and abundant angioinvasive fungi, with extensive involvement of the basilar arterial circulation of the brain. IHC was a highly sensitive method for detection of fungus in FFPE tissues, demonstrating both hyphal forms and granular fungal antigens, and PCR identified Exserohilum in FFPE and fresh tissues. Our findings suggest a pathogenesis for meningitis involving fungal penetration into the cerebrospinal fluid at the injection site, with transport through cerebrospinal fluid to the basal cisterns and subsequent invasion of the basilar arteries. Further studies are needed to characterize Exserohilum and investigate the potential effects of underlying host factors and steroid administration on the pathogenesis of infection. |
Diagnosis of influenza from respiratory autopsy tissues: detection of virus by real-time reverse transcription-PCR in 222 cases.
Denison AM , Blau DM , Jost HA , Jones T , Rollin D , Gao R , Liu L , Bhatnagar J , Deleon-Carnes M , Shieh WJ , Paddock CD , Drew C , Adem P , Emery SL , Shu B , Wu KH , Batten B , Greer PW , Smith CS , Bartlett J , Montague JL , Patel M , Xu X , Lindstrom S , Klimov AI , Zaki SR . J Mol Diagn 2011 13 (2) 123-8 ![]() The recent influenza pandemic, caused by a novel H1N1 influenza A virus, as well as the seasonal influenza outbreaks caused by varieties of influenza A and B viruses, are responsible for hundreds of thousands of deaths worldwide. Few studies have evaluated the utility of real-time reverse transcription-PCR to detect influenza virus RNA from formalin-fixed, paraffin-embedded tissues obtained at autopsy. In this work, respiratory autopsy tissues from 442 suspect influenza cases were tested by real-time reverse transcription-PCR for seasonal influenza A and B and 2009 pandemic influenza A (H1N1) viruses and the results were compared to those obtained by immunohistochemistry. In total, 222 cases were positive by real-time reverse transcription-PCR, and of 218 real-time, reverse transcription-PCR-positive cases also tested by immunohistochemistry, only 107 were positive. Although formalin-fixed, paraffin-embedded tissues can be used for diagnosis, frozen tissues offer the best chance to make a postmortem diagnosis of influenza because these tissues possess nucleic acids that are less degraded and, as a consequence, provide longer sequence information than that obtained from fixed tissues. We also determined that testing of all available respiratory tissues is critical for optimal detection of influenza virus in postmortem tissues. |
Isolation of genetically diverse Marburg viruses from Egyptian fruit bats
Towner JS , Amman BR , Sealy TK , Carroll SA , Comer JA , Kemp A , Swanepoel R , Paddock CD , Balinandi S , Khristova ML , Formenty PB , Albarino CG , Miller DM , Reed ZD , Kayiwa JT , Mills JN , Cannon DL , Greer PW , Byaruhanga E , Farnon EC , Atimnedi P , Okware S , Katongole-Mbidde E , Downing R , Tappero JW , Zaki SR , Ksiazek TG , Nichol ST , Rollin PE . PLoS Pathog 2009 5 (7) e1000536 ![]() In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 28, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure