Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-11 (of 11 Records) |
Query Trace: Graziano JC[original query] |
---|
Modeling natural coinfection in a bat reservoir shows modulation of Marburg virus shedding and spillover potential
Schuh AJ , Amman BR , Guito JC , Graziano JC , Sealy TK , Towner JS . PLoS Pathog 2025 21 (3) e1012901 ![]() The Egyptian rousette bat (ERB) is a natural reservoir for Marburg virus (MARV; family Filoviridae), a putative reservoir for Sosuga virus (SOSV; family Paramyxoviridae), and a vertebrate reservoir for Kasokero virus (KASV; family Orthonairoviridae); however, the effect of naturally occurring coinfection by those viruses on MARV shedding and spillover potential is unknown. To answer this question, we experimentally infected one cohort of captive-bred ERBs with SOSV+MARV (n=12 bats) or MARV only (n=12 bats) and a second cohort with KASV+MARV (n=12 bats) or MARV only (n=12 bats), and then collected blood, oral swab, and rectal swab specimens throughout the course of infection to monitor viral shedding. Compared to the MARV-monoinfected bat group, the SOSV+MARV-coinfected bat group exhibited a significantly shortened duration of MARV oral shedding and a significantly decreased anti-MARV IgG response, which may increase the capacity for MARV reinfection. In contrast, relative to the MARV-monoinfected bat group, the KASV+MARV-coinfected bat group exhibited significantly increased peak magnitudes and durations of MARV viremia and oral shedding, as well as a significantly increased anti-MARV IgG response. Correspondingly, cumulative MARV shedding loads, a measure of infectiousness, were significantly higher in the KASV+MARV-coinfected bat group than the MARV-monoinfected bat group. Four of the KASV+MARV-coinfected bats were classified as MARV supershedders, together accounting for 72.5% of the KASV-MARV experimental cohort's total shedding. Our results demonstrate that SOSV+MARV and KASV+MARV coinfection of ERBs differentially modulates MARV shedding and anti-MARV IgG responses, thereby implicating MARV coinfection as playing a critical role in bat-to-bat MARV transmission dynamics and spillover potential. |
Micro‒global positioning systems for identifying nightly opportunities for Marburg virus spillover to humans by Egyptian Rousette bats
Amman BR , Schuh AJ , Akurut G , Kamugisha K , Namanya D , Sealy TK , Graziano JC , Enyel E , Wright EA , Balinandi S , Lutwama JJ , Kading RC , Atimnedi P , Towner JS . Emerg Infect Dis 2023 29 (11) 2238-2245 Marburg virus disease, caused by Marburg and Ravn orthomarburgviruses, emerges sporadically in sub-Saharan Africa and is often fatal in humans. The natural reservoir is the Egyptian rousette bat (ERB), which sheds virus in saliva, urine, and feces. Frugivorous ERBs discard test-bitten and partially eaten fruit, potentially leaving infectious virus behind that could be consumed by other susceptible animals or humans. Historically, 8 of 17 known Marburg virus disease outbreaks have been linked to human encroachment on ERB habitats, but no linkage exists for the other 9 outbreaks, raising the question of how bats and humans might intersect, leading to virus spillover. We used micro‒global positioning systems to identify nightly ERB foraging locations. ERBs from a known Marburg virus‒infected population traveled long distances to feed in cultivated fruit trees near homes. Our results show that ERB foraging behavior represents a Marburg virus spillover risk to humans and plausibly explains the origins of some past outbreaks. |
Tick salivary gland components dampen Kasokero virus infection and shedding in its vertebrate reservoir, the Egyptian rousette bat (Rousettus aegyptiacus)
Schuh AJ , Amman BR , Guito JC , Graziano JC , Sealy TK , Towner JS . Parasit Vectors 2023 16 (1) 249 BACKGROUND: The human-pathogenic Kasokero virus (KASV) circulates in an enzootic transmission cycle between Egyptian rousette bats (ERBs; Rousettus aegyptiacus) and their argasid tick ectoparasites, Ornithodoros (Reticulinasus) faini. Although tick salivary gland components have been shown to potentiate virus infection in vertebrate non-reservoirs (i.e. incidental hosts or small animal models of disease), there is a lack of information on the effect of tick salivary gland components on viral infection and shedding in vertebrate reservoirs. METHODS: To determine the impact of tick salivary gland components on KASV infection and shedding in ERBs, KASV loads were quantified in blood, oral swab, rectal swab, and urine specimens collected daily through 18 days post inoculation from groups of ERBs intradermally inoculated with KASV or KASV + O. (R.) faini tick salivary gland extract (SGE). RESULTS: Bats inoculated with KASV + tick SGE had significantly lower peak and cumulative KASV viremias and rectal shedding loads compared to bats inoculated with KASV only. CONCLUSIONS: We report for the first time to our knowledge that tick salivary gland components dampen arbovirus infection and shedding in a vertebrate reservoir. This study advances our understanding of biological factors underlying arbovirus maintenance in nature. |
Pathogenesis of Kasokero virus in experimentally infected Egyptian rousette bats (Rousettus aegyptiacus)
Kirejczyk SGM , Schuh AJ , Zhang J , Amman BR , Guito JC , Sealy TK , Graziano JC , Brown CC , Towner JS . Vet Pathol 2023 60 (3) 3009858231158076 Egyptian rousette bats (ERBs; Rousettus aegyptiacus; family Pteropodidae) are associated with a growing number of bunyaviruses of public health importance, including Kasokero virus (KASV), which was first identified as a zoonosis in Uganda in 1977. In this study, formalin-fixed paraffin-embedded tissues from a previous experiment in which KASV infection was confirmed in 18 experimentally infected ERBs were used for an in-depth analysis using histopathology, in situ hybridization (ISH) for detection of viral RNA, immunohistochemistry (IHC) to assess the mononuclear phagocyte system response, and quantitative digital image analysis to investigate virus clearance from the liver and spleen within a spatial context. Significant gross and histological lesions were limited to the liver, where KASV-infected bats developed mild to moderate, acute viral hepatitis, which was first observed at 3 days postinfection (DPI), peaked at 6 DPI, and was resolved by 20 DPI. A subset of bats had glycogen depletion (n = 10) and hepatic necrosis (n = 3), rarely with intralesional bacteria (n = 1). Virus replication was confirmed by ISH in the liver, spleen, lymph nodes, and tongue. In the liver, KASV replicated in the cytoplasm of hepatocytes, to a lesser extent in mononuclear phagocytes, and rarely in presumptive endothelial cells. Most KASV RNA, as detected by ISH, was cleared from the spleen and liver by 6 DPI. It is concluded that ERBs have effective mechanisms to respond to this virus, clearing it without evidence of clinical disease. |
Natural reservoir Rousettus aegyptiacus bat host model of orthonairovirus infection identifies potential zoonotic spillover mechanisms
Schuh AJ , Amman BR , Guito JC , Graziano JC , Sealy TK , Kirejczyk SGM , Towner JS . Sci Rep 2022 12 (1) 20936 The human-pathogenic Kasokero virus (KASV; genus Orthonairovirus) has been isolated from the sera of Egyptian rousette bats (ERBs; Rousettus aegyptiacus) captured in Uganda and unengorged Ornithodoros (Reticulinasus) faini ticks collected from the rock crevices of ERB colonies in South Africa and Uganda. Although evidence suggests that KASV is maintained in an enzootic transmission cycle between O. (R.) faini ticks and ERBs with potential for incidental virus spillover to humans through the bite of an infected tick, the vertebrate reservoir status of ERBs for KASV has never been experimentally evaluated. Furthermore, the potential for bat-to-bat and bat-to-human transmission of KASV is unknown. Herein, we inoculate two groups of ERBs with KASV; one group of bats is serially sampled to assess viremia, oral, fecal, and urinary shedding and the second group of bats is serially euthanized to assess virus-tissue tropism. Throughout the study, none of the bats exhibit overt signs of clinical disease. Following the detection of high KASV loads of long duration in blood, oral, fecal, and urine specimens collected from ERBs in the serial sampling group, all bats seroconvert to KASV. ERBs from the serial euthanasia group exhibit high KASV loads indicative of virus replication in the skin at the inoculation site, spleen, and inguinal lymph node tissue, and histopathology and in situ hybridization reveal virus replication in the liver and self-limiting, KASV-induced lymphohistiocytic hepatitis. The results of this study suggest that ERBs are competent, natural vertebrate reservoir hosts for KASV that can sustain viremias of appropriate magnitude and duration to support virus maintenance through bat-tick-bat transmission cycles. Viral shedding data suggests that KASV might also be transmitted bat-to-bat and highlights the potential for KASV spillover to humans through contact with infectious oral secretions, feces, or urine. |
Chapare Hemorrhagic Fever and Virus Detection in Rodents in Bolivia in 2019.
LoayzaMafayle R , Morales-Betoulle ME , Romero C , Cossaboom CM , Whitmer S , AlvarezAguilera CE , AvilaArdaya C , CruzZambrana M , DvalosAnajia A , MendozaLoayza N , Montao AM , MoralesAlvis FL , RevolloGuzmn J , SasasMartnez S , AlarcnDeLaVega G , MedinaRamrez A , MolinaGutirrez JT , CornejoPinto AJ , SalasBacci R , Brignone J , Garcia J , Aez A , Mendez-Rico J , Luz K , Segales A , TorrezCruz KM , Valdivia-Cayoja A , Amman BR , Choi MJ , Erickson BR , Goldsmith C , Graziano JC , Joyce A , Klena JD , Leach A , Malenfant JH , Nichol ST , Patel K , Sealy T , Shoemaker T , Spiropoulou CF , Todres A , Towner JS , Montgomery JM . N Engl J Med 2022 386 (24) 2283-2294 ![]() ![]() BACKGROUND: In June 2019, the Bolivian Ministry of Health reported a cluster of cases of hemorrhagic fever that started in the municipality of Caranavi and expanded to La Paz. The cause of these cases was unknown. METHODS: We obtained samples for next-generation sequencing and virus isolation. Human and rodent specimens were tested by means of virus-specific real-time quantitative reverse-transcriptase-polymerase-chain-reaction assays, next-generation sequencing, and virus isolation. RESULTS: Nine cases of hemorrhagic fever were identified; four of the patients with this illness died. The etiologic agent was identified as Mammarenavirus Chapare mammarenavirus, or Chapare virus (CHAPV), which causes Chapare hemorrhagic fever (CHHF). Probable nosocomial transmission among health care workers was identified. Some patients with CHHF had neurologic manifestations, and those who survived had a prolonged recovery period. CHAPV RNA was detected in a variety of human body fluids (including blood; urine; nasopharyngeal, oropharyngeal, and bronchoalveolar-lavage fluid; conjunctiva; and semen) and in specimens obtained from captured small-eared pygmy rice rats (Oligoryzomys microtis). In survivors of CHHF, viral RNA was detected up to 170 days after symptom onset; CHAPV was isolated from a semen sample obtained 86 days after symptom onset. CONCLUSIONS: M. Chapare mammarenavirus was identified as the etiologic agent of CHHF. Both spillover from a zoonotic reservoir and possible person-to-person transmission were identified. This virus was detected in a rodent species, O. microtis. (Funded by the Bolivian Ministry of Health and others.). |
Rift Valley fever and Crimean-Congo hemorrhagic fever viruses in ruminants, Jordan
Obaidat MM , Graziano JC , Morales-Betoulle M , Brown SM , Chiang CF , Klena JD . Emerg Infect Dis 2021 27 (2) 653-655 The epidemiology of Rift Valley fever virus (RVFV) and Crimean-Congo hemorrhagic fever virus (CCHFV) in Jordan is unknown. Our investigation showed 3% of 989 tested dairy cattle, sheep, and goats were RVFV seropositive and 14% were CCHFV seropositive. Ongoing surveillance is needed to assess risk to humans and protect public health. |
Domestically acquired Seoul virus causing hemophagocytic lymphohistiocytosis - Washington, DC, 2018
Shastri B , Kofman A , Hennenfent A , Klena JD , Nicol S , Graziano JC , Morales-Betoulle M , Cannon D , Maradiaga A , Tran A , Ramdeen SK . Open Forum Infect Dis 2019 6 (10) ofz404 Seoul orthohantavirus (SEOV) infections, uncommonly reported in the United States, often result in mild illness. We report a case of hemophagocytic lymphohistiocytosis secondary to SEOV infection that was domestically acquired in Washington, DC. |
Draft Genome Sequences of Strains Representing Each of the Elizabethkingia Genomospecies Previously Determined by DNA-DNA Hybridization.
Nicholson AC , Humrighouse BW , Graziano JC , Emery B , McQuiston JR . Genome Announc 2016 4 (2) ![]() Draft genome sequences of Elizabethkingia meningoseptica and representatives of each of its four historically described genomospecies were sequenced here. Preliminary analysis suggests that Elizabethkingia miricola belongs to genomospecies 2, and both Elizabethkingia anophelis and Elizabethkingia endophytica are most similar to genomospecies 1. |
Evaluation of methods for identification and determination of the taxonomic status of strains belonging to the Streptococcus porcinus-Streptococcus pseudoporcinus complex isolated from animal, human, and dairy sources
Shewmaker PL , Steigerwalt AG , Whitney AM , Morey RE , Graziano JC , Facklam RR , Musser KA , Merquior VL , Teixeira LM . J Clin Microbiol 2012 50 (11) 3591-7 ![]() Ninety-seven animal, human, and dairy Streptococcus porcinus or Streptococcus pseudoporcinus isolates in the CDC Streptococcus strain collection were evaluated based on DNA-DNA reassociation, 16S rRNA and rpoB gene sequencing, conventional biochemical and rapid ID 32 STREP identification methods, and antimicrobial susceptibility testing to determine their taxonomic status, characteristics for species differentiation, antimicrobial susceptibility and relevance of clinical source. Nineteen of the 97 isolates (1 human, 18 swine) were identified as S. porcinus. The remaining 72 human isolates and 6 dairy isolates were identified as S. pseudoporcinus. The use of 16S rRNA or rpoB gene sequencing was required to differentiate S. porcinus from S. pseudoporcinus. The human and dairy S. pseudoporcinus isolates were biochemically distinct from each other as well as distinct by 16S rRNA and rpoB gene sequencing. Therefore, we propose the subspecies denominations S. pseudoporcinus subsp. hominis subsp. nov. for the human isolates and S. pseudoporcinus subsp. lactis subsp. nov. for the dairy isolates. Most strains were susceptible to the antimicrobials tested, with the exception of tetracycline. Two strains of each species were also resistant to clindamycin and erythromycin and carried the erm(A) (S. pseudoporcinus) or the erm(B) (S. porcinus) genes. S. porcinus was identified from a single human isolate recovered from a wound in an abattoir worker. S. pseudoporcinus was primarily isolated from the genitourinary tract of women, but was also associated with blood, placental, and wound infections. Isolates reacting with group B antiserum and demonstrating wide beta hemolysis should be suspected of being S. pseudoporcinus and not S. agalactiae. |
Scalp abscess due to Streptomyces cacaoi subsp. cacaoi, first report in a human infection
Pellegrini GJ Jr , Graziano JC , Ragunathan L , Bhat MA , Hemashettar BM , Brown JM . J Clin Microbiol 2012 50 (4) 1484-6 ![]() Streptomyces cacaoi subsp. cacaoi, a gram-positive, branching filamentous bacteria, was isolated from a scalp infection in a patient from Pondicherry, India. Phenotypic tests identified the isolate as a Streptomyces but 16S rRNA sequence analysis provided the species identification required for tracking of this emerging pathogen. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure