Last data update: Nov 04, 2024. (Total: 48056 publications since 2009)
Records 1-5 (of 5 Records) |
Query Trace: Grant MP[original query] |
---|
Local health department engagement with workplaces during the COVID-19 pandemic-Examining barriers of and facilitators to outbreak investigation and mitigation
Bonney T , Grant MP . Front Public Health 2023 11 1116872 OBJECTIVES: To document local health department (LHD) COVID-19 prevention or mitigation activities at workplaces in the United States and identify facilitators for and barriers to these efforts. METHODS: We conducted a web-based, cross-sectional national probability survey of United States LHDs (n = 181 unweighted; n = 2,284 weighted) from January to March 2022, collecting information about worker complaints, surveillance, investigations, relationships and interactions with employers/businesses, and LHD capacity. RESULTS: Overall, 94% LHD respondents reported investigating workplace-linked COVID-19 cases; however, 47% reported insufficient capacity to effectively receive, investigate and respond to COVID-19-related workplace safety complaints. Prior relationships with jurisdiction employers and LHD personnel with formal occupational health and safety (OHS) training were predictors of proactive outreach to prevent COVID-19 spread in workplaces (p < 0.01 and p < 0.001). LHD size predicted OHS personnel and sufficient financial resources to support workplace investigation and mitigation activities (p < 0.001). CONCLUSIONS: Differences in LHD capacity to effectively respond to communicable disease spread in workplaces may exacerbate health disparities, especially between rural and urban settings. Improving LHD OHS capacity, especially in smaller jurisdictions, could facilitate effective prevention and mitigation of workplace communicable disease spread. |
Gaseous and particulate content of laser tattoo removal plume
Levin YS , Grant MP , Glassford E , Green BJ , Lemons AR , Avram MM . Dermatol Surg 2021 47 (8) 1071-1078 BACKGROUND: There is increasing awareness of the potential hazards of surgical plumes. The plume associated with laser tattoo removal remains uncharacterized. OBJECTIVE: To determine the gaseous, particulate, and microbiological content of the laser tattoo removal plume. MATERIALS AND METHODS: Air sampling was performed during laser tattoo removal from pig skin and from patients. Measurement of metals, volatile organic compounds (VOCs), carbon monoxide (CO), hydrogen sulfide (HS), and ultrafine particulates (UPs) as well as bacterial 16S ribosomal DNA sequencing were performed. RESULTS: Metals were identified in the plume from both pig and human skin. Volatile organic compounds were found at similar levels within and outside the treatment room. Several bacterial phyla were detected in the treatment room, but not outside. High levels of UPs were measured throughout the treatment room during tattoo removal from pig skin. Ultrafine particulates were detected at low levels in the room periphery during tattoo removal from human skin, but at higher levels in the immediate treatment zone. HS and CO were not detected. CONCLUSION: Metals, VOCs, HS, and CO were found at levels below applicable occupational exposure limits. The presence of bacteria is of uncertain significance, but may be hazardous. High levels of UPs require further investigation. |
COVID-19 Outbreak Among Employees at a Meat Processing Facility - South Dakota, March-April 2020.
Steinberg J , Kennedy ED , Basler C , Grant MP , Jacobs JR , Ortbahn D , Osburn J , Saydah S , Tomasi S , Clayton JL . MMWR Morb Mortal Wkly Rep 2020 69 (31) 1015-1019 On March 24, 2020, the South Dakota Department of Health (SDDOH) was notified of a case of coronavirus disease 2019 (COVID-19) in an employee at a meat processing facility (facility A) and initiated an investigation to isolate the employee and identify and quarantine contacts. On April 2, when 19 cases had been confirmed among facility A employees, enhanced testing for SARS-CoV-2, the virus that causes COVID-19, was implemented, so that any employee with a COVID-19-compatible sign or symptom (e.g., fever, cough, or shortness of breath) could receive a test from a local health care facility. By April 11, 369 COVID-19 cases had been confirmed among facility A employees; on April 12, facility A began a phased closure* and did not reopen during the period of investigation (March 16-April 25, 2020). At the request of SDDOH, a CDC team arrived on April 15 to assist with the investigation. During March 16-April 25, a total of 929 (25.6%) laboratory-confirmed COVID-19 cases were diagnosed among 3,635 facility A employees. At the outbreak's peak, an average of 67 cases per day occurred. An additional 210 (8.7%) cases were identified among 2,403 contacts of employees with diagnosed COVID-19. Overall, 48 COVID-19 patients were hospitalized, including 39 employees and nine contacts. Two employees died; no contacts died. Attack rates were highest among department-groups where employees tended to work in proximity (i.e., <6 feet [2 meters]) to one another on the production line. Cases among employees and their contacts declined to approximately 10 per day within 7 days of facility closure. SARS-CoV-2 can spread rapidly in meat processing facilities because of the close proximity of workstations and prolonged contact between employees (1,2). Facilities can reduce this risk by implementing a robust mitigation program, including engineering and administrative controls, consistent with published guidelines (1). |
COVID-19 Among Workers in Meat and Poultry Processing Facilities - 19 States, April 2020.
Dyal JW , Grant MP , Broadwater K , Bjork A , Waltenburg MA , Gibbins JD , Hale C , Silver M , Fischer M , Steinberg J , Basler CA , Jacobs JR , Kennedy ED , Tomasi S , Trout D , Hornsby-Myers J , Oussayef NL , Delaney LJ , Patel K , Shetty V , Kline KE , Schroeder B , Herlihy RK , House J , Jervis R , Clayton JL , Ortbahn D , Austin C , Berl E , Moore Z , Buss BF , Stover D , Westergaard R , Pray I , DeBolt M , Person A , Gabel J , Kittle TS , Hendren P , Rhea C , Holsinger C , Dunn J , Turabelidze G , Ahmed FS , deFijter S , Pedati CS , Rattay K , Smith EE , Luna-Pinto C , Cooley LA , Saydah S , Preacely ND , Maddox RA , Lundeen E , Goodwin B , Karpathy SE , Griffing S , Jenkins MM , Lowry G , Schwarz RD , Yoder J , Peacock G , Walke HT , Rose DA , Honein MA . MMWR Morb Mortal Wkly Rep 2020 69 (18) Congregate work and residential locations are at increased risk for infectious disease transmission including respiratory illness outbreaks. SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is primarily spread person to person through respiratory droplets. Nationwide, the meat and poultry processing industry, an essential component of the U.S. food infrastructure, employs approximately 500,000 persons, many of whom work in proximity to other workers (1). Because of reports of initial cases of COVID-19, in some meat processing facilities, states were asked to provide aggregated data concerning the number of meat and poultry processing facilities affected by COVID-19 and the number of workers with COVID-19 in these facilities, including COVID-19-related deaths. Qualitative data gathered by CDC during on-site and remote assessments were analyzed and summarized. During April 9-27, aggregate data on COVID-19 cases among 115 meat or poultry processing facilities in 19 states were reported to CDC. Among these facilities, COVID-19 was diagnosed in 4,913 (approximately 3%) workers, and 20 COVID-19-related deaths were reported. Facility barriers to effective prevention and control of COVID-19 included difficulty distancing workers at least 6 feet (2 meters) from one another (2) and in implementing COVID-19-specific disinfection guidelines.* Among workers, socioeconomic challenges might contribute to working while feeling ill, particularly if there are management practices such as bonuses that incentivize attendance. Methods to decrease transmission within the facility include worker symptom screening programs, policies to discourage working while experiencing symptoms compatible with COVID-19, and social distancing by workers. Source control measures (e.g., the use of cloth face covers) as well as increased disinfection of high-touch surfaces are also important means of preventing SARS-CoV-2 exposure. Mitigation efforts to reduce transmission in the community should also be considered. Many of these measures might also reduce asymptomatic and presymptomatic transmission (3). Implementation of these public health strategies will help protect workers from COVID-19 in this industry and assist in preserving the critical meat and poultry production infrastructure (4). |
Implementing an integrated health protection/health promotion intervention in the hospital setting: Lessons learned from the Be Well, Work Well Study
Sorensen G , Nagler EM , Hashimoto D , Dennerlein JT , Theron JV , Stoddard AM , Buxton O , Wallace LM , Kenwood C , Nelson CC , Tamers SL , Grant MP , Wagner G . J Occup Environ Med 2016 58 (2) 185-94 OBJECTIVE: This study reports findings from a proof-of-concept trial designed to examine the feasibility and estimates the efficacy of the "Be Well, Work Well" workplace intervention. METHODS: The intervention included consultation for nurse managers to implement changes on patient-care units and educational programming for patient-care staff to facilitate improvements in safety and health behaviors. We used a mixed-methods approach to evaluate feasibility and efficacy. RESULTS: Using findings from process tracking and qualitative research, we observed challenges to implementing the intervention due to the physical demands, time constraints, and psychological strains of patient care. Using survey data, we found no significant intervention effects. CONCLUSIONS: Beyond educating individual workers, systemwide initiatives that respond to conditions of work might be needed to transform the workplace culture and broader milieu in support of worker health and safety. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 04, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure