Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-2 (of 2 Records) |
Query Trace: Gollarza LM[original query] |
---|
Antimicrobial resistance in multistate outbreaks of nontyphoidal Salmonella infections linked to animal contact-United States, 2015-2018
Frey E , Stapleton GS , Nichols MC , Gollarza LM , Birhane M , Chen JC , McCullough A , Carleton HA , Trees E , Hise KB , Tolar B , Francois Watkins L . J Clin Microbiol 2023 e0098123 Animal contact is an established risk factor for nontyphoidal Salmonella infections and outbreaks. During 2015-2018, the U.S. Centers for Disease Control and Prevention (CDC) and other U.S. public health laboratories began implementing whole-genome sequencing (WGS) of Salmonella isolates. WGS was used to supplement the traditional methods of pulsed-field gel electrophoresis for isolate subtyping, outbreak detection, and antimicrobial susceptibility testing (AST) for the detection of resistance. We characterized the epidemiology and antimicrobial resistance (AMR) of multistate salmonellosis outbreaks linked to animal contact during this time period. An isolate was considered resistant if AST yielded a resistant (or intermediate, for ciprofloxacin) interpretation to any antimicrobial tested by the CDC or if WGS showed a resistance determinant in its genome for one of these agents. We identified 31 outbreaks linked to contact with poultry (n = 23), reptiles (n = 6), dairy calves (n = 1), and guinea pigs (n = 1). Of the 26 outbreaks with resistance data available, we identified antimicrobial resistance in at least one isolate from 20 outbreaks (77%). Of 1,309 isolates with resistance information, 247 (19%) were resistant to ≥1 antimicrobial, and 134 (10%) were multidrug-resistant to antimicrobials from ≥3 antimicrobial classes. The use of resistance data predicted from WGS increased the number of isolates with resistance information available fivefold compared with AST, and 28 of 43 total resistance patterns were identified exclusively by WGS; concordance was high (>99%) for resistance determined by AST and WGS. The use of predicted resistance from WGS enhanced the characterization of the resistance profiles of outbreaks linked to animal contact by providing resistance information for more isolates. |
Agritourism and Kidding Season: A Large Outbreak of Human Shiga Toxin-Producing Escherichia coli O157 (STEC O157) Infections Linked to a Goat Dairy Farm-Connecticut, 2016.
Nichols MC , Gacek P , Phan Q , Gambino-Shirley KJ , Gollarza LM , Schroeder MN , Mercante A , Mullins J , Blackstock A , Laughlin ME , Olson SM , Pizzo E , Nguyen TN , Mank L , Holmes-Talbot K , McNutt A , Noel D , Muyombwe A , Razeq JH , Lis MJ , Sherman B , Kasacek W , Whitlock L , Strockbine N , Martin H , Vidyaprakash E , McCormack P , Cartter M . Front Vet Sci 2021 8 744055 The objective of this study was to determine sources of Shiga toxin-producing Escherichia coli O157 (STEC O157) infection among visitors to Farm X and develop public health recommendations. A case-control study was conducted. Case-patients were defined as the first ill child (aged <18 years) in the household with laboratory-confirmed STEC O157, or physician-diagnosed hemolytic uremic syndrome with laboratory confirmation by serology, who visited Farm X in the 10 days prior to illness. Controls were selected from Farm X visitors aged <18 years, without symptoms during the same time period as case-patients. Environment and animal fecal samples collected from Farm X were cultured; isolates from Farm X were compared with patient isolates using whole genome sequencing (WGS). Case-patients were more likely than controls to have sat on hay bales at the doe barn (adjusted odds ratio: 4.55; 95% confidence interval: 1.41-16.13). No handwashing stations were available; limited hand sanitizer was provided. Overall, 37% (29 of 78) of animal and environmental samples collected were positive for STEC; of these, 62% (18 of 29) yielded STEC O157 highly related by WGS to patient isolates. STEC O157 environmental contamination and fecal shedding by goats at Farm X was extensive. Farms should provide handwashing stations with soap, running water, and disposable towels. Access to animal areas, including animal pens and enclosures, should be limited for young children who are at risk for severe outcomes from STEC O157 infection. National recommendations should be adopted to reduce disease transmission. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure