Last data update: Nov 04, 2024. (Total: 48056 publications since 2009)
Records 1-30 (of 84 Records) |
Query Trace: Goldstein S[original query] |
---|
Person-centred care for older adults living with HIV in sub-Saharan Africa
Goldstein D , Kiplagat J , Taderera C , Whitehouse ER , Chimbetete C , Kimaiyo S , Urasa S , Paddick SM , Godfrey C . Lancet HIV 2024 More than a fifth of people living with HIV in the US President's Emergency Plan for AIDS Relief-supported programmes are older individuals, defined as aged 50 years and older, yet optimal person-centred models of care for older adults with HIV in sub-Saharan Africa, including screening and treatment for geriatric syndromes and common comorbidities associated with ageing, remain undefined. This Position Paper explores the disproportionate burden of comorbidities and geriatric syndromes faced by older adults with HIV, with a special focus on women. We seek to motivate global interest in improving quality of life for older people with HIV by presenting available research and identifying research gaps for common geriatric syndromes, including frailty and cognitive decline, and multimorbidity among older people with HIV in sub-Saharan Africa. We share two successful models of holistic care for older people with HIV that are ongoing in Zimbabwe and Kenya. Lastly, we provide policy, research, and implementation considerations to best serve this growing population. |
Early estimate of nirsevimab effectiveness for prevention of respiratory syncytial virus-associated hospitalization among infants entering their first respiratory syncytial virus season - New Vaccine Surveillance Network, October 2023-February 2024
Moline HL , Tannis A , Toepfer AP , Williams JV , Boom JA , Englund JA , Halasa NB , Staat MA , Weinberg GA , Selvarangan R , Michaels MG , Sahni LC , Klein EJ , Stewart LS , Schlaudecker EP , Szilagyi PG , Schuster JE , Goldstein L , Musa S , Piedra PA , Zerr DM , Betters KA , Rohlfs C , Albertin C , Banerjee D , McKeever ER , Kalman C , Clopper BR , McMorrow ML , Dawood FS . MMWR Morb Mortal Wkly Rep 2024 73 (9) 209-214 Respiratory syncytial virus (RSV) is the leading cause of hospitalization among infants in the United States. In August 2023, CDC's Advisory Committee on Immunization Practices recommended nirsevimab, a long-acting monoclonal antibody, for infants aged <8 months to protect against RSV-associated lower respiratory tract infection during their first RSV season and for children aged 8-19 months at increased risk for severe RSV disease. In phase 3 clinical trials, nirsevimab efficacy against RSV-associated lower respiratory tract infection with hospitalization was 81% (95% CI = 62%-90%) through 150 days after receipt; post-introduction effectiveness has not been assessed in the United States. In this analysis, the New Vaccine Surveillance Network evaluated nirsevimab effectiveness against RSV-associated hospitalization among infants in their first RSV season during October 1, 2023-February 29, 2024. Among 699 infants hospitalized with acute respiratory illness, 59 (8%) received nirsevimab ≥7 days before symptom onset. Nirsevimab effectiveness was 90% (95% CI = 75%-96%) against RSV-associated hospitalization with a median time from receipt to symptom onset of 45 days (IQR = 19-76 days). The number of infants who received nirsevimab was too low to stratify by duration from receipt; however, nirsevimab effectiveness is expected to decrease with increasing time after receipt because of antibody decay. Although nirsevimab uptake and the interval from receipt of nirsevimab were limited in this analysis, this early estimate supports the current nirsevimab recommendation for the prevention of severe RSV disease in infants. Infants should be protected by maternal RSV vaccination or infant receipt of nirsevimab. |
N-glycosylation profiles of the SARS-CoV-2 spike D614G mutant and its ancestral protein characterized by advanced mass spectrometry (preprint)
Wang D , Zhou B , Keppel TR , Solano M , Baudys J , Goldstein J , Finn MG , Fan X , Chapman AP , Bundy JL , Woolfitt AR , Osman SH , Pirkle JL , Wentworth DE , Barr JR . bioRxiv 2021 2021.07.26.453787 N-glycosylation plays an important role in the structure and function of membrane and secreted proteins. The spike protein on the surface of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, is heavily glycosylated and the major target for developing vaccines, therapeutic drugs and diagnostic tests. The first major SARS-CoV-2 variant carries a D614G substitution in the spike (S-D614G) that has been associated with altered conformation, enhanced ACE2 binding, and increased infectivity and transmission. In this report, we used mass spectrometry techniques to characterize and compare the N-glycosylation of the wild type (S-614D) or variant (S-614G) SARS-CoV-2 spike glycoproteins prepared under identical conditions. The data showed that half of the N-glycosylation sequons changed their distribution of glycans in the S-614G variant. The S-614G variant showed a decrease in the relative abundance of complex-type glycans (up to 45%) and an increase in oligomannose glycans (up to 33%) on all altered sequons. These changes led to a reduction in the overall complexity of the total N-glycosylation profile. All the glycosylation sites with altered patterns were in the spike head while the glycosylation of three sites in the stalk remained unchanged between S-614G and S-614D proteins.Competing Interest StatementThe authors have declared no competing interest. |
Description of a University COVID-19 Outbreak and Interventions to Disrupt Transmission, Wisconsin, August – October 2020 (preprint)
Currie DW , Moreno GK , Delahoy MJ , Pray IW , Jovaag A , Braun KM , Cole D , Shechter T , Fajardo GC , Griggs C , Yandell BS , Goldstein S , Bushman D , Segaloff HE , Kelly GP , Pitts C , Lee C , Grande KM , Kita-Yarbro A , Grogan B , Mader S , Baggott J , Bateman AC , Westergaard RP , Tate JE , Friedrich TC , Kirking HL , O'Connor DH , Killerby ME . medRxiv 2021 2021.05.07.21256834 University settings have demonstrated potential for COVID-19 outbreaks, as they can combine congregate living, substantial social activity, and a young population predisposed to mild illness. Using genomic and epidemiologic data, we describe a COVID-19 outbreak at the University of Wisconsin (UW)–Madison. During August – October 2020, 3,485 students tested positive, including 856/6,162 students living in residence halls. Case counts began rising during move-in week for on-campus students (August 25-31, 2020), then rose rapidly during September 1-11, 2020. UW-Madison initiated multiple prevention efforts, including quarantining two residence halls; a subsequent decline in cases was observed. Genomic surveillance of cases from Dane County, where UW-Madison is located, did not find evidence of transmission from a large cluster of cases in the two residence halls quarantined during the outbreak. Coordinated implementation of prevention measures can effectively reduce SARS-CoV-2 spread in university settings and may limit spillover to the community surrounding the university.Competing Interest StatementThe findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. Use of trade names is for identification only and does not imply endorsement by the Centers for Disease Control and Prevention.Clinical TrialN/A.Funding StatementG.K.M. is supported by an NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM 5T15LM007359). This work was funded in part by the U.S. Centers for Disease Control and Prevention Contract #75D30120C09870: Defining the Role of College Students in SARS-CoV-2 Spread in the Upper Midwest.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:A waiver of HIPAA Authorization was obtained by the Western Institutional Review Board (WIRB #1-1290953-1) to obtain the clinical specimens for whole genome sequencing. This analysis was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy. These activities were determined to be non-research public health surveillance by the Institutional Review Board at UW-Madison.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll sequencing data is available on www.gisaid.org. Scripts for sequence data analysis is available at https://github.com/gagekmoreno/SARS-CoV-2-at-UW_Madison. https://github.com/gagekmoreno/SARS-CoV-2-at-UW_Madison |
Rapid Development of Neutralizing and Diagnostic SARS-COV-2 Mouse Monoclonal Antibodies (preprint)
Chapman AP , Tang X , Lee JR , Chida A , Mercer K , Wharton RE , Kainulainen M , Harcourt JL , Martines RB , Schroeder M , Zhao L , Bryksin A , Zhou B , Bergeron E , Bollweg BC , Tamin A , Thornburg N , Wentworth DE , Petway D , Bagarozzi DA Jr , Finn MG , Goldstein JM . bioRxiv 2020 2020.10.13.338095 The need for high-affinity, SARS-CoV-2-specific monoclonal antibodies (mAbs) is critical in the face of the global COVID-19 pandemic, as such reagents can have important diagnostic, research, and therapeutic applications. Of greatest interest is the ~300 amino acid receptor binding domain (RBD) within the S1 subunit of the spike protein because of its key interaction with the human angiotensin converting enzyme 2 (hACE2) receptor present on many cell types, especially lung epithelial cells. We report here the development and functional characterization of 29 nanomolar-affinity mouse SARS-CoV-2 mAbs created by an accelerated immunization and hybridoma screening process. Differing functions, including binding of diverse protein epitopes, viral neutralization, impact on RBD-hACE2 binding, and immunohistochemical staining of infected lung tissue, were correlated with variable gene usage and sequence.Competing Interest StatementThe authors have declared no competing interest. |
High-throughput quantitation of SARS-CoV-2 antibodies in a single-dilution homogeneous assay (preprint)
Kainulainen MH , Bergeron E , Chatterjee P , Chapman AP , Lee J , Chida A , Tang X , Wharton RE , Mercer KB , Petway M , Jenks HM , Flietstra TD , Schuh AJ , Satheshkumar PS , Chaitram JM , Owen SM , Finn MG , Goldstein JM , Montgomery JM , Spiropoulou CF . medRxiv 2020 2020.09.16.20195446 SARS-CoV-2 emerged in late 2019 and has since spread around the world, causing a pandemic of the respiratory disease COVID-19. Detecting antibodies against the virus is an essential tool for tracking infections and developing vaccines. Such tests, primarily utilizing the enzyme-linked immunosorbent assay (ELISA) principle, can be either qualitative (reporting positive/negative results) or quantitative (reporting a value representing the quantity of specific antibodies). Quantitation is vital for determining stability or decline of antibody titers in convalescence, efficacy of different vaccination regimens, and detection of asymptomatic infections. Quantitation typically requires two-step ELISA testing, in which samples are first screened in a qualitative assay and positive samples are subsequently analyzed as a dilution series. To overcome the throughput limitations of this approach, we developed a simpler and faster system that is highly automatable and achieves quantitation in a single-dilution screening format with sensitivity and specificity comparable to those of ELISA.One sentence summary Protein complementation enables mix-and-read SARS-CoV-2 serology that rivals sensitivity and specificity of ELISA but excels in throughput and quantitation.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis research was funded by the Centers for Disease Control and Prevention.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Residual specimen materials were used for diagnostics development under a protocol that was reviewed and approved by the CDC Institutional Review Board (See 45 C.F.R. part 46; 21 C.F.R. part 56)All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesNo external data links |
Preadaptation of pandemic GII.4 noroviruses in hidden virus reservoirs years before emergence (preprint)
Ruis C , Lindesmith LC , Mallory ML , Brewer-Jensen PD , Bryant JM , Costantini V , Monit C , Vinjé J , Baric RS , Goldstein RA , Breuer J . bioRxiv 2019 658765 The control of pandemic pathogens depends on early prediction of pandemic variants and, more generally, understanding origins of such variants and factors that drive their global spread. This is especially important for GII.4 norovirus, where vaccines under development offer promise to prevent hundreds of millions of annual gastroenteritis cases. Previous studies have suggested that new GII.4 pandemic viruses evolve from previous pandemic variants through substitutions in the antigenic region of the VP1 protein that enable evasion of host population immunity, leading to global spread. In contrast, we show here that the acquisition of new genetic and antigenic characteristics is not the proximal driver of new pandemics. Instead, pandemic GII.4 viruses circulate undetected for years before causing a new pandemic, during which time they diversify and spread over wide geographical areas. Serological data demonstrate that by 2003, some nine years before it emerged as a new pandemic, the ancestral 2012 pandemic strain had already acquired the antigenic characteristics that allowed it to evade prevailing population immunity against the previous 2009 pandemic variant. These results provide strong evidence that viral genetic changes are necessary but not sufficient for GII.4 pandemic spread. Instead, we suggest that it is changes in host population immunity that enable pandemic spread of an antigenically-preadapted GII.4 variant. These results indicate that predicting future GII.4 pandemic variants will require surveillance of currently unsampled reservoir populations. Furthermore, a broadly acting GII.4 vaccine will be critical to prevent future pandemics.Significance Norovirus pandemics and their associated public health and economic costs could be prevented by effective vaccines. However, vaccine development and distribution will require identification of the sources and drivers of new pandemics. We here use phylogenetics and serological experiments to develop and test a new hypothesis of pandemic norovirus emergence. We find that pandemic noroviruses preadapt, diversify and spread worldwide years prior to emergence, strongly indicating that genetic changes are necessary but not sufficient to drive a new pandemic. We instead suggest that changes in population immunity enable pandemic emergence of a pre-adapted low-level variant. These findings indicate that prediction of new pandemics will require surveillance of under-sampled virus reservoirs and that norovirus vaccines will need to elicit broad immunity. |
Hospitalizations associated with respiratory syncytial virus (RSV) and influenza in children, including children having a diagnosis of asthma (preprint)
Goldstein E , Finelli L , O'Halloran A , Liu P , Karaca Z , Steiner CA , Viboud C , Lipsitch M . bioRxiv 2019 161067 Background There is uncertainty about the burden of hospitalization associated with RSV and influenza in children, including those with underlying medical conditions.Methods We applied previously developed methodology (Goldstein et al., Epidemiology 2012) to HealthCare Cost and Utilization Project (HCUP) hospitalization data and additional data related to asthma diagnosis/previous history in hospitalized children to estimate RSV and influenza-associated hospitalization rates in different subpopulations of US children between 2003-2010.Results The estimated average annual rates (per 100,000 children) of RSV-associated hospitalization with a respiratory cause (ICD-9 codes 460-519) present anywhere in the discharge diagnosis were 2381 (95% CI(2252,2515)) in age <1y; 710.6(609.1,809.2) (age 1y); 395(327.7,462.4) (age 2y); 211.3(154.6,266.8) (age 3y); 111.1(62.4,160.1) (age 4y); 72.3(29.3,116.4) (ages 5-6y); 35.6(9.9,62.2) (ages 7-11y); and 39(17.5,60.6) (ages 12-17y).The corresponding rates of influenza-associated hospitalization were lower, ranging from 181(142.5,220.3) in age <1y to 17.9(11.7,24.2) in ages 12-17y. The relative risks for RSV-related hospitalization associated with a prior diagnosis of asthma in age groups under 5y ranged between 3.1(2.1,4.7) (age <1y) to 6.7(4.2,11.8) (age 2y); the corresponding risks for influenza-related hospitalization ranged from 2.8(2.1,4) (age <1y) to 4.9(3.8,6.4) (age 3y).Conclusions RSV-associated hospitalization rates in young children are high and decline rapidly with age. Young children with an asthma diagnosis should be target groups for RSV and influenza-related mitigation efforts, possibly including RSV prophylaxis for the youngest children. |
Validation of immunoassays for the Chlamydia trachomatis antigen Pgp3 using a chimeric monoclonal antibody
Goodhew B , Tang X , Goldstein J , Lee J , Martin D , Gwyn S . Sci Rep 2023 13 (1) 7281 Seroepidemiology, or measuring antibodies to pathogens to estimate population-level exposure, can provide useful public health data. The tests used, however, often lack sufficient validation data due to absence of a gold standard. For many pathogens, serum antibodies can be detected long after resolution of infection, but infection status is often used as a gold standard for antibody positivity. To ensure that recently developed antibody tests for seroepidemiology of Chlamydia trachomatis (Ct), the causative agent of urogenital chlamydia and the blinding eye disease trachoma, have high performance, we generated a chimeric antibody to the immunodominant Ct antigen Pgp3. Two clones were selected to evaluate the test performance of three assays to measure antibodies to Pgp3: multiplex bead assay (MBA), enzyme-linked immunosorbent assay (ELISA), and lateral flow assay (LFA). Overall, each assay demonstrated high accuracy and precision when tested using either clone, and the clones were stable when stored at - 20 °C and 4 °C for almost 2 years. The limit of detection was similar for MBA and LFA, but almost a log-fold higher (i.e. less sensitive) using ELISA. Overall, the chimeric antibodies represent stable control reagents for tests with robust performance and will facilitate deployment of these tests to other laboratories. |
Water Pipe (Hookah) Smoking and Cardiovascular Disease Risk: A Scientific Statement From the American Heart Association
Bhatnagar A , Maziak W , Eissenberg T , Ward KD , Thurston G , King BA , Sutfin EL , Cobb CO , Griffiths M , Goldstein LB , Rezk-Hanna M . Circulation 2019 139 (19) e917-e936 Tobacco smoking with a water pipe or hookah is increasing globally. There are millions of water pipe tobacco smokers worldwide, and in the United States, water pipe use is more common among youth and young adults than among adults. The spread of water pipe tobacco smoking has been abetted by the marketing of flavored tobacco, a social media environment that promotes water pipe smoking, and misperceptions about the addictive potential and potential adverse health effects of this form of tobacco use. There is growing evidence that water pipe tobacco smoking affects heart rate, blood pressure regulation, baroreflex sensitivity, tissue oxygenation, and vascular function over the short term. Long-term water pipe use is associated with increased risk of coronary artery disease. Several harmful or potentially harmful substances present in cigarette smoke are also present in water pipe smoke, often at levels exceeding those found in cigarette smoke. Water pipe tobacco smokers have a higher risk of initiation of cigarette smoking than never smokers. Future studies that focus on the long-term adverse health effects of intermittent water pipe tobacco use are critical to strengthen the evidence base and to inform the regulation of water pipe products and use. The objectives of this statement are to describe the design and operation of water pipes and their use patterns, to identify harmful and potentially harmful constituents in water pipe smoke, to document the cardiovascular risks of water pipe use, to review current approaches to water pipe smoking cessation, and to offer guidance to healthcare providers for the identification and treatment of individuals who smoke tobacco using water pipes. |
Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak - United States, December 31, 2019-February 4, 2020.
Patel A , Jernigan DB , 2019-nCOV CDC Response Team , Abdirizak Fatuma , Abedi Glen , Aggarwal Sharad , Albina Denise , Allen Elizabeth , Andersen Lauren , Anderson Jade , Anderson Megan , Anderson Tara , Anderson Kayla , Bardossy Ana Cecilia , Barry Vaughn , Beer Karlyn , Bell Michael , Berger Sherri , Bertulfo Joseph , Biggs Holly , Bornemann Jennifer , Bornstein Josh , Bower Willie , Bresee Joseph , Brown Clive , Budd Alicia , Buigut Jennifer , Burke Stephen , Burke Rachel , Burns Erin , Butler Jay , Cantrell Russell , Cardemil Cristina , Cates Jordan , Cetron Marty , Chatham-Stephens Kevin , Chatham-Stevens Kevin , Chea Nora , Christensen Bryan , Chu Victoria , Clarke Kevin , Cleveland Angela , Cohen Nicole , Cohen Max , Cohn Amanda , Collins Jennifer , Conners Erin , Curns Aaron , Dahl Rebecca , Daley Walter , Dasari Vishal , Davlantes Elizabeth , Dawson Patrick , Delaney Lisa , Donahue Matthew , Dowell Chad , Dyal Jonathan , Edens William , Eidex Rachel , Epstein Lauren , Evans Mary , Fagan Ryan , Farris Kevin , Feldstein Leora , Fox LeAnne , Frank Mark , Freeman Brandi , Fry Alicia , Fuller James , Galang Romeo , Gerber Sue , Gokhale Runa , Goldstein Sue , Gorman Sue , Gregg William , Greim William , Grube Steven , Hall Aron , Haynes Amber , Hill Sherrasa , Hornsby-Myers Jennifer , Hunter Jennifer , Ionta Christopher , Isenhour Cheryl , Jacobs Max , Jacobs Slifka Kara , Jernigan Daniel , Jhung Michael , Jones-Wormley Jamie , Kambhampati Anita , Kamili Shifaq , Kennedy Pamela , Kent Charlotte , Killerby Marie , Kim Lindsay , Kirking Hannah , Koonin Lisa , Koppaka Ram , Kosmos Christine , Kuhar David , Kuhnert-Tallman Wendi , Kujawski Stephanie , Kumar Archana , Landon Alexander , Lee Leslie , Leung Jessica , Lindstrom Stephen , Link-Gelles Ruth , Lively Joana , Lu Xiaoyan , Lynch Brian , Malapati Lakshmi , Mandel Samantha , Manns Brian , Marano Nina , Marlow Mariel , Marston Barbara , McClung Nancy , McClure Liz , McDonald Emily , McGovern Oliva , Messonnier Nancy , Midgley Claire , Moulia Danielle , Murray Janna , Noelte Kate , Noonan-Smith Michelle , Nordlund Kristen , Norton Emily , Oliver Sara , Pallansch Mark , Parashar Umesh , Patel Anita , Patel Manisha , Pettrone Kristen , Pierce Taran , Pietz Harald , Pillai Satish , Radonovich Lewis , Reagan-Steiner Sarah , Reel Amy , Reese Heather , Rha Brian , Ricks Philip , Rolfes Melissa , Roohi Shahrokh , Roper Lauren , Rotz Lisa , Routh Janell , Sakthivel Senthil Kumar Sarmiento Luisa , Schindelar Jessica , Schneider Eileen , Schuchat Anne , Scott Sarah , Shetty Varun , Shockey Caitlin , Shugart Jill , Stenger Mark , Stuckey Matthew , Sunshine Brittany , Sykes Tamara , Trapp Jonathan , Uyeki Timothy , Vahey Grace , Valderrama Amy , Villanueva Julie , Walker Tunicia , Wallace Megan , Wang Lijuan , Watson John , Weber Angie , Weinbaum Cindy , Weldon William , Westnedge Caroline , Whitaker Brett , Whitaker Michael , Williams Alcia , Williams Holly , Willams Ian , Wong Karen , Xie Amy , Yousef Anna . Am J Transplant 2020 20 (3) 889-895 This article summarizes what is currently known about the 2019 novel coronavirus and offers interim guidance. |
A new era in cardiac rehabilitation delivery: Research gaps, questions, strategies, and priorities
Beatty AL , Beckie TM , Dodson J , Goldstein CM , Hughes JW , Kraus WE , Martin SS , Olson TP , Pack QR , Stolp H , Thomas RJ , Wu WC , Franklin BA . Circulation 2023 147 (3) 254-266 Cardiac rehabilitation (CR) is a guideline-recommended, multidisciplinary program of exercise training, risk factor management, and psychosocial counseling for people with cardiovascular disease (CVD) that is beneficial but underused and with substantial disparities in referral, access, and participation. The emergence of new virtual and remote delivery models has the potential to improve access to and participation in CR and ultimately improve outcomes for people with CVD. Although data suggest that new delivery models for CR have safety and efficacy similar to traditional in-person CR, questions remain regarding which participants are most likely to benefit from these models, how and where such programs should be delivered, and their effect on outcomes in diverse populations. In this review, we describe important gaps in evidence, identify relevant research questions, and propose strategies for addressing them. We highlight 4 research priorities: (1) including diverse populations in all CR research; (2) leveraging implementation methodologies to enhance equitable delivery of CR; (3) clarifying which populations are most likely to benefit from virtual and remote CR; and (4) comparing traditional in-person CR with virtual and remote CR in diverse populations using multicenter studies of important clinical, psychosocial, and cost-effectiveness outcomes that are relevant to patients, caregivers, providers, health systems, and payors. By framing these important questions, we hope to advance toward a goal of delivering high-quality CR to as many people as possible to improve outcomes in those with CVD. |
Immune Imprinting Drives Human Norovirus Potential for Global Spread.
Lindesmith LC , Boshier FAT , Brewer-Jensen PD , Roy S , Costantini V , Mallory ML , Zweigart M , May SR , Conrad H , O'Reilly KM , Kelly D , Celma CC , Beard S , Williams R , Tutill HJ , Becker Dreps S , Bucardo F , Allen DJ , Vinjé J , Goldstein RA , Breuer J , Baric RS . mBio 2022 13 (5) e0186122 Understanding the complex interactions between virus and host that drive new strain evolution is key to predicting the emergence potential of variants and informing vaccine development. Under our hypothesis, future dominant human norovirus GII.4 variants with critical antigenic properties that allow them to spread are currently circulating undetected, having diverged years earlier. Through large-scale sequencing of GII.4 surveillance samples, we identified two variants with extensive divergence within domains that mediate neutralizing antibody binding. Subsequent serological characterization of these strains using temporally resolved adult and child sera suggests that neither candidate could spread globally in adults with multiple GII.4 exposures, yet young children with minimal GII.4 exposure appear susceptible. Antigenic cartography of surveillance and outbreak sera indicates that continued population exposure to GII.4 Sydney 2012 and antigenically related variants over a 6-year period resulted in a broadening of immunity to heterogeneous GII.4 variants, including those identified here. We show that the strongest antibody responses in adults exposed to GII.4 Sydney 2012 are directed to previously circulating GII.4 viruses. Our data suggest that the broadening of antibody responses compromises establishment of strong GII.4 Sydney 2012 immunity, thereby allowing the continued persistence of GII.4 Sydney 2012 and modulating the cycle of norovirus GII.4 variant replacement. Our results indicate a cycle of norovirus GII.4 variant replacement dependent upon population immunity. Young children are susceptible to divergent variants; therefore, emergence of these strains worldwide is driven proximally by changes in adult serological immunity and distally by viral evolution that confers fitness in the context of immunity. IMPORTANCE In our model, preepidemic human norovirus variants harbor genetic diversification that translates into novel antigenic features without compromising viral fitness. Through surveillance, we identified two viruses fitting this profile, forming long branches on a phylogenetic tree. Neither evades current adult immunity, yet young children are likely susceptible. By comparing serological responses, we demonstrate that population immunity varies by age/exposure, impacting predicted susceptibility to variants. Repeat exposure to antigenically similar variants broadens antibody responses, providing immunological coverage of diverse variants but compromising response to the infecting variant, allowing continued circulation. These data indicate norovirus GII.4 variant replacement is driven distally by virus evolution and proximally by immunity in adults. |
Intradermal vaccination for monkeypox - benefits for individual and public health
Brooks JT , Marks P , Goldstein RH , Walensky RP . N Engl J Med 2022 387 (13) 1151-1153 Intradermal vaccination delivers antigen into the space between the epidermis and the dermis. This space is an anatomically favorable site for immune stimulation, enriched in a heterogenous population of dendritic cells, macrophages, and monocytes that endow this tissue with a potent capacity to detect and respond robustly to immunologic stimuli, including those present in vaccines. For these reasons, the role of the dermis in adaptive immunity has been exploited for allergen testing and tuberculosis skin testing. And smallpox vaccination was developed by Jenner using something similar to intradermal administration: variolation, or the practice of scratching immunizing material into the skin. |
Optimizing vocabulary instruction for preschool children
Madsen KM , Peters-Sanders LA , Kelley ES , Barker RM , Seven Y , Olsen WL , Soto-Boykin X , Goldstein H . J Early Interv 2022 A cluster randomized design was used to investigate the effects of the Story Friends vocabulary curriculum on learning of 84 preschoolers in 24 classrooms who were at risk for language difficulties. Children in the treatment condition received explicit vocabulary instruction of 36 words during small-group storybook listening centers with extended practice opportunities in the classroom and at home. Children in the comparison condition were exposed to the same words in stories without explicit instruction or extended practice. Children (n = 16) with average or above language skills from six treatment classrooms were included to examine the impact of extended practice. Children at risk in treatment classrooms learned significantly more words (52%) than children at risk in comparison classrooms (12%). Children not at risk learned vocabulary equal to children at risk. A tiered approach to implementing Story Friends appears feasible for enhancing the vocabulary learning of preschoolers with and without language delays. © 2022 SAGE Publications. |
Health equity in the implementation of genomics and precision medicine: A public health imperative.
Khoury MJ , Bowen S , Dotson WD , Drzymalla E , Green RF , Goldstein R , Kolor K , Liburd LC , Sperling LS , Bunnell R . Genet Med 2022 24 (8) 1630-1639 Recent reviews have emphasized the need for a health equity agenda in genomics research. To ensure that genomic discoveries can lead to improved health outcomes for all segments of the population, a health equity agenda needs to go beyond research studies. Advances in genomics and precision medicine have led to an increasing number of evidence-based applications that can reduce morbidity and mortality for millions of people (tier 1). Studies have shown lower implementation rates for selected diseases with tier 1 applications (familial hypercholesterolemia, Lynch syndrome, hereditary breast and ovarian cancer) among racial and ethnic minority groups, rural communities, uninsured or underinsured people, and those with lower education and income. We make the case that a public health agenda is needed to address disparities in implementation of genomics and precision medicine. Public health actions can be centered on population-specific needs and outcomes assessment, policy and evidence development, and assurance of delivery of effective and ethical interventions. Crucial public health activities also include engaging communities, building coalitions, improving genetic health literacy, and building a diverse workforce. Without concerted public health action, further advances in genomics with potentially broad applications could lead to further widening of health disparities in the next decade. |
Use of remnant specimens to assess use of HIV pre-exposure prophylaxis (PrEP) among populations with risk for HIV infection: A novel approach.
Pathela P , Qasmieh S , Gandhi M , Rozen E , Okochi H , Goldstein H , Herold BC , Jamison K , Schillinger JA , Nash D . J Acquir Immune Defic Syndr 2022 90 (4) 382-387 BACKGROUND: HIV-uninfected persons being evaluated for sexually transmitted infections (STIs) may be good HIV pre-exposure prophylaxis (PrEP) candidates. We measured PrEP use in a sentinel STI patient population. DESIGN: Cross-sectional study, New York City Sexual Health Clinics (January-June 2019). METHODS: Remnant serum samples from 644 HIV-uninfected men-who-have-sex-with-men (MSM) and 97 women diagnosed with chlamydia (CT), gonorrhea (GC) and/or early syphilis (ES) were assayed for tenofovir and emtricitabine levels using a validated liquid chromatography-mass spectrometry assay. Using paired test results and medical records, we assessed 1) prevalence and 2) correlates of PrEP use on the day of STI diagnosis (adjusted prevalence ratios [aPR]). RESULTS: PrEP use among 741 patients was 32.7% (95% CI, 29.3%-36.0%); 37.3% for MSM and 2.1% for women. PrEP use was high among White MSM (46.8%) and lowest among women. Among MSM with rectal CT/GC or ES, PrEP use was associated with age [aPR=1.7 (95% CI, 1.2-2.4) for ages 25-34 and aPR=2.0 (1.4-2.9) for ages 35-44, vs. 15-24 years]; number recent sex partners [aPR=1.4 (1.0-2.0) for 3-5 partners, aPR=2.1 (1.5-3.0) for 6-10 partners, aPR=2.2 (1.6-3.1) for >10 partners, vs. <2 partners]; having sex/needle-sharing partners with HIV [aPR=1.4 (1.1-1.7)]; and inconsistent condom use [aPR=3.3 (1.8-6.1)]. Race/ethnicity, past-year STI diagnosis, and post-exposure prophylaxis use were not associated. CONCLUSIONS: One in 3 people with newly diagnosed STIs had detectable serum PrEP, and PrEP use was exceedingly rare among women. Routinely collected remnant samples can be used to measure PrEP use in populations at high risk for HIV acquisition. |
Analysis of the initial lot of the CDC 2019-Novel Coronavirus (2019-nCoV) real-time RT-PCR diagnostic panel.
Lee JS , Goldstein JM , Moon JL , Herzegh O , Bagarozzi DAJr , Oberste MS , Hughes H , Bedi K , Gerard D , Cameron B , Benton C , Chida A , Ahmad A , Petway DJJr , Tang X , Sulaiman N , Teklu D , Batra D , Howard D , Sheth M , Kuhnert W , Bialek SR , Hutson CL , Pohl J , Carroll DS . PLoS One 2021 16 (12) e0260487 At the start of the COVID-19 pandemic, the Centers for Disease Control and Prevention (CDC) designed, manufactured, and distributed the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel for SARS-CoV-2 detection. The diagnostic panel targeted three viral nucleocapsid gene loci (N1, N2, and N3 primers and probes) to maximize sensitivity and to provide redundancy for virus detection if mutations occurred. After the first distribution of the diagnostic panel, state public health laboratories reported fluorescent signal in the absence of viral template (false-positive reactivity) for the N3 component and to a lesser extent for N1. This report describes the findings of an internal investigation conducted by the CDC to identify the cause(s) of the N1 and N3 false-positive reactivity. For N1, results demonstrate that contamination with a synthetic template, that occurred while the "bulk" manufactured materials were located in a research lab for quality assessment, was the cause of false reactivity in the first lot. Base pairing between the 3' end of the N3 probe and the 3' end of the N3 reverse primer led to amplification of duplex and larger molecules resulting in false reactivity in the N3 assay component. We conclude that flaws in both assay design and handling of the "bulk" material, caused the problems with the first lot of the 2019-nCoV Real-Time RT-PCR Diagnostic Panel. In addition, within this study, we found that the age of the examined diagnostic panel reagents increases the frequency of false positive results for N3. We discuss these findings in the context of improvements to quality control, quality assurance, and assay validation practices that have since been improved at the CDC. |
N-glycosylation profiles of the SARS-CoV-2 spike D614G mutant and its ancestral protein characterized by advanced mass spectrometry.
Wang D , Zhou B , Keppel TR , Solano M , Baudys J , Goldstein J , Finn MG , Fan X , Chapman AP , Bundy JL , Woolfitt AR , Osman SH , Pirkle JL , Wentworth DE , Barr JR . Sci Rep 2021 11 (1) 23561 N-glycosylation plays an important role in the structure and function of membrane and secreted proteins. The spike protein on the surface of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, is heavily glycosylated and the major target for developing vaccines, therapeutic drugs and diagnostic tests. The first major SARS-CoV-2 variant carries a D614G substitution in the spike (S-D614G) that has been associated with altered conformation, enhanced ACE2 binding, and increased infectivity and transmission. In this report, we used mass spectrometry techniques to characterize and compare the N-glycosylation of the wild type (S-614D) or variant (S-614G) SARS-CoV-2 spike glycoproteins prepared under identical conditions. The data showed that half of the N-glycosylation sequons changed their distribution of glycans in the S-614G variant. The S-614G variant showed a decrease in the relative abundance of complex-type glycans (up to 45%) and an increase in oligomannose glycans (up to 33%) on all altered sequons. These changes led to a reduction in the overall complexity of the total N-glycosylation profile. All the glycosylation sites with altered patterns were in the spike head while the glycosylation of three sites in the stalk remained unchanged between S-614G and S-614D proteins. |
Interventions to Disrupt Coronavirus Disease Transmission at a University, Wisconsin, USA, August-October 2020.
Currie DW , Moreno GK , Delahoy MJ , Pray IW , Jovaag A , Braun KM , Cole D , Shechter T , Fajardo GC , Griggs C , Yandell BS , Goldstein S , Bushman D , Segaloff HE , Kelly GP , Pitts C , Lee C , Grande KM , Kita-Yarbro A , Grogan B , Mader S , Baggott J , Bateman AC , Westergaard RP , Tate JE , Friedrich TC , Kirking HL , O'Connor DH , Killerby ME . Emerg Infect Dis 2021 27 (11) 2776-2785 University settings have demonstrated potential for coronavirus disease (COVID-19) outbreaks; they combine congregate living, substantial social activity, and a young population predisposed to mild illness. Using genomic and epidemiologic data, we describe a COVID-19 outbreak at the University of Wisconsin-Madison, Madison, Wisconsin, USA. During August-October 2020, a total of 3,485 students, including 856/6,162 students living in dormitories, tested positive. Case counts began rising during move-in week, August 25-31, 2020, then rose rapidly during September 1-11, 2020. The university initiated multiple prevention efforts, including quarantining 2 dormitories; a subsequent decline in cases was observed. Genomic surveillance of cases from Dane County, in which the university is located, did not find evidence of transmission from a large cluster of cases in the 2 quarantined dorms during the outbreak. Coordinated implementation of prevention measures can reduce COVID-19 spread in university settings and may limit spillover to the surrounding community. |
Personal interventions for reducing exposure and risk for outdoor air pollution: An official American Thoracic Society Workshop report
Laumbach RJ , Cromar KR , Adamkiewicz G , Carlsten C , Charpin D , Chan WR , de Nazelle A , Forastiere F , Goldstein J , Gumy S , Hallman WK , Jerrett M , Kipen HM , Pirozzi CS , Polivka BJ , Radbel J , Shaffer RE , Sin DD , Viegi G . Ann Am Thorac Soc 2021 18 (9) 1435-1443 Poor air quality affects the health and wellbeing of large populations around the globe. Although source controls are the most effective approaches for improving air quality and reducing health risks, individuals can also take actions to reduce their personal exposure by staying indoors, reducing physical activity, altering modes of transportation, filtering indoor air, and using respirators and other types of face masks. A synthesis of available evidence on the efficacy, effectiveness, and potential adverse effects or unintended consequences of personal interventions for air pollution is needed by clinicians to assist patients and the public in making informed decisions about use of these interventions. To address this need, the American Thoracic Society convened a workshop in May of 2018 to bring together a multidisciplinary group of international experts to review the current state of knowledge about personal interventions for air pollution and important considerations when helping patients and the general public to make decisions about how best to protect themselves. From these discussions, recommendations were made regarding when, where, how, and for whom to consider personal interventions. In addition to the efficacy and safety of the various interventions, the committee considered evidence regarding the identification of patients at greatest risk, the reliability of air quality indices, the communication challenges, and the ethical and equity considerations that arise when discussing personal interventions to reduce exposure and risk from outdoor air pollution. |
Risk factors for COVID-19-related in-hospital mortality in a high HIV and tuberculosis prevalence setting in South Africa: a cohort study.
Jassat W , Cohen C , Tempia S , Masha M , Goldstein S , Kufa T , Murangandi P , Savulescu D , Walaza S , Bam JL , Davies MA , Prozesky HW , Naude J , Mnguni AT , Lawrence CA , Mathema HT , Zamparini J , Black J , Mehta R , Parker A , Chikobvu P , Dawood H , Muvhango N , Strydom R , Adelekan T , Mdlovu B , Moodley N , Namavhandu EL , Rheeder P , Venturas J , Magula N , Blumberg L . Lancet HIV 2021 8 (9) e554-e567 BACKGROUND: The interaction between COVID-19, non-communicable diseases, and chronic infectious diseases such as HIV and tuberculosis is unclear, particularly in low-income and middle-income countries in Africa. South Africa has a national HIV prevalence of 19% among people aged 15-49 years and a tuberculosis prevalence of 0·7% in people of all ages. Using a nationally representative hospital surveillance system in South Africa, we aimed to investigate the factors associated with in-hospital mortality among patients with COVID-19. METHODS: In this cohort study, we used data submitted to DATCOV, a national active hospital surveillance system for COVID-19 hospital admissions, for patients admitted to hospital with laboratory-confirmed SARS-CoV-2 infection between March 5, 2020, and March 27, 2021. Age, sex, race or ethnicity, and comorbidities (hypertension, diabetes, chronic cardiac disease, chronic pulmonary disease and asthma, chronic renal disease, malignancy in the past 5 years, HIV, and past and current tuberculosis) were considered as risk factors for COVID-19-related in-hospital mortality. COVID-19 in-hospital mortality, the main outcome, was defined as a death related to COVID-19 that occurred during the hospital stay and excluded deaths that occurred because of other causes or after discharge from hospital; therefore, only patients with a known in-hospital outcome (died or discharged alive) were included. Chained equation multiple imputation was used to account for missing data and random-effects multivariable logistic regression models were used to assess the role of HIV status and underlying comorbidities on COVID-19 in-hospital mortality. FINDINGS: Among the 219 265 individuals admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and known in-hospital outcome data, 51 037 (23·3%) died. Most commonly observed comorbidities among individuals with available data were hypertension in 61 098 (37·4%) of 163 350, diabetes in 43 885 (27·4%) of 159 932, and HIV in 13 793 (9·1%) of 151 779. Tuberculosis was reported in 5282 (3·6%) of 146 381 individuals. Increasing age was the strongest predictor of COVID-19 in-hospital mortality. Other factors associated were HIV infection (adjusted odds ratio 1·34, 95% CI 1·27-1·43), past tuberculosis (1·26, 1·15-1·38), current tuberculosis (1·42, 1·22-1·64), and both past and current tuberculosis (1·48, 1·32-1·67) compared with never tuberculosis, as well as other described risk factors for COVID-19, such as male sex; non-White race; underlying hypertension, diabetes, chronic cardiac disease, chronic renal disease, and malignancy in the past 5 years; and treatment in the public health sector. After adjusting for other factors, people with HIV not on antiretroviral therapy (ART; adjusted odds ratio 1·45, 95% CI 1·22-1·72) were more likely to die in hospital than were people with HIV on ART. Among people with HIV, the prevalence of other comorbidities was 29·2% compared with 30·8% among HIV-uninfected individuals. Increasing number of comorbidities was associated with increased COVID-19 in-hospital mortality risk in both people with HIV and HIV-uninfected individuals. INTERPRETATION: Individuals identified as being at high risk of COVID-19 in-hospital mortality (older individuals and those with chronic comorbidities and people with HIV, particularly those not on ART) would benefit from COVID-19 prevention programmes such as vaccine prioritisation as well as early referral and treatment. FUNDING: South African National Government. |
Antibodies to SARS-CoV-2 in All of Us Research Program Participants, January 2-March 18, 2020.
Althoff KN , Schlueter DJ , Anton-Culver H , Cherry J , Denny JC , Thomsen I , Karlson EW , Havers FP , Cicek MS , Thibodeau SN , Pinto LA , Lowy D , Malin BA , Ohno-Machado L , Williams C , Goldstein D , Kouame A , Ramirez A , Roman A , Sharpless NE , Gebo KA , Schully SD . Clin Infect Dis 2021 74 (4) 584-590 BACKGROUND: With limited SARS-CoV-2 testing capacity in the US at the start of the epidemic (January - March), testing was focused on symptomatic patients with a travel history throughout February, obscuring the picture of SARS-CoV-2 seeding and community transmission. We sought to identify individuals with SARS-CoV-2 antibodies in the early weeks of the US epidemic. METHODS: All of Us study participants in all 50 US states provided blood specimens during study visits from January 2 to March 18, 2020. A participant was considered seropositive if they tested positive for SARS-CoV-2 immunoglobulin G (IgG) antibodies on the Abbott Architect SARS-CoV-2 IgG ELISA and the EUROIMMUN SARS-CoV-2 ELISA in a sequential testing algorithm. Sensitivity and specificity of the Abbott and EUROIMMUNE ELISAs and the net sensitivity and specificity of the sequential testing algorithm were estimated with 95% confidence intervals. RESULTS: The estimated sensitivity of Abbott and EUROIMMUN was 100% (107/107 [96.6%, 100%]) and 90.7% (97/107 [83.5%, 95.4%]), respectively. The estimated specificity of Abbott and EUROIMMUN was 99.5% (995/1,000 [98.8%, 99.8%]) and 99.7% (997/1,000 [99.1%, 99.9%), respectively. The net sensitivity and specificity of our sequential testing algorithm was 90.7% (97/107 [83.5%, 95.4%]) and 100.0% (1,000/1,000 [99.6%, 100%]), respectively. Of the 24,079 study participants with blood specimens from January 2 to March 18, 2020, 9 were seropositive, 7 of whom were seropositive prior to the first confirmed case in the states of Illinois, Massachusetts, Wisconsin, Pennsylvania, and Mississippi. CONCLUSIONS: Our findings indicate SARS-CoV-2 infections weeks prior to the first recognized cases in 5 US states. |
High-throughput quantitation of SARS-CoV-2 antibodies in a single-dilution homogeneous assay.
Kainulainen MH , Bergeron E , Chatterjee P , Chapman AP , Lee J , Chida A , Tang X , Wharton RE , Mercer KB , Petway M , Jenks HM , Flietstra TD , Schuh AJ , Satheshkumar PS , Chaitram JM , Owen SM , McMullan LK , Flint M , Finn MG , Goldstein JM , Montgomery JM , Spiropoulou CF . Sci Rep 2021 11 (1) 12330 SARS-CoV-2 emerged in late 2019 and has since spread around the world, causing a pandemic of the respiratory disease COVID-19. Detecting antibodies against the virus is an essential tool for tracking infections and developing vaccines. Such tests, primarily utilizing the enzyme-linked immunosorbent assay (ELISA) principle, can be either qualitative (reporting positive/negative results) or quantitative (reporting a value representing the quantity of specific antibodies). Quantitation is vital for determining stability or decline of antibody titers in convalescence, efficacy of different vaccination regimens, and detection of asymptomatic infections. Quantitation typically requires two-step ELISA testing, in which samples are first screened in a qualitative assay and positive samples are subsequently analyzed as a dilution series. To overcome the throughput limitations of this approach, we developed a simpler and faster system that is highly automatable and achieves quantitation in a single-dilution screening format with sensitivity and specificity comparable to those of ELISA. |
COVID-19 Vaccine Breakthrough Infections Reported to CDC - United States, January 1-April 30, 2021.
CDC COVID-19 Vaccine Breakthrough Case Investigations Team , Birhane Meseret , Bressler Sara , Chang Gregory , Clark Thomas , Dorough Layne , Fischer Marc , Watkins Louise Francois , Goldstein Jason M , Kugeler Kiersten , Langley Gayle , Lecy Kristin , Martin Stacey , Medalla Felicita , Mitruka Kiren , Nolen Leisha , Sadigh Katrin , Spratling Robin , Thompson Gail , Trujillo Alma . MMWR Morb Mortal Wkly Rep 2021 70 (21) 792-793 COVID-19 vaccines are a critical tool for controlling the ongoing global pandemic. The Food and Drug Administration (FDA) has issued Emergency Use Authorizations for three COVID-19 vaccines for use in the United States.* In large, randomized-controlled trials, each vaccine was found to be safe and efficacious in preventing symptomatic, laboratory-confirmed COVID-19 (1-3). Despite the high level of vaccine efficacy, a small percentage of fully vaccinated persons (i.e. received all recommended doses of an FDA-authorized COVID-19 vaccine) will develop symptomatic or asymptomatic infections with SARS-CoV-2, the virus that causes COVID-19 (2-8). |
Baseline Asymptomatic Malaria Infection and Immunogenicity of rVSVG-ZEBOV-GP Vaccine: The Sierra Leone Trial to Introduce a Vaccine Against Ebola (STRIVE)
Mahon BE , Simon J , Widdowson MA , Samai M , Rogier E , Legardy-Williams J , Liu K , Schiffer J , Lange J , DeByle C , Pinner R , Schuchat A , Slutsker L , Goldstein S . J Infect Dis 2021 224 (11) 1907-1915 BACKGROUND: The effect of malaria infection on rVSVΔG-ZEBOV-GP (ERVEBO®) immunogenicity is unknown. METHODS: The Sierra Leone Trial to Introduce a Vaccine against Ebola (STRIVE) vaccinated 7998 asymptomatic adults with rVSVΔG-ZEBOV-GP during the 2014-6 Ebola epidemic. In STRIVE's immunogenicity sub-study, participants provided blood samples at baseline, 1, 6, and 9-12 months. Anti-glycoprotein (GP) binding and neutralizing antibodies were measured using validated assays. Baseline samples were tested for malaria parasites by PCR. RESULTS: Overall, 506 participants enrolled in the immunogenicity sub-study and had ≥1 post-vaccination antibody titer. Of 499 participants with a result, baseline malaria parasitemia was detected in 73(14.6%). All GP-ELISA and plaque reduction neutralization test (PRNT) geometric mean titers (GMTs) at 1, 6, and 9-12 months were above baseline, and 94.1% of participants seroresponded by GP-ELISA (≥2-fold rise AND ≥200 EU/ml), while 81.5% seroresponded by PRNT (≥4-fold rise) at ≥1 post-vaccination assessment. In participants with baseline malaria parasitemia, the PRNT seroresponse proportion was lower, while PRNT GMTs and GP-ELISA seroresponse and GMTs showed a trend toward lower responses at 6 and 9-12 months. CONCLUSION: Asymptomatic adults with and without malaria parasitemia had robust immune responses to rVSVΔG-ZEBOV-GP persisting for 9-12 months. Responses in those with malaria parasitemia were somewhat lower. |
Rapid development of neutralizing and diagnostic SARS-COV-2 mouse monoclonal antibodies.
Chapman AP , Tang X , Lee JR , Chida A , Mercer K , Wharton RE , Kainulainen M , Harcourt JL , Martines RB , Schroeder M , Zhao L , Bryksin A , Zhou B , Bergeron E , Bollweg BC , Tamin A , Thornburg N , Wentworth DE , Petway D , Bagarozzi DA Jr , Finn MG , Goldstein JM . Sci Rep 2021 11 (1) 9682 The need for high-affinity, SARS-CoV-2-specific monoclonal antibodies (mAbs) is critical in the face of the global COVID-19 pandemic, as such reagents can have important diagnostic, research, and therapeutic applications. Of greatest interest is the ~ 300 amino acid receptor binding domain (RBD) within the S1 subunit of the spike protein because of its key interaction with the human angiotensin converting enzyme 2 (hACE2) receptor present on many cell types, especially lung epithelial cells. We report here the development and functional characterization of 29 nM-affinity mouse SARS-CoV-2 mAbs created by an accelerated immunization and hybridoma screening process. Differing functions, including binding of diverse protein epitopes, viral neutralization, impact on RBD-hACE2 binding, and immunohistochemical staining of infected lung tissue, were correlated with variable gene usage and sequence. |
Electronic health records and pulmonary function data: Developing an interoperability roadmap. An Official American Thoracic Society Workshop Report
McCormack MC , Bascom R , Brandt M , Burgos F , Butler S , Caggiano C , Dimmock AEF , Fineberg A , Goldstein J , Guzman FC , Halldin CN , Johnson JD , Kerby GS , Krishnan JA , Kurth L , Morgan G , Mularski RA , Pasquale CB , Ryu J , Sinclair T , Stachowicz NF , Taite A , Tilles J , Truta JR , Weissman DN , Wu TD , Yawn BP , Drummond MB . Ann Am Thorac Soc 2021 18 (1) 1-11 A workshop "Electronic Health Records and Pulmonary Function Data: Developing an Interoperability Roadmap" was held at the American Thoracic Society 2019 International Conference. "Interoperability" is defined as is the ability of different information-technology systems and software applications to directly communicate, exchange data, and use the information that has been exchanged. At present, pulmonary function test (PFT) equipment is not required to be interoperable with other clinical data systems, including electronic health records (EHRs). For this workshop, we assembled a diverse group of experts and stakeholders, including representatives from patient-advocacy groups, adult and pediatric general and pulmonary medicine, informatics, government and healthcare organizations, pulmonary function laboratories, and EHR and PFT equipment and software companies. The participants were tasked with two overarching Aobjectives: 1) identifying the key obstacles to achieving interoperability of PFT systems and the EHR and 2) recommending solutions to the identified obstacles. Successful interoperability of PFT data with the EHR impacts the full scope of individual patient health and clinical care, population health, and research. The existing EHR-PFT device platforms lack sufficient data standardization to promote interoperability. Cost is a major obstacle to PFT-EHR interoperability, and incentives are insufficient to justify the needed investment. The current vendor-EHR system lacks sufficient flexibility, thereby impeding interoperability. To advance the goal of achieving interoperability, next steps include identifying and standardizing priority PFT data elements. To increase the motivation of stakeholders to invest in this effort, it is necessary to demonstrate the benefits of PFT interoperability across patient care and population health. |
Preadaptation of pandemic GII.4 noroviruses in unsampled virus reservoirs years before emergence.
Ruis C , Lindesmith LC , Mallory ML , Brewer-Jensen PD , Bryant JM , Costantini V , Monit C , Vinjé J , Baric RS , Goldstein RA , Breuer J . Virus Evol 2020 6 (2) veaa067 The control of re-occurring pandemic pathogens requires understanding the origins of new pandemic variants and the factors that drive their global spread. This is especially important for GII.4 norovirus, where vaccines under development offer promise to prevent hundreds of millions of annual gastroenteritis cases. Previous studies have hypothesized that new GII.4 pandemic viruses arise when previously circulating pandemic or pre-pandemic variants undergo substitutions in antigenic regions that enable evasion of host population immunity, as described by conventional models of antigenic drift. In contrast, we show here that the acquisition of new genetic and antigenic characteristics cannot be the proximal driver of new pandemics. Pandemic GII.4 viruses diversify and spread over wide geographical areas over several years prior to simultaneous pandemic emergence of multiple lineages, indicating that the necessary sequence changes must have occurred before diversification, years prior to pandemic emergence. We confirm this result through serological assays of reconstructed ancestral virus capsids, demonstrating that by 2003, the ancestral 2012 pandemic strain had already acquired the antigenic characteristics that allowed it to evade prevailing population immunity against the previous 2009 pandemic variant. These results provide strong evidence that viral genetic changes are necessary but not sufficient for GII.4 pandemic spread. Instead, we suggest that it is changes in host population immunity that enable pandemic spread of an antigenically preadapted GII.4 variant. These results indicate that predicting future GII.4 pandemic variants will require surveillance of currently unsampled reservoir populations. Furthermore, a broadly acting GII.4 vaccine will be critical to prevent future pandemics. |
Comparison of Zika virus inactivation methods for reagent production and disinfection methods
Chida AS , Goldstein JM , Lee J , Tang X , Bedi K , Herzegh O , Moon JL , Petway D , Bagarozzi DAJr , Hughes LJ . J Virol Methods 2020 287 114004 Zika virus (ZIKV) infection remains a public health concern necessitating demand for long-term virus production for diagnostic assays and R&D activities. Inactivated virus constitutes an important component of the Trioplex rRT-PCR assay and serological IgM assay (MAC-ELISA). The aim of our study is to establish standard methods of ZIKV inactivation while maintaining antigenicity and RNA integrity. We tested viral supernatants by four different inactivation methods: 1. Heat inactivation at 56 °C and 60 °C; 2. Gamma-Irradiation; 3. Chemical inactivation by Beta-propiolactone (BPL) and 4. Fast-acting commercial disinfecting agents. Effectivity was measured by cytopathic effect (CPE) and plaque assay. RNA stability and antigenicity were measured by RT-PCR and MAC-ELISA, respectively. Results: Heat inactivation: Low titer samples, incubated at 56 °C for 2 hrs, showed neither CPE or plaques compared to high titer supernatants that required 2.5 hrs. Inactivation occurred at 60 °C for 60 min with all virus titers. Gamma irradiation: Samples irradiated at ≥3 Mrad for low virus concentrations and ≥5Mrad for high virus titer completely inactivated virus. Chemical Inactivation: Neither CPE nor plaques were observed with ≥0.045% BPL inactivation of ZIKV. Disinfectant: Treatment of viral supernatants with Micro-Chem Plus(TM), inactivated virus in 2 min, whereas, Ethanol (70%) and STERIS Coverage® Spray TB inactivated the virus in 5 min. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 04, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure