Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-14 (of 14 Records) |
Query Trace: Gloria Carvalho M[original query] |
---|
Long-term impact of 10-valent pneumococcal conjugate vaccine in Kenya: Nasopharyngeal carriage among children in a rural and an urban site six years after introduction
Verani JR , Omondi D , Odoyo A , Odiembo H , Ouma A , Ngambi J , Aol G , Audi A , Kiplangat S , Agumba N , Munywoki PK , Onyango C , Hunsperger E , Farrar JL , Kim L , Kobayashi M , Breiman RF , Pimenta FC , da Gloria Carvalho M , Lessa FC , Whitney CG , Bigogo G . Vaccine 2024 BACKGROUND: Kenya introduced Synflorix™ (GlaxoSmithKline, PCV10-GSK), a 10-valent pneumococcal conjugate vaccine, in 2011, using three primary doses and, in select areas, catch-up campaigns. Surveys conducted 1-2 years post-introduction showed a stable prevalence of pneumococcal colonization, with declines in vaccine-type carriage. However, little is known about the long-term impact of PCV10-GSK in Kenya. METHODS: We conducted a cross-sectional survey of pneumococcal carriage among children aged <5 years in November-December 2017 in Kibera (Nairobi informal settlement, no catch-up) and Asembo (rural western Kenya, 2-dose catch-up for children 1-4 years), using the same methods and settings as prior annual surveys from 2009 to 2013. Participants were randomly selected from an ongoing population-based surveillance platform. Nasopharyngeal swabs were frozen in skim milk-tryptone-glucose-glycerin media within 4 h and underwent culture with broth enrichment for pneumococcus. Isolates were serotyped by polymerase chain reaction and Quellung. RESULTS: We enrolled 504 children, including 252 from each site; >90 % of participants had received 3 doses of PCV10-GSK. Pneumococcal colonization was detected in 210 (83.3 %) participants in Kibera and 149 (59.1 %) in Asembo, which was significantly lower than the prevalence observed in 2013 (92.9 % and 85.7 %, respectively). PCV10-GSK serotypes were detected in 35/252 (13.9 %) participants in Kibera and 23/252 (9.1 %) in Asembo, respectively; these prevalences were lower, but not statistically different, from vaccine-type carriage prevalences in 2013 (17.3 % and 13.3 %, respectively). In 2017 in both sites, serotypes 3, 6A, 19A, 19F, and 35B were among the most common serotypes. CONCLUSION: Six years post-PCV10-GSK introduction, the prevalence of pneumococcal carriage among children has decreased, and the impact of PCV10-GSK on vaccine-type carriage has plateaued. Kenya recently changed from PCV10-GSK to Pneumosil™ (Serum Institute of India), a 10-valent PCV that includes serotypes 6A and 19A; these data provide historical context for interpreting changes in vaccine-type carriage following the PCV formulation switch. |
Histopathology Is Key to Interpreting Multiplex Molecular Test Results From Postmortem Minimally Invasive Tissue Samples
Ritter JM , Seixas JN , Walong E , Dawa J , Onyango C , Pimenta FC , da Gloria Carvalho M , Silva-Flannery L , Jenkinson T , Howard K , Bhatnagar J , Diaz M , Winchell JM , Zaki SR , Chaves SS , Martines RB . Clin Infect Dis 2021 73 S351-s359 BACKGROUND: Minimally invasive tissue sampling (MITS) is an alternative to complete autopsy for determining causes of death. Multiplex molecular testing performed on MITS specimens poses challenges of interpretation, due to high sensitivity and indiscriminate detection of pathogenic, commensal, or contaminating microorganisms. METHODS: MITS was performed on 20 deceased children with respiratory illness, at 10 timepoints up to 88 hours postmortem. Samples were evaluated by multiplex molecular testing on fresh tissues by TaqMan® Array Card (TAC) and by histopathology, special stains, immunohistochemistry (IHC), and molecular testing (PCR) on formalin-fixed, paraffin-embedded (FFPE) tissues. Results were correlated to determine overall pathologic and etiologic diagnoses and to guide interpretation of TAC results. RESULTS: MITS specimens collected up to 3 days postmortem were adequate for histopathologic evaluation and testing. Seven different etiologic agents were detected by TAC in 10 cases. Three cases had etiologic agents detected by FFPE or other methods and not TAC; 2 were agents not present on TAC, and 2 were streptococci that may have been species other than those present on TAC. Result agreement was 43% for TAC and IHC or PCR, and 69% for IHC and PCR. Extraneous TAC results were common, especially when aspiration was present. CONCLUSIONS: TAC can be performed on MITS up to 3 days after death with refrigeration and provides a sensitive method for detection of pathogens but requires careful interpretation in the context of clinicoepidemiologic and histopathologic findings. Interpretation of all diagnostic tests in aggregate to establish overall case diagnoses maximizes the utility of TAC in MITS. |
Prevalence, serotype and antibiotic susceptibility of Group B Streptococcus isolated from pregnant women in Jakarta, Indonesia
Safari D , Gultom SM , Tafroji W , Azzahidah A , Soesanti F , Khoeri MM , Prayitno A , Pimenta FC , da Gloria Carvalho M , Uiterwaal Cspm , Putri ND . PLoS One 2021 16 (5) e0252328 Group B Streptococcus (GBS) is a bacterial pathogen which is a leading cause of neonatal infection. Currently, there are limited GBS data available from the Indonesian population. In this study, GBS colonization, serotype distribution and antimicrobial susceptibility profile of isolates were investigated among pregnant women in Jakarta, Indonesia. Demographics data, clinical characteristics and vaginal swabs were collected from 177 pregnant women (mean aged: 28.7 years old) at 29-40 weeks of gestation. Bacterial culture identification tests and latex agglutination were performed for GBS. Serotyping was done by conventional multiplex PCR and antibiotic susceptibility testing by broth microdilution. GBS colonization was found in 53 (30%) pregnant women. Serotype II was the most common serotype (30%) followed by serotype III (23%), Ia and IV (13% each), VI (8%), Ib and V (6% each), and one non-typeable strain. All isolates were susceptible to vancomycin, penicillin, ampicillin, cefotaxime, daptomycin and linezolid. The majority of GBS were resistant to tetracycline (89%) followed by clindamycin (21%), erythromycin (19%), and levofloxacin (6%). The serotype III was more resistant to erythromycin, clindamycin, and levofloxacin and these isolates were more likely to be multidrug resistant (6 out of 10) compared to other serotypes. This report provides demographics of GBS colonization and isolate characterization in pregnant women in Indonesia. The results may facilitate preventive strategies to reduce neonatal GBS infection and improve its treatment. |
Postmortem Study of Cause of Death Among Children Hospitalized With Respiratory Illness in Kenya
Njuguna HN , Zaki SR , Roberts DJ , Rogena EA , Walong E , Fligner CL , Keating MK , Gachii AK , Maleche-Obimbo E , Irimu G , Mathaiya J , Orata N , Lopokoiyit R , Michuki J , Emukule GO , Onyango CO , Gikunju S , Owuor C , Muturi PK , Bunei M , Gloria Carvalho M , Fields B , Mott JA , Widdowson MA , Chaves SS . Pediatr Infect Dis J 2021 40 (8) 715-722 BACKGROUND: In resource-limited settings, acute respiratory infections continue to be the leading cause of death in young children. We conducted postmortem investigations in children <5 years hospitalized with a clinical diagnosis of respiratory disease at Kenya's largest referral hospital. METHODS: We collected respiratory and other tissues postmortem to examine pathologic processes using histology, molecular and immunohistochemistry assays. Nasopharyngeal, trachea, bronchi and lung specimens were tested using 21-target respiratory pathogen real-time reverse transcription polymerase chain reaction assays deployed on Taqman Array Cards. Expert panels reviewed all findings to determine causes of death and associated pathogens. RESULTS: From 2014 to 2015, we investigated 64 pediatric deaths (median age 7 months). Pneumonia was determined as cause of death in 70% (42/52) of cases where death was associated with an infectious disease process. The main etiologies of pneumonia deaths were respiratory syncytial virus (RSV) (n = 7, 19%), Pneumocystis jirovecii (n = 7, 19%), influenza A (n = 5, 14%) and Streptococcus pneumoniae (n = 5, 14%)-10% of cases had multi-pathogen involvement. Among the other 10 deaths associated with a nonpneumonia infectious process, 4 did not have an etiology assigned, the others were associated with miliary tuberculosis (2), cerebral thrombosis due to HIV (1), Enterobacteriaceae (1), rotavirus (1), and 1 case of respiratory infection with severe hypokalemia associated with RSV. CONCLUSIONS: In spite of well-established vaccination programs in Kenya, some deaths were still vaccine preventable. Accelerated development of RSV monoclonal antibodies and vaccines, introduction of seasonal influenza vaccination, and maintenance or improved uptake of existing vaccines can contribute to further reductions in childhood mortality. |
Effect of 10-valent pneumococcal conjugate vaccine on Streptococcus pneumoniae nasopharyngeal carriage among children less than 5 years old: 3 years post-10-valent pneumococcal conjugate vaccine introduction in Mozambique
Valenciano SJ , Moiane B , Lessa FC , Chaúque A , Massora S , Pimenta FC , Mucavele H , Verani JR , da Gloria Carvalho M , Whitney CG , Tembe N , Sigaúque B . J Pediatric Infect Dis Soc 2020 10 (4) 448-456 BACKGROUND: Mozambique introduced 10-valent pneumococcal conjugate vaccine (PCV10) in 2013 with doses at ages 2, 3, and 4 months and no catch-up or booster dose. We evaluated PCV10 impact on the carriage of vaccine-type (VT), non-VT, and antimicrobial non-susceptible pneumococci 3 years after introduction. METHODS: We conducted cross-sectional carriage surveys among HIV-infected and HIV-uninfected children aged 6 weeks to 59 months: 1 pre-PCV10 (2012-2013 [Baseline]) and 2 post-PCV10 introductions (2014-2015 [Post1] and 2015-2016 [Post2]). Pneumococci isolated from nasopharyngeal swabs underwent Quellung serotyping and antimicrobial susceptibility testing. Non-susceptible isolates (intermediate or resistant) were defined using Clinical and Laboratory Standards Institute 2018 breakpoints. We used log-binomial regression to estimate changes in the pneumococcal carriage between survey periods. We compared proportions of non-susceptible pneumococci between Baseline and Post2. RESULTS: We enrolled 720 children at Baseline, 911 at Post1, and 1208 at Post2. Baseline VT carriage was similar for HIV-uninfected (36.0%, 110/306) and HIV-infected children (34.8%, 144/414). VT carriage was 36% (95% confidence interval [CI]: 19%-49%) and 27% (95% CI: 11%-41%) lower in Post1 vs baseline among HIV-uninfected and HIV-infected children, respectively. VT carriage prevalence declined in Post2 vs Post1 for HIV-uninfected but remained stable for HIV-infected children. VT carriage prevalence 3 years after PCV10 introduction was 14.5% in HIV-uninfected and 21.0% in HIV-infected children. Pneumococcal isolates non-susceptible to penicillin declined from 66.0% to 56.2% (P= .0281) among HIV-infected children. CONCLUSIONS: VT and antimicrobial non-susceptible pneumococci carriage dropped after PCV10 introduction, especially in HIV-uninfected children. However, VT carriage remained common, indicating ongoing VT pneumococci transmission. |
Improving detection and response to respiratory events - Kenya, April 2016-April 2020
Idubor OI , Kobayashi M , Ndegwa L , Okeyo M , Galgalo T , Kalani R , Githii S , Hunsperger E , Balajee A , Verani JR , da Gloria Carvalho M , Winchell J , Van Beneden CA , Widdowson MA , Makayotto L , Chaves SS . MMWR Morb Mortal Wkly Rep 2020 69 (18) 540-544 Respiratory pathogens, such as novel influenza A viruses, Middle East respiratory syndrome coronavirus (MERS-CoV), and now, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are of particular concern because of their high transmissibility and history of global spread (1). Clusters of severe respiratory disease are challenging to investigate, especially in resource-limited settings, and disease etiology often is not well understood. In 2014, endorsed by the Group of Seven (G7),* the Global Health Security Agenda (GHSA) was established to help build country capacity to prevent, detect, and respond to infectious disease threats.(dagger) GHSA is a multinational, multisectoral collaboration to support countries towards full implementation of the World Health Organization's International Health Regulations (IHR).( section sign) Initially, 11 technical areas for collaborator participation were identified to meet GHSA goals. CDC developed the Detection and Response to Respiratory Events (DaRRE) strategy in 2014 to enhance country capacity to identify and control respiratory disease outbreaks. DaRRE initiatives support the four of 11 GHSA technical areas that CDC focuses on: surveillance, laboratory capacity, emergency operations, and workforce development.( paragraph sign) In 2016, Kenya was selected to pilot DaRRE because of its existing respiratory disease surveillance and laboratory platforms and well-developed Field Epidemiology and Laboratory Training Program (FELTP) (2). During 2016-2020, Kenya's DaRRE partners (CDC, the Kenya Ministry of Health [MoH], and Kenya's county public health officials) conceptualized, planned, and implemented key components of DaRRE. Activities were selected based on existing capacity and determined by the Kenya MoH and included 1) expansion of severe acute respiratory illness (SARI) surveillance sites; 2) piloting of community event-based surveillance; 3) expansion of laboratory diagnostic capacity; 4) training of public health practitioners in detection, investigation, and response to respiratory threats; and 5) improvement of response capacity by the national emergency operations center (EOC). Progress on DaRRE activity implementation was assessed throughout the process. This pilot in Kenya demonstrated that DaRRE can support IHR requirements and can capitalize on a country's existing resources by tailoring tools to improve public health preparedness based on countries' needs. |
Impact of 10-valent pneumococcal conjugate vaccine introduction on pneumococcal carriage and antibiotic susceptibility patterns among children aged <5 years and adults with human immunodeficiency virus infection: Kenya, 2009-2013
Kobayashi M , Bigogo G , Kim L , Mogeni OD , Conklin LM , Odoyo A , Odiembo H , Pimenta F , Ouma D , Harris AM , Odero K , Milucky JL , Ouma A , Aol G , Audi A , Onyango C , Cosmas L , Jagero G , Farrar JL , da Gloria Carvalho M , Whitney CG , Breiman RF , Lessa FC . Clin Infect Dis 2020 70 (5) 814-826 BACKGROUND: Kenya introduced 10-valent pneumococcal conjugate vaccine (PCV10) among children <1 year in 2011 with catch-up vaccination among children 1-4 years in some areas. We assessed changes in pneumococcal carriage and antibiotic susceptibility patterns in children <5 years and adults. METHODS: During 2009-2013, we performed annual cross-sectional pneumococcal carriage surveys in 2 sites: Kibera (children <5 years) and Lwak (children <5 years, adults). Only Lwak had catch-up vaccination. Nasopharyngeal and oropharyngeal (adults only) swabs underwent culture for pneumococci; isolates were serotyped. Antibiotic susceptibility testing was performed on isolates from 2009 and 2013; penicillin nonsusceptible pneumococci (PNSP) was defined as penicillin-intermediate or -resistant. Changes in pneumococcal carriage by age (<1 year, 1-4 years, adults), site, and human immunodeficiency virus (HIV) status (adults only) were calculated using modified Poisson regression, with 2009-2010 as baseline. RESULTS: We enrolled 2962 children (2073 in Kibera, 889 in Lwak) and 2590 adults (2028 HIV+, 562 HIV-). In 2013, PCV10-type carriage was 10.3% (Lwak) to 14.6% (Kibera) in children <1 year and 13.8% (Lwak) to 18.7% (Kibera) in children 1-4 years. This represents reductions of 60% and 63% among children <1 year and 52% and 60% among children 1-4 years in Kibera and Lwak, respectively. In adults, PCV10-type carriage decreased from 12.9% to 2.8% (HIV+) and from 11.8% to 0.7% (HIV-). Approximately 80% of isolates were PNSP, both in 2009 and 2013. CONCLUSIONS: PCV10-type carriage declined in children <5 years and adults post-PCV10 introduction. However, PCV10-type and PNSP carriage persisted in children regardless of catch-up vaccination. |
Invasive disease potential of Streptococcus pneumoniae serotypes before and after 10-valent pneumococcal conjugate vaccine introduction in a rural area, southern Mozambique
Massora S , Lessa FC , Moiane B , Pimenta FC , Mucavele H , Chauque A , Cossa A , Verani JR , Tembe N , da Gloria Carvalho M , Munoz-Almagro C , Sigauque B . Vaccine 2019 37 (51) 7470-7477 BACKGROUND: Invasive pneumococcal disease (IPD) is a significant cause of morbidity and mortality among children worldwide. In April 2013, Mozambique introduced 10-valent PCV (PCV10) into the National Expanded Program on immunization using a three-dose schedule at 2, 3, and 4months of age. We aimed to evaluate the invasive disease potential of pneumococcal serotypes among children in our region before and after PCV10 introduction. METHODS: We used data from ongoing population-based surveillance for IPD and cross-sectional pneumococcal carriage surveys among children aged<5years in Manhia, Mozambique. To determine the invasive disease potential for each serotype pre- and post-PCV10 introduction, odds ratios (OR) and 95% confidence intervals (95% CI) were calculated comparing serotype-specific prevalence in IPD and in carriage. For each serotype, OR and 95% CI>1 indicated high invasive disease potential and OR and 95% CI<1 indicated low invasive disease potential. RESULTS: In the pre-PCV10 period, 524 pneumococcal isolates were obtained from 411 colonized children and IPD cases were detected in 40 children. In the post-PCV10 period, 540 pneumococcal isolates were obtained from 507 colonized children and IPD cases were detected in 30 children. The most prevalent serotypes causing IPD pre-PCV10 were 6A (17.5%), 6B (15.0%), 14 (12.5%), 23F (10.0%) and 19F (7.5%), and post-PCV10 were 6A (36.7%), 13 (10%), 1 (10.0%), 6B (6.7%) and 19A (6.7%). Serotypes associated with high invasive disease potential pre-PCV10 included 1 (OR:22.3 [95% CI 2.0; 251.2]), 6B (OR:3.1 [95% CI 1.2; 8.1]), 14 (OR: 3.4 [95% CI 1.2; 9.8]) and post-PCV10 included serotype 6A (OR:6.1[95% CI 2.7; 13.5]). CONCLUSION: The number of serotypes with high invasive disease potential decreased after PCV10 introduction. Serotype 6A, which is not included in PCV10, was the most common cause of IPD throughout the study and showed a high invasive potential in the post-PCV10 period. |
Streptococcus infantis, Streptococcus mitis , and Streptococcus oralis Strains With Highly Similar cps5 Loci and Antigenic Relatedness to Serotype 5 Pneumococci.
Pimenta F , Gertz RE Jr , Park SH , Kim E , Moura I , Milucky J , Rouphael N , Farley MM , Harrison LH , Bennett NM , Bigogo G , Feikin DR , Breiman R , Lessa FC , Whitney CG , Rajam G , Schiffer J , da Gloria Carvalho M , Beall B . Front Microbiol 2018 9 3199 Streptococcus pneumoniae is a highly impactful bacterial pathogen on a global scale. The principal pneumococcal virulence factor and target of effective vaccines is its polysaccharide capsule, of which there are many structurally distinct forms. Here, we describe four distinct strains of three Mitis group commensal species (Streptococcus infantis, Streptococcus mitis, and Streptococcus oralis) recovered from upper respiratory tract specimens from adults in Kenya and the United States that were PCR-positive for the pneumococcal serotype 5 specific gene, wzy5. For each of the four strains, the 15 genes comprising the capsular polysaccharide biosynthetic gene cluster (cps5) shared the same order found in serotype 5 pneumococci, and each of the serotype 5-specific genes from the serotype 5 pneumococcal reference strain shared 76-99% sequence identity with the non-pneumococcal counterparts. Double-diffusion experiments demonstrated specific reactivity of the non-pneumococcal strains with pneumococcal serotype 5 typing sera. Antiserum raised against S. mitis strain KE67013 specifically reacted with serotype 5 pneumococci for a positive Quellung reaction and stimulated serotype 5 specific opsonophagocytic killing of pneumococci. Four additional commensal strains, identified using PCR serotyping assays on pharyngeal specimens, revealed loci highly homologous to those of pneumococci of serotypes 12F, 15A, 18C, and 33F. These data, in particular the species and strain diversity shown for serotype 5, highlight the existence of a broad non-pneumococcal species reservoir in the upper respiratory tract for the expression of capsular polysaccharides that are structurally related or identical to those corresponding to epidemiologically significant serotypes. Very little is known about the genetic and antigenic capsular diversity among the vast array of commensal streptococcal strains that represent multiple diverse species. The discovery of serotype 5 strains within three different commensal species suggests that extensive capsular serologic overlap exists between pneumococci and other members of the diverse Mitis group. These findings may have implications for our current understanding of naturally acquired immunity to S. pneumoniae and pneumococcal serotype distributions in different global regions. Further characterization of commensal strains carrying homologs of serotype-specific genes previously thought to be specific for pneumococci of known serotypes may shed light on the evolution of these important loci. |
Effectiveness of 13-pneumococcal conjugate vaccine (PCV13) against invasive pneumococcal disease in children in the Dominican Republic
Tomczyk S , Lessa FC , Sanchez J , Pena C , Fernandez J , Gloria Carvalho M , Pimenta F , Cedano D , Whitney CG , Verani JR , Coradin H , Garib Z , De Oliveira LH , Feris-Iglesias J . BMC Infect Dis 2018 18 (1) 152 BACKGROUND: Limited data are available on the effectiveness of 13-valent pneumococcal conjugate vaccine (PCV13) in resource-poor settings and PCV naive populations. The Dominican Republic introduced PCV13 in September 2013 using a 2 + 1 schedule (2, 4, and 12 months) without a catch-up campaign. We evaluated PCV13 effectiveness against vaccine-type (VT) invasive pneumococcal disease (IPD) among children in the Dominican Republic. METHODS: We conducted a matched case-control study. A case-patient was defined as VT-IPD identified by culture or polymerase chain reaction (PCR) from a normally sterile-site in a hospitalized child who was age-eligible to have received >/=1 PCV13 dose. Four age- and neighborhood-matched controls were enrolled for each case-patient. We collected demographic, vaccination history, and risk factor data. Conditional logistic regression was performed. Vaccine effectiveness was calculated as (1- adjusted matched odds ratio for vaccination) X 100%. RESULTS: We enrolled 39 case-patients and 149 matched-controls. Most case-patients had pneumonia with pleural effusion (64%), followed by meningitis (28%) and septicemia (13%). The most common pneumococcal serotypes identified included 14 (18%), 3 (13%), 19A (10%), and 1 (8%). Fewer case-patients had >/=1 PCV13 dose as compared to controls (61.5% vs. 80.0%; p = 0.006). Adjusting for malnutrition and socioeconomic status, VE of >/=1 PCV13 dose compared to no doses was 67.2% (95% CI: 2.3% to 90.0%). Only 44% of controls were up-to-date for PCV13, suggesting low vaccine coverage in the population. CONCLUSIONS: We found that PCV13 provided individual protection against VT-IPD in this resource-poor setting with a PCV-naive population, despite low PCV13 coverage. Expanding vaccination coverage might increase PCV13 impact. |
Evaluation of urine pneumococcal antigen test performance among adults in Western Kenya
Hampton LM , Bigogo G , Jagero G , da Gloria Carvalho M , Pimenta F , Junghae M , Breiman RF , Whitney CG , Feikin DR , Conklin LM . Diagn Microbiol Infect Dis 2016 85 (4) 405-8 When used in an area of rural western Kenya, the BinaxNOW(R) urine antigen test had a sensitivity of 67% (95% Confidence Interval [CI]: 43-85%) among 21 adults ≥15 years old with acute respiratory illnesses and pneumococcal bacteremia and a specificity of 98% (95% CI: 96-99%) among 660 adults ≥15 years old without fever or cough. The specificity of the test was not significantly affected by pneumococcal colonization, regardless of patients' HIV status, age, or sex. Use of the pneumococcal urine antigen test in clinical assessments of adults in Africa with acute respiratory illness is a viable option regardless of whether a patient is colonized by pneumococci, even among HIV-infected adults, although the moderate sensitivity of the urine antigen test indicates that the test is probably best used clinically as part of a panel with other tests that can detect pneumococci. |
Multistate Outbreak of Respiratory Infections among Unaccompanied Children, June-July 2014.
Tomczyk S , Arriola CS , Beall B , Benitez A , Benoit SR , Berman L , Bresee J , da Gloria Carvalho M , Cohn A , Cross K , Diaz MH , Francois Watkins LK , Gierke R , Hagan JE , Harris A , Jain S , Kim L , Kobayashi M , Lindstrom S , McGee L , McMorrow M , Metcalf BL , Moore MR , Moura I , Nix WA , Nyangoma E , Oberste MS , Olsen SJ , Pimenta F , Socias C , Thurman K , Waller J , Waterman SH , Westercamp M , Wharton M , Whitney CG , Winchell JM , Wolff B , Kim C . Clin Infect Dis 2016 63 (1) 48-56 BACKGROUND: From January-July 2014, >46,000 unaccompanied children (UC) from Central America crossed the U.S.-Mexico border. In June-July, UC aged 9-17 years in four shelters and a processing center in four U.S. states were hospitalized with acute respiratory illness. We conducted a multistate investigation to interrupt disease transmission. METHODS: Medical charts were abstracted for hospitalized UC. Non-hospitalized UC with influenza-like illness were interviewed, and nasopharyngeal and oropharyngeal swabs for PCR-based detection of respiratory pathogens were collected. Nasopharyngeal swabs were used to assess pneumococcal colonization in symptomatic and asymptomatic UC. Pneumococcal blood isolates from hospitalized UC and nasopharyngeal isolates were characterized by serotyping (Quellung) and whole-genome sequencing. RESULTS: Among the 15 hospitalized UC, 4 (44%) of 9 tested positive for influenza viruses, and 6 (43%) of 14 with blood cultures grew pneumococcus, all serotype 5. Among 48 non-hospitalized children with influenza-like illness, >1 respiratory pathogen was identified in 46 (96%). Among 774 non-hospitalized UC, 185 (24%) yielded pneumococcus, and 70 (38%) were serotype 5. UC who transferred through the processing center were more likely than others to be colonized with serotype 5 (OR 3.8; 95% CI, 2.1-6.9). Analysis of the core pneumococcal genomes detected two related, yet independent, clusters. No pneumococcus cases were reported after pneumococcal and influenza immunization campaigns were implemented. CONCLUSIONS: This outbreak of respiratory disease was due to multiple pathogens, including Streptococcus pneumoniae serotype 5 and influenza viruses. Pneumococcal and influenza vaccinations prevented further transmission. Future efforts to prevent similar outbreaks will benefit from use of both vaccines. |
High Streptococcus pneumoniae colonization prevalence among HIV-infected Kenyan parents in the year before pneumococcal conjugate vaccine introduction
Conklin LM , Bigogo G , Jagero G , Hampton L , Junghae M , da Gloria Carvalho M , Pimenta F , Beall B , Taylor T , Plikaytis B , Laserson KF , Vulule J , Van Beneden C , Whitney CG , Breiman RF , Feikin DR . BMC Infect Dis 2016 16 (1) 18 BACKGROUND: Streptococcus pneumoniae is a leading cause of pneumonia, meningitis and sepsis in developing countries, particularly among children and HIV-infected persons. Pneumococcal oropharyngeal (OP) or nasopharyngeal (NP) colonization is a precursor to development of invasive disease. New conjugate vaccines hold promise for reducing colonization and disease. METHODS: Prior to introduction of 10-valent pneumococcal conjugate vaccine (PCV10), we conducted a cross-sectional survey among HIV-infected parents of children <5 years old in rural Kenya. Other parents living with an HIV-infected adult were also enrolled. After broth enrichment, NP and OP swabs were cultured for pneumococcus. Serotypes were identified by Quellung. Antimicrobial susceptibility was performed using broth microdilution. RESULTS: We enrolled 973 parents; 549 (56.4 %) were HIV-infected, 153 (15.7 %) were HIV-uninfected and 271 (27.9 %) had unknown HIV status. Among HIV-infected parents, the median age was 32 years (range 15-74) and 374/549 (68 %) were mothers. Pneumococci were isolated from 237/549 (43.2 %) HIV-infected parents and 41/153 (26.8 %) HIV-non-infected parents (p = 0.0003). Colonization with PCV10 serotypes was not significantly more frequent in HIV-infected (12.9 %) than HIV-uninfected parents (11.8 %; p = 0.70). Among HIV-infected parents, cooking site separate from sleeping area and CD4 count >250 were protective (OR = 0.6; 95 % CI 0.4, 0.9 and OR = 0.5; 95 % CI 0.2, 0.9, respectively); other associations were not identified. Among 309 isolates tested from all parents, 255 (80.4 %) were penicillin non-susceptible (MIC ≥0.12 mug/ml). CONCLUSIONS: Prevalence of pneumococcal colonization is high among HIV-infected parents in rural Kenya. If young children are the pneumococcal reservoir for this population, PCV10 introduction may reduce vaccine-type colonization and disease among HIV-infected parents through indirect protection. |
Direct effect of 10-valent conjugate pneumococcal vaccination on pneumococcal carriage in children Brazil
Andrade AL , Ternes YM , Vieira MA , Moreira WG , Lamaro-Cardoso J , Kipnis A , Cardoso MR , Brandileone MC , Moura I , Pimenta FC , da Gloria Carvalho M , Saraiva FO , Toscano CM , Minamisava R . PLoS One 2014 9 (6) e98128 BACKGROUND: 10-valent conjugate pneumococcal vaccine/PCV10 was introduced in the Brazilian National Immunization Program along the year of 2010. We assessed the direct effectiveness of PCV10 vaccination in preventing nasopharyngeal/NP pneumococcal carriage in infants. METHODS: A cross-sectional population-based household survey was conducted in Goiania Brazil, from December/2010-February/2011 targeting children aged 7-11 m and 15-18 m. Participants were selected using a systematic sampling. NP swabs, demographic data, and vaccination status were collected from 1,287 children during home visits. Main outcome and exposure of interest were PCV10 vaccine-type carriage and dosing schedules (3p+0, 2p+0, and one catch-up dose), respectively. Pneumococcal carriage was defined by a positive culture and serotyping was performed by Quellung reaction. Rate ratio/RR was calculated as the ratio between the prevalence of vaccine-types carriage in children exposed to different schedules and unvaccinated for PCV10. Adjusted RR was estimated using Poisson regression. PCV10 effectiveness/VE on vaccine-type carriage was calculated as 1-RR*100. RESULTS: The prevalence of pneumococcal carriage was 41.0% (95%CI: 38.4-43.7). Serotypes covered by PCV10 and PCV13 were 35.2% and 53.0%, respectively. Vaccine serotypes 6B (11.6%), 23F (7.8%), 14 (6.8%), and 19F (6.6%) were the most frequently observed. After adjusted for confounders, children who had received 2p+0 or 3p+0 dosing schedule presented a significant reduction in pneumococcal vaccine-type carriage, with PCV10 VE equal to 35.9% (95%CI: 4.2-57.1; p = 0.030) and 44.0% (95%CI: 14.-63.5; p = 0.008), respectively, when compared with unvaccinated children. For children who received one catch-up dose, no significant VE was detected (p = 0.905). CONCLUSION: PCV10 was associated with high protection against vaccine-type carriage with 2p+0 and 3p+0 doses for children vaccinated before the second semester of life. The continuous evaluation of carriage serotypes distribution is likely to be useful for evaluating the long-term effectiveness and impact of pneumococcal vaccination on serotypes reduction. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure