Last data update: Aug 15, 2025. (Total: 49733 publications since 2009)
| Records 1-8 (of 8 Records) |
| Query Trace: Gilani Z[original query] |
|---|
| Safety of nOPV2 administered during a supplementary immunisation activity in Uganda, 2022: data triangulation from a prospective cohort event monitoring programme and vaccine safety surveillance reports
Longley AT , Nsubuga F , Gilani Z , Tobolowsky FA , Kisakye A , Greene SA , Ampeire I , Ssennono VF , Gyasi SO , Ntale I , Bammeke P , Stewart B , Ndagije HB , Kyabayinze DJ , Gidudu JF . Lancet Glob Health 2025 BACKGROUND: In November, 2020, WHO authorised novel oral polio vaccine type 2 (nOPV2) use under Emergency Use Listing in response to outbreaks of circulating vaccine-derived poliovirus type 2 (cVDPV2). Although no concerns were identified in nOPV2 trials, the Global Advisory Committee on Vaccine Safety requested more extensive vaccine safety data during emergency use. The Uganda Ministry of Health declared a cVDPV2 outbreak in 2021 and responded with an nOPV2 campaign in January, 2022. More than 9 million children aged 0-59 months were vaccinated, providing an opportunity to generate robust safety data. METHODS: We monitored the safety of nOPV2 for 42 days post-vaccination using: routine passive surveillance for adverse events following immunisation (AEFI); ongoing acute flaccid paralysis (AFP) surveillance; active, hospital-based surveillance for pre-specified adverse events of special interest (AESI); and active, cohort event monitoring. AFP cases were reviewed by the National Polio Expert Committee. Serious AEFI and all AESI and AFP cases with nOPV2 receipt underwent causality assessment by the National AEFI Committee. FINDINGS: Across surveillance systems, 1128 children vaccinated with nOPV2 experienced one or more AEFI: 43 children identified through passive surveillance, 128 suspected AFP cases, five AESI cases, and 952 children with reported AEFI through cohort event monitoring. Overall, 109 adverse events were considered serious; six (fever, gastroenteritis (n=3), acute disseminated encephalomyelitis, and encephalitis) were determined by the National AEFI Committee to be consistent with causal association to immunisation with nOPV2. No cases of vaccine-associated paralytic poliomyelitis were detected. One death was detected, considered inconsistent with causal association to immunisation with nOPV2, per the National AEFI Committee. INTERPRETATION: No new safety concerns were identified with nOPV2 use in Uganda following a national vaccination campaign, providing valuable data that informed WHO prequalification and product licensure. FUNDING: Centers for Disease Control and Prevention. TRANSLATION: For the French translation of the abstract see Supplementary Materials section. |
| Novel oral poliovirus vaccine 2 safety evaluation during nationwide supplemental immunization activity, Uganda, 2022
Tobolowsky FA , Nsubuga F , Gilani Z , Kisakye A , Ndagije H , Kyabayinze D , Gidudu JF . Emerg Infect Dis 2024 30 (4) 775-778 Given its enhanced genetic stability, novel oral poliovirus vaccine type 2 was deployed for type 2 poliovirus outbreak responses under World Health Organization Emergency Use Listing. We evaluated the safety profile of this vaccine. No safety signals were identified using a multipronged approach of passive and active surveillance. |
| Promising practices observed in high-throughput COVID-19 vaccination sites in the United States, February-May 2021
McColloch CE , Samson ME , Parris K , Stewart A , Robinson JA , Cooper B , Galloway E , Garcia R , Gilani Z , Jayapaul-Philip B , Lucas P , Nguyen KH , Noe RS , Trudeau AT , Kennedy ED . Am J Public Health 2023 113 (8) 909-918 Objectives. To identify promising practices for implementing COVID-19 vaccination sites. Methods. The Centers for Disease Control and Prevention (CDC) and Federal Emergency Management Agency (FEMA) assessed high-throughput COVID-19 vaccination sites across the United States, including Puerto Rico, after COVID-19 vaccinations began. Site assessors conducted site observations and interviews with site staff. Qualitative data were compiled and thematically analyzed. Results. CDC and FEMA conducted 134 assessments of high-throughput vaccination sites in 25 states and Puerto Rico from February 12 to May 28, 2021. Promising practices were identified across facility, clinical, and cross-cutting operational areas and related to 6 main themes: addressing health equity, leveraging partnerships, optimizing site design and flow, communicating through visual cues, using quick response codes, and prioritizing risk management and quality control. Conclusions. These practices might help planning and implementation of future vaccination operations for COVID-19, influenza, and other vaccine-preventable diseases. Public Health Implications. These practices can be considered by vaccination planners and providers to strengthen their vaccination site plans and implementation of future high-throughput vaccination sites. (Am J Public Health. 2023;113(8):909-918. https://doi.org/10.2105/AJPH.2023.307331). |
| A nationally representative survey of COVID-19 in Pakistan, 2021-2022
Aheron S , Victory KR , Imtiaz A , Fellows I , Gilani SI , Gilani B , Reed C , Hakim AJ . Emerg Infect Dis 2022 28 (13) S69-s75 We conducted 4,863 mobile phone and 1,715 face-to-face interviews of adults >18 years residing in Pakistan during June 2021-January 2022 that focused on opinions and practices related to COVID-19. Of those surveyed, 26.3% thought COVID-19 was inevitable, and 16.8% had tested for COVID-19. Survey participants who considered COVID-19 an inevitability shared such traits as urban residency, concerns about COVID-19, and belief that the virus is a serious medical threat. Survey respondents who had undergone COVID-19 testing shared similarities regarding employment status, education, mental health screening, and the consideration of COVID-19 as an inevitable disease. From this survey, we modeled suspected and confirmed COVID-19 cases and found nearly 3 times as many suspected and confirmed COVID-19 cases than had been reported. Our research also suggested undertesting for COVID-19 even in the presence of COVID-19 symptoms. Further research might help uncover the reasons behind undertesting and underreporting of COVID-19 in Pakistan. |
| Incidence of Multisystem Inflammatory Syndrome in Children Among US Persons Infected With SARS-CoV-2.
Payne AB , Gilani Z , Godfred-Cato S , Belay ED , Feldstein LR , Patel MM , Randolph AG , Newhams M , Thomas D , Magleby R , Hsu K , Burns M , Dufort E , Maxted A , Pietrowski M , Longenberger A , Bidol S , Henderson J , Sosa L , Edmundson A , Tobin-D'Angelo M , Edison L , Heidemann S , Singh AR , Giuliano JSJr , Kleinman LC , Tarquinio KM , Walsh RF , Fitzgerald JC , Clouser KN , Gertz SJ , Carroll RW , Carroll CL , Hoots BE , Reed C , Dahlgren FS , Oster ME , Pierce TJ , Curns AT , Langley GE , Campbell AP , Balachandran N , Murray TS , Burkholder C , Brancard T , Lifshitz J , Leach D , Charpie I , Tice C , Coffin SE , Perella D , Jones K , Marohn KL , Yager PH , Fernandes ND , Flori HR , Koncicki ML , Walker KS , Di Pentima MC , Li S , Horwitz SM , Gaur S , Coffey DC , Harwayne-Gidansky I , Hymes SR , Thomas NJ , Ackerman KG , Cholette JM . JAMA Netw Open 2021 4 (6) e2116420 IMPORTANCE: Multisystem inflammatory syndrome in children (MIS-C) is associated with recent or current SARS-CoV-2 infection. Information on MIS-C incidence is limited. OBJECTIVE: To estimate population-based MIS-C incidence per 1 000 000 person-months and to estimate MIS-C incidence per 1 000 000 SARS-CoV-2 infections in persons younger than 21 years. DESIGN, SETTING, AND PARTICIPANTS: This cohort study used enhanced surveillance data to identify persons with MIS-C during April to June 2020, in 7 jurisdictions reporting to both the Centers for Disease Control and Prevention national surveillance and to Overcoming COVID-19, a multicenter MIS-C study. Denominators for population-based estimates were derived from census estimates; denominators for incidence per 1 000 000 SARS-CoV-2 infections were estimated by applying published age- and month-specific multipliers accounting for underdetection of reported COVID-19 case counts. Jurisdictions included Connecticut, Georgia, Massachusetts, Michigan, New Jersey, New York (excluding New York City), and Pennsylvania. Data analyses were conducted from August to December 2020. EXPOSURES: Race/ethnicity, sex, and age group (ie, ≤5, 6-10, 11-15, and 16-20 years). MAIN OUTCOMES AND MEASURES: Overall and stratum-specific adjusted estimated MIS-C incidence per 1 000 000 person-months and per 1 000 000 SARS-CoV-2 infections. RESULTS: In the 7 jurisdictions examined, 248 persons with MIS-C were reported (median [interquartile range] age, 8 [4-13] years; 133 [53.6%] male; 96 persons [38.7%] were Hispanic or Latino; 75 persons [30.2%] were Black). The incidence of MIS-C per 1 000 000 person-months was 5.1 (95% CI, 4.5-5.8) persons. Compared with White persons, incidence per 1 000 000 person-months was higher among Black persons (adjusted incidence rate ratio [aIRR], 9.26 [95% CI, 6.15-13.93]), Hispanic or Latino persons (aIRR, 8.92 [95% CI, 6.00-13.26]), and Asian or Pacific Islander (aIRR, 2.94 [95% CI, 1.49-5.82]) persons. MIS-C incidence per 1 000 000 SARS-CoV-2 infections was 316 (95% CI, 278-357) persons and was higher among Black (aIRR, 5.62 [95% CI, 3.68-8.60]), Hispanic or Latino (aIRR, 4.26 [95% CI, 2.85-6.38]), and Asian or Pacific Islander persons (aIRR, 2.88 [95% CI, 1.42-5.83]) compared with White persons. For both analyses, incidence was highest among children aged 5 years or younger (4.9 [95% CI, 3.7-6.6] children per 1 000 000 person-months) and children aged 6 to 10 years (6.3 [95% CI, 4.8-8.3] children per 1 000 000 person-months). CONCLUSIONS AND RELEVANCE: In this cohort study, MIS-C was a rare complication associated with SARS-CoV-2 infection. Estimates for population-based incidence and incidence among persons with infection were higher among Black, Hispanic or Latino, and Asian or Pacific Islander persons. Further study is needed to understand variability by race/ethnicity and age group. |
| Factors That Might Affect SARS-CoV-2 Transmission Among Foreign-Born and U.S.-Born Poultry Facility Workers - Maryland, May 2020.
Rubenstein BL , Campbell S , Meyers AR , Crum DA , Mitchell CS , Hutson J , Williams DL , Senesie SS , Gilani Z , Reynolds S , Alba B , Tavitian S , Billings K , Saintus L , Martin SBJr , Mainzer H . MMWR Morb Mortal Wkly Rep 2020 69 (50) 1906-1910 Numerous recent assessments indicate that meat and poultry processing facility workers are at increased risk for infection with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1-4). Physical proximity to other workers and shared equipment can facilitate disease transmission in these settings (2-4). The disproportionate number of foreign-born workers employed in meat and poultry processing reflects structural, social, and economic inequities that likely contribute to an increased COVID-19 incidence in this population* (5). In May 2020, the Maryland Department of Health and CDC investigated factors that might affect person-to-person SARS-CoV-2 transmission among persons who worked at two poultry processing facilities. A survey administered to 359 workers identified differences in risk factors for SARS-CoV-2 infection between workers born outside the United States and U.S.-born workers. Compared with U.S.-born workers, foreign-born workers had higher odds of working in fixed locations on the production floor (odds ratio [OR] for cutup and packaging jobs = 4.8), of having shared commutes (OR = 1.9), and of living with other poultry workers (OR = 6.0). They had lower odds of participating in social gatherings (OR for visits to family = 0.2; OR for visits to friends = 0.4), and they visited fewer businesses in the week before the survey than did their U.S.-born coworkers. Some workplace risk factors can be mitigated through engineering and administrative controls focused on the production floor, and this will be of particular benefit to the foreign-born workers concentrated in these areas. Employers and health departments can also partner with local organizations to disseminate culturally and linguistically tailored messages about risk reduction behaviors in community settings, including shared transportation(§) and household members dwelling in close quarters. |
| Estimated Community Seroprevalence of SARS-CoV-2 Antibodies - Two Georgia Counties, April 28-May 3, 2020.
Biggs HM , Harris JB , Breakwell L , Dahlgren FS , Abedi GR , Szablewski CM , Drobeniuc J , Bustamante ND , Almendares O , Schnall AH , Gilani Z , Smith T , Gieraltowski L , Johnson JA , Bajema KL , McDavid K , Schafer IJ , Sullivan V , Punkova L , Tejada-Strop A , Amiling R , Mattison CP , Cortese MM , Ford SE , Paxton LA , Drenzek C , Tate JE , CDC Field Surveyor Team , Brown Nicole , Chang Karen T , Deputy Nicholas P , Desamu-Thorpe Rodel , Gorishek Chase , Hanchey Arianna , Melgar Michael , Monroe Benjamin P , Nielsen Carrie F , Pellegrini Gerald JJr , Shamout Mays , Tison Laura I , Vagi Sara , Zacks Rachael . MMWR Morb Mortal Wkly Rep 2020 69 (29) 965-970 Transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is ongoing in many communities throughout the United States. Although case-based and syndromic surveillance are critical for monitoring the pandemic, these systems rely on persons obtaining testing or reporting a COVID-19-like illness. Using serologic tests to detect the presence of SARS-CoV-2 antibodies is an adjunctive strategy that estimates the prevalence of past infection in a population. During April 28-May 3, 2020, coinciding with the end of a statewide shelter-in-place order, CDC and the Georgia Department of Public Health conducted a serologic survey in DeKalb and Fulton counties in metropolitan Atlanta to estimate SARS-CoV-2 seroprevalence in the population. A two-stage cluster sampling design was used to randomly select 30 census blocks in each county, with a target of seven participating households per census block. Weighted estimates were calculated to account for the probability of selection and adjusted for age group, sex, and race/ethnicity. A total of 394 households and 696 persons participated and had a serology result; 19 (2.7%) of 696 persons had SARS-CoV-2 antibodies detected. The estimated weighted seroprevalence across these two metropolitan Atlanta counties was 2.5% (95% confidence interval [CI] = 1.4-4.5). Non-Hispanic black participants more commonly had SARS-CoV-2 antibodies than did participants of other racial/ethnic groups (p<0.01). Among persons with SARS-CoV-2 antibodies, 13 (weighted % = 49.9; 95% CI = 24.4-75.5) reported a COVID-19-compatible illness,* six (weighted % = 28.2; 95% CI = 11.9-53.3) sought medical care for a COVID-19-compatible illness, and five (weighted % = 15.7; 95% CI = 5.1-39.4) had been tested for SARS-CoV-2 infection, demonstrating that many of these infections would not have been identified through case-based or syndromic surveillance. The relatively low seroprevalence estimate in this report indicates that most persons in the catchment area had not been infected with SARS-CoV-2 at the time of the survey. Continued preventive measures, including social distancing, consistent and correct use of face coverings, and hand hygiene, remain critical in controlling community spread of SARS-CoV-2. |
| Exposure patterns driving Ebola transmission in West Africa: a retrospective observational study
Agua-Agum J , Ariyarajah A , Aylward B , Bawo L , Bilivogui P , Blake IM , Brennan RJ , Cawthorne A , Cleary E , Clement P , Conteh R , Cori A , Dafae F , Dahl B , Dangou JM , Diallo B , Donnelly CA , Dorigatti I , Dye C , Eckmanns T , Fallah M , Ferguson NM , Fiebig L , Fraser C , Garske T , Gonzalez L , Hamblion E , Hamid N , Hersey S , Hinsley W , Jambei A , Jombart T , Kargbo D , Keita S , Kinzer M , George FK , Godefroy B , Gutierrez G , Kannangarage N , Mills HL , Moller T , Meijers S , Mohamed Y , Morgan O , Nedjati-Gilani G , Newton E , Nouvellet P , Nyenswah T , Perea W , Perkins D , Riley S , Rodier G , Rondy M , Sagrado M , Savulescu C , Schafer IJ , Schumacher D , Seyler T , Shah A , Van Kerkhove MD , Wesseh CS , Yoti Z . PLoS Med 2016 13 (11) e1002170 BACKGROUND: The ongoing West African Ebola epidemic began in December 2013 in Guinea, probably from a single zoonotic introduction. As a result of ineffective initial control efforts, an Ebola outbreak of unprecedented scale emerged. As of 4 May 2015, it had resulted in more than 19,000 probable and confirmed Ebola cases, mainly in Guinea (3,529), Liberia (5,343), and Sierra Leone (10,746). Here, we present analyses of data collected during the outbreak identifying drivers of transmission and highlighting areas where control could be improved. METHODS AND FINDINGS: Over 19,000 confirmed and probable Ebola cases were reported in West Africa by 4 May 2015. Individuals with confirmed or probable Ebola ("cases") were asked if they had exposure to other potential Ebola cases ("potential source contacts") in a funeral or non-funeral context prior to becoming ill. We performed retrospective analyses of a case line-list, collated from national databases of case investigation forms that have been reported to WHO. These analyses were initially performed to assist WHO's response during the epidemic, and have been updated for publication. We analysed data from 3,529 cases in Guinea, 5,343 in Liberia, and 10,746 in Sierra Leone; exposures were reported by 33% of cases. The proportion of cases reporting a funeral exposure decreased over time. We found a positive correlation (r = 0.35, p < 0.001) between this proportion in a given district for a given month and the within-district transmission intensity, quantified by the estimated reproduction number (R). We also found a negative correlation (r = -0.37, p < 0.001) between R and the district proportion of hospitalised cases admitted within ≤4 days of symptom onset. These two proportions were not correlated, suggesting that reduced funeral attendance and faster hospitalisation independently influenced local transmission intensity. We were able to identify 14% of potential source contacts as cases in the case line-list. Linking cases to the contacts who potentially infected them provided information on the transmission network. This revealed a high degree of heterogeneity in inferred transmissions, with only 20% of cases accounting for at least 73% of new infections, a phenomenon often called super-spreading. Multivariable regression models allowed us to identify predictors of being named as a potential source contact. These were similar for funeral and non-funeral contacts: severe symptoms, death, non-hospitalisation, older age, and travelling prior to symptom onset. Non-funeral exposures were strongly peaked around the death of the contact. There was evidence that hospitalisation reduced but did not eliminate onward exposures. We found that Ebola treatment units were better than other health care facilities at preventing exposure from hospitalised and deceased individuals. The principal limitation of our analysis is limited data quality, with cases not being entered into the database, cases not reporting exposures, or data being entered incorrectly (especially dates, and possible misclassifications). CONCLUSIONS: Achieving elimination of Ebola is challenging, partly because of super-spreading. Safe funeral practices and fast hospitalisation contributed to the containment of this Ebola epidemic. Continued real-time data capture, reporting, and analysis are vital to track transmission patterns, inform resource deployment, and thus hasten and maintain elimination of the virus from the human population. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Aug 15, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure


