Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-26 (of 26 Records) |
Query Trace: Gerald J[original query] |
---|
Successful collaborations that resulted in increased U.S. diagnostic testing during the 2022 Mpox outbreak
Hutson CL , Villanueva J , Stenzel T , Olson VA , Gerald N , McNall R , Courtney S , Aden T , Rager S , Egan C , Blevins P , Kuhnert W , Davidson W , Khan T , Baird N , Kling C , Van Meter S , Chaitram J , Salerno RM . J Public Health Manag Pract 2024 CONTEXT: The first case of mpox was detected in the United States in a Laboratory Response Network (LRN) laboratory at the Massachusetts Department of Public Health on May 17, 2022. Through previous years of smallpox preparedness efforts by the United States government, testing capacity in LRN laboratories across the United States utilizing the FDA-cleared Centers for Disease Control and Prevention (CDC) Non-variola orthopoxvirus (NVO) test was approximately 6000 tests weekly across the nation prior to the mpox outbreak. By early June 2022, the LRN laboratories had capacity to perform up to 8000 tests per week. As the outbreak expanded, cases were identified in every United States state, peaking at ~3000 cases per week nationally in August 2022. OBJECTIVE: Although NVO testing capacity in LRN laboratories exceeded national mpox testing demand overall, LRN testing access in some areas was challenged and test expansion was necessary. PARTICIPANTS: CDC engaged with partners and select commercial laboratories early to increase diagnostic testing access by allowing these commercial laboratories to utilize the NVO test. SETTING: The expansion of testing to commercial laboratories increased testing availability, capacity, and volume nationwide. This was the first time that CDC shared an FDA 510k-cleared molecular test with commercial laboratories to support a public health emergency. DESIGN: Extensive efforts were made to ensure the CDC NVO test was used appropriately in the private sector and that the transfer process met regulatory requirements. MAIN OUTCOME MEASURES, RESULTS, CONCLUSIONS: These novel methods to expand NVO testing to commercial laboratories increased national testing capacity to 80 000 mpox tests/week. Test volumes among these laboratories never exceeded this expanded capacity. The rapid increase in the nation's testing capacity, in conjunction and coordination with other public and private health efforts, helped to detect cases rapidly. These actions demonstrated the importance of highly functional and efficient public health and private sector partnerships for responding to public health emergencies. |
Economic cost of US older adult assault injuries
Peterson C , Haileyesus T , Herbst JH , Gerald MS , Florence C . JAMA Netw Open 2024 7 (10) e2437644 This economic evaluation uses nationwide public health data to evaluate incidence and economic costs of homicides and nonfatal assault injuries among US adults aged 60 years or older. | eng |
The role of polio emergency operations centers: perspectives for future disease control initiatives in Nigeria
Braka F , Adamu U , Siddique A , Bolu O , Damisa E , Banda R , Gerald S , Korir C , Usman S , Mohammed A , Aladeshawe S , Tegegne S , Nomhwange T , Waziri E , Nguku P , Erbeto T , Nsubuga P , Shuaib F . Pan Afr Med J 2023 45 8 The Nigeria Polio Emergency Operations Centre (EOC) was established in October 2012 to strengthen coordination, provide strategic direction based on real-time data analysis, and manage all operational aspects of the polio eradication program. The establishment of seven state-level polio EOCs followed. With success achieved in the interruption of wild poliovirus (WPV) transmission as certified in 2020, the future direction of the polio EOC is under consideration. This paper describes the role of the polio EOC in other emergencies and perspectives on future disease control initiatives. A description of the functionality and operations of the polio EOC and a review of documentation of non-polio activities supported by the EOC was done. Key informant insights of national and state-level stakeholders were collected through an electronic questionnaire to determine their perspectives on the polio EOC's contributions and its future role in other public health interventions. The polio EOC structure is based on an incident management system with clear terms of reference and accountability and with full partner coordination. A decline in WPV1 cases was observed from 122 cases in 2012 to 0 in 2015; previously undetected transmission of WPV1 was confirmed in 2016 and all transmission was interrupted under the coordination of the EOCs at national and state levels. During 2014-2019, the polio EOC infrastructure and staff expertise were used to investigate and respond to outbreaks of Ebola, measles, yellow fever, and meningitis and to oversee maternal and neonatal tetanus elimination campaigns. The EOC structure at the national and state levels has contributed to the positive achievements in the polio eradication program in Nigeria and further in the coordination of other disease control and emergency response activities. The transition of the polio EOCs and their capacities to support other non-polio programs will contribute to harnessing the country's capacity for effective coordination of public health initiatives and disease outbreaks. |
Prevention and Attenuation of COVID-19 by BNT162b2 and mRNA-1273 Vaccines (preprint)
Thompson MG , Burgess JL , Naleway AL , Tyner H , Yoon SK , Meece J , Olsho LEW , Caban-Martinez AJ , Fowlkes AL , Lutrick K , Groom HC , Dunnigan K , Odean MJ , Hegmann K , Stefanski E , Edwards LJ , Schaefer-Solle N , Grant L , Ellingson K , Kuntz JL , Zunie T , Thiese MS , Ivacic L , Wesley MG , Mayo Lamberte J , Sun X , Smith ME , Phillips AL , Groover KD , Yoo YM , Gerald J , Brown RT , Herring MK , Joseph G , Beitel S , Morrill TC , Mak J , Rivers P , Poe BP , Lynch B , Zhou Y , Zhang J , Kelleher A , Li Y , Dickerson M , Hanson E , Guenther K , Tong S , Bateman A , Reisdorf E , Barnes J , Azziz-Baumgartner E , Hunt DR , Arvay ML , Kutty P , Fry AM , Gaglani M . medRxiv 2021 2021.06.01.21257987 BACKGROUND Information is limited on messenger RNA (mRNA) BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccine effectiveness (VE) in preventing SARS-CoV-2 infection or attenuating disease when administered in real-world conditions.METHODS Prospective cohorts of 3,975 healthcare personnel, first responders, and other essential and frontline workers completed weekly SARS-CoV-2 testing during December 14 2020—April 10 2021. Self-collected mid-turbinate nasal swabs were tested by qualitative and quantitative reverse-transcription–polymerase-chain-reaction (RT-PCR). VE was calculated as 100%×(1−hazard ratio); adjusted VE was calculated using vaccination propensity weights and adjustments for site, occupation, and local virus circulation.RESULTS SARS-CoV-2 was detected in 204 (5.1%) participants; 16 were partially (≥14 days post-dose-1 to 13 days after dose-2) or fully (≥14 days post-dose-2) vaccinated, and 156 were unvaccinated; 32 with indeterminate status (<14 days after dose-1) were excluded. Adjusted mRNA VE of full vaccination was 91% (95% confidence interval [CI]=76%–97%) against symptomatic or asymptomatic SARS-CoV-2 infection; VE of partial vaccination was 81% (95% CI=64%-90%). Among partially or fully vaccinated participants with SARS-CoV-2 infection, mean viral RNA load (Log10 copies/mL) was 40% lower (95% CI=16%-57%), the risk of self-reported febrile COVID-19 was 58% lower (Risk Ratio=0.42, 95% CI=0.18-0.98), and 2.3 fewer days (95% CI=0.8-3.7) were spent sick in bed compared to unvaccinated infected participants.CONCLUSIONS Authorized mRNA vaccines were highly effective among working-age adults in preventing SARS-CoV-2 infections when administered in real-world conditions and attenuated viral RNA load, febrile symptoms, and illness duration among those with breakthrough infection despite vaccination.Competing Interest StatementAllison L. Naleway reported funding from Pfizer for a meningococcal B vaccine study unrelated to the submitted work. Kurt T. Hegmann serves at the Editor of the American College of Occupational and Environmental Medicine evidence-based practice guidelines. Matthew S. These reported grants and personal fees from Reed Group and the American College of Occupational and Environmental Medicine, outside the submitted work. Other authors have reported no conflicts of interest.Funding StatementFunding provided in whole or in part by federal funds from the National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention under contract numbers 75D30120R68013 awarded to Marshfield Clinic Research Laboratory, 75D30120C08379 to University of Arizona, and 75D30120C08150 awarded to Abt Associates, Inc.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study was reviewed and approved by the University of Arizona IRB as the single IRB for this studyAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesSummary data will be available once all study objectives are met. |
High Burden of COVID-19 among Unvaccinated Law Enforcement Officers and Firefighters (preprint)
Caban-Martinez AJ , Gaglani M , Olsho LEW , Grant L , Schaefer-Solle N , Louzado-Feliciano P , Tyner HL , Yoon SK , Naleway AL , Smith M , Sokol BE , Lutrick K , Fowlkes AL , Meece J , Noriega R , Odean M , Phillips AL , Groom HC , Murthy K , Edwards LJ , Ellingson KD , Yoo YM , Cruz A , Respet K , Thiese MS , Kuntz JL , Rose S , Hadden LS , Gerald JK , Mak J , Gallimore-Wilson D , Lundgren J , Hegmann KT , Dunnigan K , Wesley MG , Bedrick EJ , Lamberte JM , Jones JM , Hunt A , Bruner MM , Groover K , Kutty PK , Testoff AC , LeClair LB , Etolue JM , Thompson MG , Burgess JL . medRxiv 2021 26 Law Enforcement Officers (LEOs), firefighters, and other first responders are at increased risk of SARS-CoV-2 infection compared to healthcare personnel but have relatively low COVID-19 vaccine uptake. Resistance to COVID-19 vaccine mandates among first responders has the potential to disrupt essential public services and threaten public health and safety. Using data from the HEROES-RECOVER prospective cohorts, we report on the increased illness burden of COVID-19 among unvaccinated first responders. From January to September 2021, first responders contributed to weekly active surveillance for COVID-19-like illness (CLI). Self-collected respiratory specimens collected weekly, irrespective of symptoms, and at the onset CLI were tested by Reverse Transcription Polymerase Chain Reaction (RT-PCR) assay for SARSCoV-2. Among 1415 first responders, 17% were LEOs, 68% firefighters, and 15% had other first responder occupations. Unvaccinated (41%) compared to fully vaccinated (59%) first responders were less likely to believe COVID-19 vaccines are very or extremely effective (17% versus 54%) or very or extremely safe (15% versus 54%). From January through September 2021, among unvaccinated LEOs, the incidence of COVID-19 was 11.9 per 1,000 person-weeks (95%CI=7.0-20.1) compared to only 0.6 (95%CI=0.2-2.5) among vaccinated LEOs. Incidence of COVID-19 was also higher among unvaccinated firefighters (9.0 per 1,000 person-weeks; 95%CI=6.4-12.7) compared to those vaccinated (1.8 per 1,000; 95%CI=1.1-2.8). Once they had laboratory-confirmed COVID-19, unvaccinated first responders were sick for a mean+/-SD of 14.7+/-21.7 days and missed a mean of 38.0+/-46.0 hours of work. These findings suggest that state and local governments with large numbers of unvaccinated first responders may face major disruptions in their workforce due to COVID-19 illness. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. |
Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers - Eight U.S. Locations, December 2020-March 2021.
Thompson MG , Burgess JL , Naleway AL , Tyner HL , Yoon SK , Meece J , Olsho LEW , Caban-Martinez AJ , Fowlkes A , Lutrick K , Kuntz JL , Dunnigan K , Odean MJ , Hegmann KT , Stefanski E , Edwards LJ , Schaefer-Solle N , Grant L , Ellingson K , Groom HC , Zunie T , Thiese MS , Ivacic L , Wesley MG , Lamberte JM , Sun X , Smith ME , Phillips AL , Groover KD , Yoo YM , Gerald J , Brown RT , Herring MK , Joseph G , Beitel S , Morrill TC , Mak J , Rivers P , Harris KM , Hunt DR , Arvay ML , Kutty P , Fry AM , Gaglani M . MMWR Morb Mortal Wkly Rep 2021 70 (13) 495-500 Messenger RNA (mRNA) BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccines have been shown to be effective in preventing symptomatic COVID-19 in randomized placebo-controlled Phase III trials (1,2); however, the benefits of these vaccines for preventing asymptomatic and symptomatic SARS-CoV-2 (the virus that causes COVID-19) infection, particularly when administered in real-world conditions, is less well understood. Using prospective cohorts of health care personnel, first responders, and other essential and frontline workers* in eight U.S. locations during December 14, 2020-March 13, 2021, CDC routinely tested for SARS-CoV-2 infections every week regardless of symptom status and at the onset of symptoms consistent with COVID-19-associated illness. Among 3,950 participants with no previous laboratory documentation of SARS-CoV-2 infection, 2,479 (62.8%) received both recommended mRNA doses and 477 (12.1%) received only one dose of mRNA vaccine.(†) Among unvaccinated participants, 1.38 SARS-CoV-2 infections were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) per 1,000 person-days.(§) In contrast, among fully immunized (≥14 days after second dose) persons, 0.04 infections per 1,000 person-days were reported, and among partially immunized (≥14 days after first dose and before second dose) persons, 0.19 infections per 1,000 person-days were reported. Estimated mRNA vaccine effectiveness for prevention of infection, adjusted for study site, was 90% for full immunization and 80% for partial immunization. These findings indicate that authorized mRNA COVID-19 vaccines are effective for preventing SARS-CoV-2 infection, regardless of symptom status, among working-age adults in real-world conditions. COVID-19 vaccination is recommended for all eligible persons. |
Pediatric Research Observing Trends and Exposures in COVID-19 Timelines (PROTECT): Protocol for a Multisite Longitudinal Cohort Study.
Burns J , Rivers P , LeClair LB , Jovel K , Rai RP , Lowe AA , Edwards LJ , Khan SM , Mathenge C , Ferraris M , Kuntz JL , Lamberte JM , Hegmann KT , Odean MJ , McLeland-Wieser H , Beitel S , Odame-Bamfo L , Schaefer Solle N , Mak J , Phillips AL , Sokol BE , Hollister J , Ochoa JS , Grant L , Thiese MS , Jacoby KB , Lutrick K , Pubillones FA , Yoo YM , Rentz Hunt D , Ellingson K , Berry MC , Gerald JK , Lopez J , Gerald L , Wesley MG , Krupp K , Herring MK , Madhivanan P , Caban-Martinez AJ , Tyner HL , Meece JK , Yoon SK , Fowlkes AL , Naleway AL , Gwynn L , Burgess JL , Thompson MG , Olsho LE , Gaglani M . JMIR Res Protoc 2022 11 (7) e37929 BACKGROUND: Assessing the real-world effectiveness of COVID-19 vaccines and understanding the incidence and severity of SARS-CoV-2 illness in children is essential to inform policy and guide healthcare professionals advising parents and caregivers of children who test positive for SARS-CoV-2. OBJECTIVE: This report describes the objectives and methods for conducting the Pediatric Research Observing Trends and Exposures in COVID-19 Timelines (PROTECT) study. PROTECT is a longitudinal prospective pediatric cohort study designed to estimate SARS-CoV-2 incidence and COVID-19 vaccine effectiveness (VE) against infection among children aged 6 months to 17 years as well as differences in SARS-CoV-2 infection and vaccine response between children and adolescents. METHODS: The PROTECT multisite network was initiated in July 2021 and aims to enroll approximately 2,305 children across four U.S. locations and collect data over a two-year surveillance period; the enrollment target was based on prospective power calculations and account for expected attrition and nonresponse. Study sites recruit parents and legal guardians (PLGs) of age-eligible children participating in the existing HEROES-RECOVER network as well as from surrounding communities. Child demographics, medical history, COVID-19 exposure, vaccination history, and PLGs' knowledge and attitudes about COVID-19 are collected at baseline and throughout the study. Mid-turbinate nasal specimens are self- or PLG-collected weekly, regardless of symptoms, for SARS-CoV-2 and influenza testing via reverse transcription-polymerase chain reaction (RT-PCR) assay, and the presence of COVID-like-illness (CLI) is reported. Children who test positive for SARS-CoV-2 or influenza or report CLI are monitored weekly by online surveys to report exposure and medical utilization until no longer ill. Children, with their PLG's permission, may elect to contribute blood at enrollment, following SARS-CoV-2 infection, following COVID-19 vaccination, and at the end of the study period. PROTECT uses electronic medical records (EMR) linkages where available and verifies COVID-19 and influenza vaccinations through EMR or state vaccine registries. RESULTS: Data collection began in July 2021 and is expected to continue through Spring 2023. As of 05/13/2022, 2,371 children are enrolled in PROTECT. Enrollment is ongoing at all study sites. CONCLUSIONS: As COVID-19 vaccine products are authorized for use in pediatric populations, PROTECT study data will provide real-world estimates of VE in preventing infection. In addition, this prospective cohort provides a unique opportunity to further understand SARS-CoV-2 incidence, clinical course, and key knowledge gaps that may inform public health. |
Effectiveness of 2-Dose BNT162b2 (Pfizer BioNTech) mRNA Vaccine in Preventing SARS-CoV-2 Infection Among Children Aged 5-11 Years and Adolescents Aged 12-15 Years - PROTECT Cohort, July 2021-February 2022.
Fowlkes AL , Yoon SK , Lutrick K , Gwynn L , Burns J , Grant L , Phillips AL , Ellingson K , Ferraris MV , LeClair LB , Mathenge C , Yoo YM , Thiese MS , Gerald LB , Solle NS , Jeddy Z , Odame-Bamfo L , Mak J , Hegmann KT , Gerald JK , Ochoa JS , Berry M , Rose S , Lamberte JM , Madhivanan P , Pubillones FA , Rai RP , Dunnigan K , Jones JT , Krupp K , Edwards LJ , Bedrick EJ , Sokol BE , Lowe A , McLeland-Wieser H , Jovel KS , Fleary DE , Khan SM , Poe B , Hollister J , Lopez J , Rivers P , Beitel S , Tyner HL , Naleway AL , Olsho LEW , Caban-Martinez AJ , Burgess JL , Thompson MG , Gaglani M . MMWR Morb Mortal Wkly Rep 2022 71 (11) 422-428 ![]() ![]() The BNT162b2 (Pfizer-BioNTech) mRNA COVID-19 vaccine was recommended by CDC's Advisory Committee on Immunization Practices for persons aged 12-15 years (referred to as adolescents in this report) on May 12, 2021, and for children aged 5-11 years on November 2, 2021 (1-4). Real-world data on vaccine effectiveness (VE) in these age groups are needed, especially because when the B.1.1.529 (Omicron) variant became predominant in the United States in December 2021, early investigations of VE demonstrated a decline in protection against symptomatic infection for adolescents aged 12-15 years and adults* (5). The PROTECT(†) prospective cohort of 1,364 children and adolescents aged 5-15 years was tested weekly for SARS-CoV-2, irrespective of symptoms, and upon COVID-19-associated illness during July 25, 2021-February 12, 2022. Among unvaccinated participants (i.e., those who had received no COVID-19 vaccine doses) with any laboratory-confirmed SARS-CoV-2 infection, those with B.1.617.2 (Delta) variant infections were more likely to report COVID-19 symptoms (66%) than were those with Omicron infections (49%). Among fully vaccinated children aged 5-11 years, VE against any symptomatic and asymptomatic Omicron infection 14-82 days (the longest interval after dose 2 in this age group) after receipt of dose 2 of the Pfizer-BioNTech vaccine was 31% (95% CI = 9%-48%), adjusted for sociodemographic characteristics, health information, frequency of social contact, mask use, location, and local virus circulation. Among adolescents aged 12-15 years, adjusted VE 14-149 days after dose 2 was 87% (95% CI = 49%-97%) against symptomatic and asymptomatic Delta infection and 59% (95% CI = 22%-79%) against Omicron infection. Fully vaccinated participants with Omicron infection spent an average of one half day less sick in bed than did unvaccinated participants with Omicron infection. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations. |
Incidence of SARS-CoV-2 infection among COVID-19 vaccinated and unvaccinated healthcare personnel, first responders, and other essential and frontline workers: Eight US locations, January-September 2021.
Naleway AL , Grant L , Caban-Martinez AJ , Wesley MG , Burgess JL , Groover K , Gaglani M , Yoon SK , Tyner HL , Meece J , Kuntz JL , Yoo YM , Schaefer-Solle N , Olsho LEW , Gerald JK , Rose S , Thiese MS , Lundgren J , Groom HC , Mak J , Louzado Feliciano P , Edwards LJ , Lutrick K , Dunnigan K , Phillips AL , Lamberte JM , Noriega R , Sokol BE , Odean M , Ellingson KD , Smith M , Hegmann KT , Respet K , Dickerson M , Cruz A , Fleary DE , Murthy K , Hunt A , Azziz-Baumgartner E , Gallimore-Wilson D , Harder JA , Odame-Bamfo L , Viergutz J , Arvay M , Jones JM , Mistry P , Thompson MG , Fowlkes AL . Influenza Other Respir Viruses 2022 16 (3) 585-593 ![]() BACKGROUND: We sought to evaluate the impact of changes in estimates of COVID-19 vaccine effectiveness on the incidence of laboratory-confirmed infection among frontline workers at high risk for SARS-CoV-2. METHODS: We analyzed data from a prospective frontline worker cohort to estimate the incidence of COVID-19 by month as well as the association of COVID-19 vaccination, occupation, demographics, physical distancing, and mask use with infection risk. Participants completed baseline and quarterly surveys, and each week self-collected mid-turbinate nasal swabs and reported symptoms. RESULTS: Among 1018 unvaccinated and 3531 fully vaccinated workers, the monthly incidence of laboratory-confirmed SARS-CoV-2 infection in January 2021 was 13.9 (95% confidence interval [CI]: 10.4-17.4), declining to 0.5 (95% CI -0.4-1.4) per 1000 person-weeks in June. By September 2021, when the Delta variant predominated, incidence had once again risen to 13.6 (95% CI 7.8-19.4) per 1000 person-weeks. In contrast, there was no reportable incidence among fully vaccinated participants at the end of January 2021, and incidence remained low until September 2021 when it rose modestly to 4.1 (95% CI 1.9-3.8) per 1000. Below average facemask use was associated with a higher risk of infection for unvaccinated participants during exposure to persons who may have COVID-19 and vaccinated participants during hours in the community. CONCLUSIONS: COVID-19 vaccination was significantly associated with a lower risk of SARS-CoV-2 infection despite Delta variant predominance. Our data demonstrate the added protective benefit of facemask use among both unvaccinated and vaccinated frontline workers. |
Interim Estimate of Vaccine Effectiveness of BNT162b2 (Pfizer-BioNTech) Vaccine in Preventing SARS-CoV-2 Infection Among Adolescents Aged 12-17 Years - Arizona, July-December 2021.
Lutrick K , Rivers P , Yoo YM , Grant L , Hollister J , Jovel K , Khan S , Lowe A , Baccam Z , Hanson H , Olsho LEW , Fowlkes A , Caban-Martinez AJ , Porter C , Yoon S , Meece J , Gaglani M , Burns J , Mayo Lamberte J , Nakayima Miiro F , Bissonnette A , LeClair L , Kutty PK , Romine JK , Stefanski E , Edwards LJ , Ellingson K , Gerald JK , Bedrick EJ , Madhivanan P , Krupp K , Gerald LB , Thompson M , Burgess JL . MMWR Morb Mortal Wkly Rep 2021 70 (5152) 1761-1765 The BNT162b2 (Pfizer-BioNTech) mRNA COVID-19 vaccine has demonstrated high efficacy in preventing infection with SARS-CoV-2 (the virus that causes COVID-19) in randomized placebo-controlled Phase III trials in persons aged 12-17 years (referred to as adolescents in this report) (1); however, data on real-word vaccine effectiveness (VE) among adolescents are limited (1-3). As of December 2021, the Pfizer-BioNTech vaccine is approved by the Food and Drug Administration (FDA) for adolescents aged 16-17 years and under FDA emergency use authorization for those aged 12-15 years. In a prospective cohort in Arizona, 243 adolescents aged 12-17 years were tested for SARS-CoV-2 by reverse transcription-polymerase chain reaction (RT-PCR) each week, irrespective of symptoms, and upon onset of COVID-19-like illness during July 25-December 4, 2021; the SARS-CoV-2 B.1.617.2 (Delta) variant was the predominant strain during this study period. During the study, 190 adolescents contributed fully vaccinated person-time (≥14 days after receiving 2 doses of Pfizer-BioNTech vaccine), 30 contributed partially vaccinated person-time (receipt of 1 dose or receipt of 2 doses but with the second dose completed <14 days earlier), and 66 contributed unvaccinated person-time. Using the Cox proportional-hazards model, the estimated VE of full Pfizer-BioNTech vaccination for preventing SARS-CoV-2 infection was 92% (95% CI = 79%-97%), adjusted for sociodemographic characteristics, health information, frequency of social contact, mask use, location, and local virus circulation. These findings from a real-world setting indicate that 2 doses of Pfizer-BioNTech vaccine are highly effective in preventing SARS-CoV-2 infection among Arizona adolescents. CDC recommends COVID-19 vaccination for all eligible persons in the United States, including persons aged 12-17 years. |
Incidence of SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential Workers During a Prevaccination COVID-19 Surge in Arizona.
Ellingson Katherine D , Gerald Joe K , Xiaoxiao Sun , Hollister James , Lutrick Karen , Parker Joel , Rivers Patrick , Beitel Shawn C , Baccam Zoe , Lamberte Julie Mayo , Grant Lauren , Kim Elizabeth , Bhattarai Rachana , Komatsu Kenneth , Meece Jennifer , Kutty Preeta K , Thompson Mark G , Burgess Jefferey L . JAMA Health Forum 2021 2 (10) 1-10 IMPORTANCE: Understanding the relative risk of SARS-CoV-2 infection across occupations can inform guidance to protect workers and communities. Less is known about infection risk for first responders and other essential workers than for health care personnel. OBJECTIVE: To compare the prevaccination incidence of SARS-CoV-2 infection among first responders and other essential workers with incidence among health care personnel. DESIGN SETTING AND PARTICIPANTS: This was a prospective cohort study of health care personnel, first responders, and other essential workers in Arizona from July 20, 2020, to March 14, 2021. Participants were seronegative at enrollment, had frequent direct contact with others at work, worked at least 20 hours per week, and submitted weekly nasal swab specimens for real-time reverse transcriptase polymerase chain reaction analysis. Data analyses were performed from April 19, 2021, to June 4, 2021. EXPOSURES: Occupation was the primary exposure of interest. Confounders assessed were sociodemographic characteristics, health status, community exposure, and work exposure. MAIN OUTCOMES AND MEASURES: Crude incidence of SARS-CoV-2 infection was defined as the sum of first positive SARS-CoV-2 infections in participants divided by person-weeks at risk. Negative binomial regression was used to model SARS-CoV-2 infection by occupation to estimate unadjusted and adjusted incidence rate ratios (IRRs). The least absolute shrinkage and selection operator (LASSO) method was used to generate a parsimonious multivariable model. RESULTS: The study cohort comprised 1766 Arizona workers (mean age [SD], 43.8 [11.1] years; 1093 [61.9%] female; 401 [22.7%] were Hispanic and 1530 [86.6%] were White individuals) of whom 44.2% were health care personnel, 22.4% first responders, and 33.4% other essential workers. The cohort was followed up for 23 393 person-weeks. Crude incidence of SARS-CoV-2 infection was 6.7, 13.2, and 7.4 per 1000 person-weeks at risk for health care personnel, first responders, and other essential workers, respectively. In unadjusted models, first responders had twice the incidence of infection as health care personnel (IRRs, 2.01; 95% CI, 1.44-2.79). While attenuated, this risk remained elevated in adjusted LASSO-optimized models (IRR, 1.60; 95% CI, 1.07-2.38). Risk of infection among other essential workers was no different than for health care personnel in unadjusted or adjusted models. CONCLUSIONS AND RELEVANCE: This prospective cohort study found that first responders had a higher incidence of SARS-CoV-2 infection than health care personnel, even after adjusting for potential confounding factors. Given their frequent contact with each other and with the public and their high rates of SARS-CoV-2 infection, the safety challenges for first responders warrant greater public health attention and research. |
Prevention and Attenuation of Covid-19 with the BNT162b2 and mRNA-1273 Vaccines.
Thompson MG , Burgess JL , Naleway AL , Tyner H , Yoon SK , Meece J , Olsho LEW , Caban-Martinez AJ , Fowlkes AL , Lutrick K , Groom HC , Dunnigan K , Odean MJ , Hegmann K , Stefanski E , Edwards LJ , Schaefer-Solle N , Grant L , Ellingson K , Kuntz JL , Zunie T , Thiese MS , Ivacic L , Wesley MG , Mayo Lamberte J , Sun X , Smith ME , Phillips AL , Groover KD , Yoo YM , Gerald J , Brown RT , Herring MK , Joseph G , Beitel S , Morrill TC , Mak J , Rivers P , Poe BP , Lynch B , Zhou Y , Zhang J , Kelleher A , Li Y , Dickerson M , Hanson E , Guenther K , Tong S , Bateman A , Reisdorf E , Barnes J , Azziz-Baumgartner E , Hunt DR , Arvay ML , Kutty P , Fry AM , Gaglani M . N Engl J Med 2021 385 (4) 320-329 ![]() ![]() BACKGROUND: Information is limited regarding the effectiveness of the two-dose messenger RNA (mRNA) vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) in preventing infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and in attenuating coronavirus disease 2019 (Covid-19) when administered in real-world conditions. METHODS: We conducted a prospective cohort study involving 3975 health care personnel, first responders, and other essential and frontline workers. From December 14, 2020, to April 10, 2021, the participants completed weekly SARS-CoV-2 testing by providing mid-turbinate nasal swabs for qualitative and quantitative reverse-transcriptase-polymerase-chain-reaction (RT-PCR) analysis. The formula for calculating vaccine effectiveness was 100% × (1 - hazard ratio for SARS-CoV-2 infection in vaccinated vs. unvaccinated participants), with adjustments for the propensity to be vaccinated, study site, occupation, and local viral circulation. RESULTS: SARS-CoV-2 was detected in 204 participants (5%), of whom 5 were fully vaccinated (≥14 days after dose 2), 11 partially vaccinated (≥14 days after dose 1 and <14 days after dose 2), and 156 unvaccinated; the 32 participants with indeterminate vaccination status (<14 days after dose 1) were excluded. Adjusted vaccine effectiveness was 91% (95% confidence interval [CI], 76 to 97) with full vaccination and 81% (95% CI, 64 to 90) with partial vaccination. Among participants with SARS-CoV-2 infection, the mean viral RNA load was 40% lower (95% CI, 16 to 57) in partially or fully vaccinated participants than in unvaccinated participants. In addition, the risk of febrile symptoms was 58% lower (relative risk, 0.42; 95% CI, 0.18 to 0.98) and the duration of illness was shorter, with 2.3 fewer days spent sick in bed (95% CI, 0.8 to 3.7). CONCLUSIONS: Authorized mRNA vaccines were highly effective among working-age adults in preventing SARS-CoV-2 infection when administered in real-world conditions, and the vaccines attenuated the viral RNA load, risk of febrile symptoms, and duration of illness among those who had breakthrough infection despite vaccination. (Funded by the National Center for Immunization and Respiratory Diseases and the Centers for Disease Control and Prevention.). |
COVID-19 Infection, Reinfection, and Vaccine Effectiveness in a Prospective Cohort of Arizona Frontline/Essential Workers: The AZ HEROES Research Protocol.
Lutrick K , Ellingson KD , Baccam Z , Rivers P , Beitel S , Parker J , Hollister J , Sun X , Gerald JK , Komatsu K , Kim E , LaFleur B , Grant L , Yoo YM , Kumar A , Mayo Lamberte J , Cowling BJ , Cobey S , Thornburg NJ , Meece JK , Kutty P , Nikolich-Zugich J , Thompson MG , Burgess JL . JMIR Res Protoc 2021 10 (6) BACKGROUND: The Arizona Healthcare, Emergency Response, and Other Essential workers Study (AZ HEROES) aims to examine the epidemiology of SARS-CoV-2 infection and COVID-19 illness among adults with high occupational exposure risk. OBJECTIVE: Study objectives include estimating incidence of SARS-CoV-2 infection in essential workers by symptom presentation and demographic factors, determining independent effects of occupational and community exposures on incidence of SARS-CoV-2 infection, establishing molecular and immunologic characteristics of SARS-CoV-2 infection in essential workers, describing the duration and patterns of rRT-PCR-positivity, and examining post-vaccine immunologic response. METHODS: Eligible participants include Arizona residents aged 18-85 years who work at least 20 hours per week in an occupation involving regular direct contact (within three feet) with others. Recruitment goals are stratified by demographic characteristics (50% aged 40 or older, 50% women, and 50% Hispanic or American Indian), by occupation (40% healthcare personnel, 30% first responders, and 30% other essential workers), and by prior SARS-CoV-2 infection (with up to 50% seropositive at baseline). Information on sociodemographics, health and medical history, vaccination status, exposures to individuals with suspected or confirmed SARS-CoV-2 infection, use of personal protective equipment, and perceived risks are collected at enrollment and updated through quarterly surveys. Every week, participants complete active surveillance for COVID-19-like illness (CLI) and self-collect nasal swabs. Additional self-collected nasal swab and saliva specimens are collected in the event of CLI onset. Respiratory specimens are sent to Marshfield Laboratories and tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction (rRT-PCR) assay. CLI symptoms and impact on work and productivity are followed through illness resolution. Serum specimens are collected every 3 months and additional sera are collected following incident rRT-PCR positivity and after each COVID-19 vaccine dose. Incidence of SARS-CoV-2 infections will be calculated by person-weeks at risk and compared by occupation and demographic characteristics and by seropositivity status and infection and vaccination history. RESULTS: The AZ HEROES study was funded by the Centers for Disease Control and Prevention. Enrollment began July 27, 2020 and as of May 1, 2021 a total of 3,165 participants have been enrolled in the study. CONCLUSIONS: AZ HEROES is unique in aiming to recruit a diverse sample of essential workers and prospectively following strata of SARS-CoV-2 seronegative and seropositive adults. Survey results combined with active surveillance data on exposure, CLI, weekly molecular diagnostic testing, and periodic serology will be used to estimate the incidence of symptomatic and asymptomatic SARS-CoV-2 infection, assess the intensity and durability of immune responses to natural infection and COVID-19 vaccination, and contribute to the evaluation of COVID-19 vaccine effectiveness. INTERNATIONAL REGISTERED REPORT: DERR1-10.2196/28925. |
Pandemic diseases preparedness and response in the age of COVID-19-a symposium report.
Cable J , Heymann DL , Uzicanin A , Tomori O , Marinissen MJ , Katz R , Kerr L , Lurie N , Parker GW , Madad S , Maldin Morgenthau B , Osterholm MT , Borio L . Ann N Y Acad Sci 2020 1489 (1) 17-29 ![]() ![]() For years, experts have warned that a global pandemic was only a matter of time. Indeed, over the past two decades, several outbreaks and pandemics, from SARS to Ebola, have tested our ability to respond to a disease threat and provided the opportunity to refine our preparedness systems. However, when a novel coronavirus with human-to-human transmissibility emerged in China in 2019, many of these systems were found lacking. From international disputes over data and resources to individual disagreements over the effectiveness of facemasks, the COVID-19 pandemic has revealed several vulnerabilities. As of early November 2020, the WHO has confirmed over 46 million cases and 1.2 million deaths worldwide. While the world will likely be reeling from the effects of COVID-19 for months, and perhaps years, to come, one key question must be asked, How can we do better next time? This report summarizes views of experts from around the world on how lessons from past pandemics have shaped our current disease preparedness and response efforts, and how the COVID-19 pandemic may offer an opportunity to reinvent public health and healthcare systems to be more robust the next time a major challenge appears. |
The Longitudinal Epidemiologic Assessment of Diabetes Risk (LEADR): Unique 1.4 M patient Electronic Health Record cohort.
Fishbein HA , Birch RJ , Mathew SM , Sawyer HL , Pulver G , Poling J , Kaelber D , Mardon R , Johnson MC , Pace W , Umbel KD , Zhang X , Siegel KR , Imperatore G , Shrestha S , Proia K , Cheng Y , McKeever Bullard K , Gregg EW , Rolka D , Pavkov ME . Healthc (Amst) 2020 8 (4) 100458 ![]() BACKGROUND: The Longitudinal Epidemiologic Assessment of Diabetes Risk (LEADR) study uses a novel Electronic Health Record (EHR) data approach as a tool to assess the epidemiology of known and new risk factors for type 2 diabetes mellitus (T2DM) and study how prevention interventions affect progression to and onset of T2DM. We created an electronic cohort of 1.4 million patients having had at least 4 encounters with a healthcare organization for at least 24-months; were aged ≥18 years in 2010; and had no diabetes (i.e., T1DM or T2DM) at cohort entry or in the 12 months following entry. EHR data came from patients at nine healthcare organizations across the U.S. between January 1, 2010-December 31, 2016. RESULTS: Approximately 5.9% of the LEADR cohort (82,922 patients) developed T2DM, providing opportunities to explore longitudinal clinical care, medication use, risk factor trajectories, and diagnoses for these patients, compared with patients similarly matched prior to disease onset. CONCLUSIONS: LEADR represents one of the largest EHR databases to have repurposed EHR data to examine patients' T2DM risk. This paper is first in a series demonstrating this novel approach to studying T2DM. IMPLICATIONS: Chronic conditions that often take years to develop can be studied efficiently using EHR data in a retrospective design. LEVEL OF EVIDENCE: While much is already known about T2DM risk, this EHR's cohort's 160 M data points for 1.4 M people over six years, provides opportunities to investigate new unique risk factors and evaluate research hypotheses where results could modify public health practice for preventing T2DM. |
Estimated Community Seroprevalence of SARS-CoV-2 Antibodies - Two Georgia Counties, April 28-May 3, 2020.
Biggs HM , Harris JB , Breakwell L , Dahlgren FS , Abedi GR , Szablewski CM , Drobeniuc J , Bustamante ND , Almendares O , Schnall AH , Gilani Z , Smith T , Gieraltowski L , Johnson JA , Bajema KL , McDavid K , Schafer IJ , Sullivan V , Punkova L , Tejada-Strop A , Amiling R , Mattison CP , Cortese MM , Ford SE , Paxton LA , Drenzek C , Tate JE , CDC Field Surveyor Team , Brown Nicole , Chang Karen T , Deputy Nicholas P , Desamu-Thorpe Rodel , Gorishek Chase , Hanchey Arianna , Melgar Michael , Monroe Benjamin P , Nielsen Carrie F , Pellegrini Gerald JJr , Shamout Mays , Tison Laura I , Vagi Sara , Zacks Rachael . MMWR Morb Mortal Wkly Rep 2020 69 (29) 965-970 Transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is ongoing in many communities throughout the United States. Although case-based and syndromic surveillance are critical for monitoring the pandemic, these systems rely on persons obtaining testing or reporting a COVID-19-like illness. Using serologic tests to detect the presence of SARS-CoV-2 antibodies is an adjunctive strategy that estimates the prevalence of past infection in a population. During April 28-May 3, 2020, coinciding with the end of a statewide shelter-in-place order, CDC and the Georgia Department of Public Health conducted a serologic survey in DeKalb and Fulton counties in metropolitan Atlanta to estimate SARS-CoV-2 seroprevalence in the population. A two-stage cluster sampling design was used to randomly select 30 census blocks in each county, with a target of seven participating households per census block. Weighted estimates were calculated to account for the probability of selection and adjusted for age group, sex, and race/ethnicity. A total of 394 households and 696 persons participated and had a serology result; 19 (2.7%) of 696 persons had SARS-CoV-2 antibodies detected. The estimated weighted seroprevalence across these two metropolitan Atlanta counties was 2.5% (95% confidence interval [CI] = 1.4-4.5). Non-Hispanic black participants more commonly had SARS-CoV-2 antibodies than did participants of other racial/ethnic groups (p<0.01). Among persons with SARS-CoV-2 antibodies, 13 (weighted % = 49.9; 95% CI = 24.4-75.5) reported a COVID-19-compatible illness,* six (weighted % = 28.2; 95% CI = 11.9-53.3) sought medical care for a COVID-19-compatible illness, and five (weighted % = 15.7; 95% CI = 5.1-39.4) had been tested for SARS-CoV-2 infection, demonstrating that many of these infections would not have been identified through case-based or syndromic surveillance. The relatively low seroprevalence estimate in this report indicates that most persons in the catchment area had not been infected with SARS-CoV-2 at the time of the survey. Continued preventive measures, including social distancing, consistent and correct use of face coverings, and hand hygiene, remain critical in controlling community spread of SARS-CoV-2. |
Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria.
Raj DK , Das Mohapatra A , Jnawali A , Zuromski J , Jha A , Cham-Kpu G , Sherman B , Rudlaff RM , Nixon CE , Hilton N , Oleinikov AV , Chesnokov O , Merritt J , Pond-Tor S , Burns L , Jolly G , Ben Mamoun C , Kabyemela E , Muehlenbachs A , Lambert L , Orr-Gonzalez S , Gnadig NF , Fidock DA , Park S , Dvorin JD , Pardi N , Weissman D , Mui BL , Tam YK , Friedman JF , Fried M , Duffy PE , Kurtis JD . Nature 2020 582 (7810) 104-108 ![]() ![]() Malaria caused by Plasmodium falciparum remains the leading single-agent cause of mortality in children1, yet the promise of an effective vaccine has not been fulfilled. Here, using our previously described differential screening method to analyse the proteome of blood-stage P. falciparum parasites2, we identify P. falciparum glutamic-acid-rich protein (PfGARP) as a parasite antigen that is recognized by antibodies in the plasma of children who are relatively resistant—but not those who are susceptible—to malaria caused by P. falciparum. PfGARP is a parasite antigen of 80 kDa that is expressed on the exofacial surface of erythrocytes infected by early-to-late-trophozoite-stage parasites. We demonstrate that antibodies against PfGARP kill trophozoite-infected erythrocytes in culture by inducing programmed cell death in the parasites, and that vaccinating non-human primates with PfGARP partially protects against a challenge with P. falciparum. Furthermore, our longitudinal cohort studies showed that, compared to individuals who had naturally occurring anti-PfGARP antibodies, Tanzanian children without anti-PfGARP antibodies had a 2.5-fold-higher risk of severe malaria and Kenyan adolescents and adults without these antibodies had a twofold-higher parasite density. By killing trophozoite-infected erythrocytes, PfGARP could synergize with other vaccines that target parasite invasion of hepatocytes or the invasion of and egress from erythrocytes. |
Prevalence of inherited blood disorders and associations with malaria and anemia in Malawian children.
McGann PT , Williams AM , Ellis G , McElhinney KE , Romano L , Woodall J , Howard TA , Tegha G , Krysiak R , Lark RM , Ander EL , Mapango C , Ataga KI , Gopal S , Key NS , Ware RE , Suchdev PS . Blood Adv 2018 2 (21) 3035-3044 ![]() ![]() In sub-Saharan Africa, inherited causes of anemia are common, but data are limited regarding the geographical prevalence and coinheritance of these conditions and their overall contributions to childhood anemia. To address these questions in Malawi, we performed a secondary analysis of the 2015-2016 Malawi Micronutrient Survey, a nationally and regionally representative survey that estimated the prevalence of micronutrient deficiencies and evaluated both inherited and noninherited determinants of anemia. Children age 6 to 59 months were sampled from 105 clusters within the 2015-2016 Malawi Demographic Health Survey. Hemoglobin, ferritin, retinol binding protein, malaria, and inflammatory biomarkers were measured from venous blood. Molecular studies were performed using dried blood spots to determine the presence of sickle cell disease or trait, alpha-thalassemia trait, and glucose-6-phosphate dehydrogenase (G6PD) deficiency. Of 1279 eligible children, 1071 were included in the final analysis. Anemia, iron deficiency, and malaria were common, affecting 30.9%, 21.5%, and 27.8% of the participating children, respectively. alpha-Thalassemia trait was common (>40% of children demonstrating deletion of 1 [33.1%] or 2 [10.0%] alpha-globin genes) and associated with higher prevalence of anemia (P < .001). Approximately 20% of males had G6PD deficiency, which was associated with a 1.0 g/dL protection in hemoglobin decline during malaria infection (P = .02). These data document that inherited blood disorders are common and likely play an important role in the prevalence of anemia and malaria in Malawian children. |
Direct diagnostic tests for Lyme disease
Schutzer SE , Body BA , Boyle J , Branson BM , Dattwyler RJ , Fikrig E , Gerald NJ , Gomes-Solecki M , Kintrup M , Ledizet M , Levin AE , Lewinski M , Liotta LA , Marques A , Mead PS , Mongodin EF , Pillai S , Rao P , Robinson WH , Roth KM , Schriefer ME , Slezak T , Snyder JL , Steere AC , Witkowski J , Wong SJ , Branda JA . Clin Infect Dis 2018 68 (6) 1052-1057 Borrelia burgdorferi was discovered to be the cause of Lyme disease in 1983, leading to seroassays. The 1994 serodiagnostic testing guidelines predated a full understanding of key B. burgdorferi antigens and have a number of shortcomings. These serologic tests cannot distinguish active infection, past infection, or reinfection. Reliable direct-detection methods for active B. burgdorferi infection have been lacking in the past but are needed and appear achievable. New approaches have effectively been applied to other emerging infections and show promise in direct detection of B. burgdorferi infections. |
Advances in serodiagnostic testing for Lyme disease are at hand
Branda JA , Body BA , Boyle J , Branson BM , Dattwyler RJ , Fikrig E , Gerald NJ , Gomes-Solecki M , Kintrup M , Ledizet M , Levin AE , Lewinski M , Liotta LA , Marques A , Mead PS , Mongodin EF , Pillai S , Rao P , Robinson WH , Roth KM , Schriefer ME , Slezak T , Snyder J , Steere AC , Witkowski J , Wong SJ , Schutzer SE . Clin Infect Dis 2017 66 (7) 1133-1139 The cause of Lyme disease, Borrelia burgdorferi, was discovered in 1983. A 2-tiered testing protocol was established for serodiagnosis in 1994, involving an enzyme immunoassay (EIA) or indirect fluorescence antibody, followed (if reactive) by immunoglobulin M and immunoglobulin G Western immunoblots. These assays were prepared from whole-cell cultured B. burgdorferi, lacking key in vivo expressed antigens and expressing antigens that can bind non-Borrelia antibodies. Additional drawbacks, particular to the Western immunoblot component, include low sensitivity in early infection, technical complexity, and subjective interpretation when scored by visual examination. Nevertheless, 2-tiered testing with immunoblotting remains the benchmark for evaluation of new methods or approaches. Next-generation serologic assays, prepared with recombinant proteins or synthetic peptides, and alternative testing protocols, can now overcome or circumvent many of these past drawbacks. This article describes next-generation serodiagnostic testing for Lyme disease, focusing on methods that are currently available or near-at-hand. |
Impact of Larger Sputum Volume on Xpert(®) MTB/RIF Assay Detection of Mycobacterium tuberculosis in Smear-Negative Individuals with Suspected Tuberculosis.
Badal-Faesen S , Firnhaber C , Kendall MA , Wu X , Grinsztejn B , Escada Rods , Fernandez M , Hogg E , Sanne I , Johnson P , Alland D , Mazurek GH , Benator DA , Luetkemeyer AF . J Clin Med 2017 6 (8) ![]() As a strategy to improve the sensitivity of nucleic acid-based testing in acid-fast bacilli (AFB) negative samples, larger volumes of sputum (5-10 mL) were tested with Xpert(R) MTB/RIF from 176 individuals with smear-negative sputum undergoing tuberculosis evaluation. Despite larger volumes, this strategy had a suboptimal sensitivity of 50% (4/8). |
Maternal and Breastmilk Viral Load: Impacts of Adherence on Peripartum HIV Infections Averted-The Breastfeeding, Antiretrovirals, and Nutrition Study.
Davis NL , Miller WC , Hudgens MG , Chasela CS , Sichali D , Kayira D , Nelson JA , Fiscus SA , Tegha G , Kamwendo DD , Rigdon J , Stringer JS , Juliano JJ , Ellington SR , Kourtis AP , Jamieson DJ , Van Der Horst C . J Acquir Immune Defic Syndr 2016 73 (5) 572-580 ![]() ![]() BACKGROUND: Antiretroviral interventions are used to reduce HIV viral replication and prevent mother-to-child transmission. Viral suppression relies on adherence to antiretrovirals. METHODS: A two-phase study was conducted using data from the Breastfeeding, Antiretrovirals and Nutrition study. We included mothers randomized to 28 weeks of postpartum antiretrovirals with ≥1 plasma or breastmilk specimen. All mothers who transmitted HIV to their infants from 2-28 weeks (n=31) and 15% of mothers who did not (n=232) were included. Adherence was measured by pill count [categorized as poor (0-80%), partial (81-98%) and near perfect (>98%)]. Associations between adherence and breastmilk RNA were assessed using mixed effects models. Cox models were used to estimate associations between breastmilk RNA and HIV transmission. Using Monte Carlo simulation, we estimated the number of transmissions that would occur had everyone randomized to maternal ARVs been 90% and 100% adherent. RESULTS: Partial or near perfect antiretroviral adherence significantly reduced the odds of having detectable (≥40 copies/ml) breastmilk RNA, compared to poor adherence (OR 0.23, 95% CI 0.08-0.67; OR 0.36, 95% CI 0.16-0.81, respectively). Detectable breastmilk RNA was associated with increased breastmilk transmission, compared to undetectable breastmilk RNA (HR 3.8, 95% CI 1.2-12.1). All transmitting mothers had ≥1 plasma viral load specimen >100 copies/ml. An estimated similar number of transmissions would occur with 90% adherence compared with 100%. CONCLUSIONS: Helping patients adhere to antiretrovirals throughout breastfeeding is important for realizing the full potential of recommended antiretroviral interventions to prevent mother-to-child HIV transmission. Maintaining plasma viral load <100 copies/ml may prevent breastmilk transmission. |
Using Multiplex Molecular Testing to Determine the Etiology of Acute Gastroenteritis in Children.
Nicholson MR , Van Horn GT , Tang YW , Vinje J , Payne DC , Edwards KM , Chappell JD . J Pediatr 2016 176 50-56 e2 ![]() OBJECTIVE: To detect the etiologic agents of acute gastroenteritis (AGE) in children using broad molecular-based techniques, and compare clinical presentations among etiologies. STUDY DESIGN: This was a prospective population-based surveillance study of children aged <6 years with AGE conducted between 2008 and 2011 as part of the New Vaccine Surveillance Network. Stools from patients and healthy controls were tested for 21 gastrointestinal pathogens using the analyte-specific reagent Gastrointestinal Pathogen Panel and an additional reverse transcription real-time polymerase chain reaction assay for sapovirus and astrovirus. RESULTS: Of the 216 stool samples from patients with AGE, 152 (70.4%) tested positive for a pathogen, with norovirus genogroup II (n = 78; 36.1%) and Clostridium difficile (n = 35; 16.2%) the most common pathogens detected. Forty-nine patients (22.7%) tested positive for more than 1 pathogen, including 25 (71%) with a C difficile detection. There were no significant clinical differences among the patients with no pathogen detected, those with a single pathogen detected, and those with ≥2 pathogens detected. CONCLUSION: Using a broad molecular testing approach, high rates of enteropathogens were detected in children with AGE, dominated by norovirus genogroup II and C difficile. Coinfections were common but had no identifiable impact on clinical manifestations. As routine diagnostics of AGE progressively evolve toward nucleic acid-based pathogen detection, ongoing systematic studies are needed to better analyze the clinical significance of results. |
The Next Generation of Risk Assessment Multiyear Study- Highlights of Findings, Applications to Risk Assessment and Future Directions.
Cote I , Andersen ME , Ankley GT , Barone S , Birnbaum LS , Boekelheide K , Bois FY , Burgoon LD , Chiu WA , Crawford-Brown D , Crofton KM , DeVito M , Devlin RB , Edwards SW , Guyton KZ , Hattis D , Judson RS , Knight D , Krewski D , Lambert J , Maull EA , Mendrick D , Paoli GM , Patel CJ , Perkins EJ , Poje G , Portier CJ , Rusyn I , Schulte PA , Simeonov A , Smith MT , Thayer KA , Thomas RS , Thomas R , Tice RR , Vandenberg JJ , Villeneuve DL , Wesselkamper S , Whelan M , Whittaker C , White R , Xia M , Yauk C , Zeise L , Zhao J , DeWoskin RS . Environ Health Perspect 2016 124 (11) 1671-1682 ![]() BACKGROUND: The Next Generation (NexGen) of Risk Assessment effort is a multiyear collaboration among several organizations evaluating new, potentially more efficient molecular, computational and systems biology approaches to risk assessment. This paper summarizes our findings, suggests applications to risk assessment, and identifies strategic research directions. OBJECTIVE: Our specific objectives were to test whether advanced biological data and methods could better inform our understanding of public health risks posed by environmental exposures. METHODS: New data and methods were applied and evaluated for use in hazard identification and dose-response assessment. Biomarkers of exposure and effect, and risk characterization were also examined. Consideration was given to various decision contexts with increasing regulatory and public health impacts. Data types included transcriptomics, genomics, and proteomics; methods included molecular epidemiology and clinical studies, bioinformatic knowledge mining, pathway and network analyses, short-duration in vivo and in vitro bioassays, and quantitative structure activity relationship modeling. DISCUSSION: NexGen has advanced our ability to apply new science by more rapidly identifying chemicals and exposures of potential concern, helping characterize mechanisms of action that influence conclusions about causality, exposure-response relationships, susceptibility and cumulative risk, and by elucidating new biomarkers of exposure and effects. Additionally, NexGen has fostered extensive discussion among risk scientists and managers and improved confidence in interpreting and applying new data streams. CONCLUSIONS: While considerable uncertainties remain, thoughtful application of new knowledge to risk assessment appears reasonable for augmenting major scope assessments, forming the basis for or augmenting limited scope assessments, and for prioritization and screening of very data limited chemicals. |
Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33.
Wang Z , Zhu B , Zhang M , Parikh H , Jia J , Chung CC , Sampson JN , Hoskins JW , Hutchinson A , Burdette L , Ibrahim A , Hautman C , Raj PS , Abnet CC , Adjei AA , Ahlbom A , Albanes D , Allen NE , Ambrosone CB , Aldrich M , Amiano P , Amos C , Andersson U , Andriole G Jr , Andrulis IL , Arici C , Arslan AA , Austin MA , Baris D , Barkauskas DA , Bassig BA , Beane Freeman LE , Berg CD , Berndt SI , Bertazzi PA , Biritwum RB , Black A , Blot W , Boeing H , Boffetta P , Bolton K , Boutron-Ruault MC , Bracci PM , Brennan P , Brinton LA , Brotzman M , Bueno-de-Mesquita HB , Buring JE , Butler MA , Cai Q , Cancel-Tassin G , Canzian F , Cao G , Caporaso NE , Carrato A , Carreon T , Carta A , Chang GC , Chang IS , Chang-Claude J , Che X , Chen CJ , Chen CY , Chen CH , Chen C , Chen KY , Chen YM , Chokkalingam AP , Chu LW , Clavel-Chapelon F , Colditz GA , Colt JS , Conti D , Cook MB , Cortessis VK , Crawford ED , Cussenot O , Davis FG , De Vivo I , Deng X , Ding T , Dinney CP , Di Stefano AL , Diver WR , Duell EJ , Elena JW , Fan JH , Feigelson HS , Feychting M , Figueroa JD , Flanagan AM , Fraumeni JF Jr , Freedman ND , Fridley BL , Fuchs CS , Gago-Dominguez M , Gallinger S , Gao YT , Gapstur SM , Garcia-Closas M , Garcia-Closas R , Gastier-Foster JM , Gaziano JM , Gerhard DS , Giffen CA , Giles GG , Gillanders EM , Giovannucci EL , Goggins M , Gokgoz N , Goldstein AM , Gonzalez C , Gorlick R , Greene MH , Gross M , Grossman HB , Grubb R 3rd , Gu J , Guan P , Haiman CA , Hallmans G , Hankinson SE , Harris CC , Hartge P , Hattinger C , Hayes RB , He Q , Helman L , Henderson BE , Henriksson R , Hoffman-Bolton J , Hohensee C , Holly EA , Hong YC , Hoover RN , Hosgood HD 3rd , Hsiao CF , Hsing AW , Hsiung CA , Hu N , Hu W , Hu Z , Huang MS , Hunter DJ , Inskip PD , Ito H , Jacobs EJ , Jacobs KB , Jenab M , Ji BT , Johansen C , Johansson M , Johnson A , Kaaks R , Kamat AM , Kamineni A , Karagas M , Khanna C , Khaw KT , Kim C , Kim IS , Kim YH , Kim YC , Kim YT , Kang CH , Jung YJ , Kitahara CM , Klein AP , Klein R , Kogevinas M , Koh WP , Kohno T , Kolonel LN , Kooperberg C , Kratz CP , Krogh V , Kunitoh H , Kurtz RC , Kurucu N , Lan Q , Lathrop M , Lau CC , Lecanda F , Lee KM , Lee MP , Le Marchand L , Lerner SP , Li D , Liao LM , Lim WY , Lin D , Lin J , Lindstrom S , Linet MS , Lissowska J , Liu J , Ljungberg B , Lloreta J , Lu D , Ma J , Malats N , Mannisto S , Marina N , Mastrangelo G , Matsuo K , McGlynn KA , McKean-Cowdin R , McNeill LH , McWilliams RR , Melin BS , Meltzer PS , Mensah JE , Miao X , Michaud DS , Mondul AM , Moore LE , Muir K , Niwa S , Olson SH , Orr N , Panico S , Park JY , Patel AV , Patino-Garcia A , Pavanello S , Peeters PH , Peplonska B , Peters U , Petersen GM , Picci P , Pike MC , Porru S , Prescott J , Pu X , Purdue MP , Qiao YL , Rajaraman P , Riboli E , Risch HA , Rodabough RJ , Rothman N , Ruder AM , Ryu JS , Sanson M , Schned A , Schumacher FR , Schwartz AG , Schwartz KL , Schwenn M , Scotlandi K , Seow A , Serra C , Serra M , Sesso HD , Severi G , Shen H , Shen M , Shete S , Shiraishi K , Shu XO , Siddiq A , Sierrasesumaga L , Sierri S , Sihoe AD , Silverman DT , Simon M , Southey MC , Spector L , Spitz M , Stampfer M , Stattin P , Stern MC , Stevens VL , Stolzenberg-Solomon RZ , Stram DO , Strom SS , Su WC , Sund M , Sung SW , Swerdlow A , Tan W , Tanaka H , Tang W , Tang ZZ , Tardon A , Tay E , Taylor PR , Tettey Y , Thomas DM , Tirabosco R , Tjonneland A , Tobias GS , Toro JR , Travis RC , Trichopoulos D , Troisi R , Truelove A , Tsai YH , Tucker MA , Tumino R , Van Den Berg D , Van Den Eeden SK , Vermeulen R , Vineis P , Visvanathan K , Vogel U , Wang C , Wang C , Wang J , Wang SS , Weiderpass E , Weinstein SJ , Wentzensen N , Wheeler W , White E , Wiencke JK , Wolk A , Wolpin BM , Wong MP , Wrensch M , Wu C , Wu T , Wu X , Wu YL , Wunder JS , Xiang YB , Xu J , Yang HP , Yang PC , Yatabe Y , Ye Y , Yeboah ED , Yin Z , Ying C , Yu CJ , Yu K , Yuan JM , Zanetti KA , Zeleniuch-Jacquotte A , Zheng W , Zhou B , Mirabello L , Savage SA , Kraft P , Chanock SJ , Yeager M , Landi MT , Shi J , Chatterjee N , Amundadottir LT . Hum Mol Genet 2014 23 (24) 6616-33 ![]() Genome-wide association studies (GWAS) have mapped risk alleles for at least ten distinct cancers to a small region of 63,000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (ASSET) across six distinct cancers in 34,248 cases and 45,036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single nucleotide polymorphisms (SNPs): five in the TERT gene (region 1: rs7726159, P=2.10x10-39; region 3: rs2853677, P=3.30x10-36 and PConditional=2.36x10-8; region 4: rs2736098, P=3.87x10-12 and PConditional=5.19x10-6, region 5: rs13172201, P=0.041 and PConditional=2.04x10-6; and region 6: rs10069690, P=7.49x10-15 and PConditional=5.35x10-7) and one in the neighboring CLPTM1L gene (region 2: rs451360; P=1.90x10-18 and PConditional=7.06x10-16). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele specific effects on DNA methylation were seen for a subset of risk loci indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci. |
Characterization of Burkholderia rhizoxinica and B. endofungorum isolated from clinical specimens.
Gee JE , Glass MB , Lackner G , Helsel LO , Daneshvar M , Hollis DG , Jordan J , Morey R , Steigerwalt A , Hertweck C . PLoS One 2011 6 (1) e15731 Eight isolates submitted to CDC from 1989 to 2006 from clinical specimens were initially identified as members of the genus Burkholderia based on preliminary cellular fatty acid analysis and/or 16S rRNA gene sequencing. With the recent descriptions of the new species B. rhizoxinica and B. endofungorum, which are considered endosymbiotic bacteria in Rhizopus microsporus fungi, we now identify seven of these clinical isolates as B. rhizoxinica and one as B. endofungorum based on biochemical testing, 16s rRNA, and DNA-DNA hybridization results. We also further characterize these isolates by assessing toxin production and/or by multiple locus sequence typing. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure