Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-4 (of 4 Records) |
Query Trace: Gee JM[original query] |
---|
The V-safe after vaccination health checker: Active vaccine safety monitoring during CDC's COVID-19 pandemic response
Myers TR , Marquez PL , Gee JM , Hause AM , Panagiotakopoulos L , Zhang B , McCullum I , Licata C , Olson CK , Rahman S , Kennedy SB , Cardozo M , Patel CR , Maxwell L , Kallman JR , Shay DK , Shimabukuro TT . Vaccine 2023 41 (7) 1310-1318 The Centers for Disease Control and Prevention (CDC) developed and implemented the v-safe after vaccination health checker (v-safe) to monitor COVID-19 vaccine safety and as an active surveillance supplement to existing CDC vaccine safety monitoring programs. V-safe allows persons who received COVID-19 vaccines to report on post-vaccination experiences and how symptoms affected their health at daily, weekly, and monthly timepoints after vaccination. Text message reminders are sent linking to Internet-based health check-in surveys. Surveys include questions to identify v-safe participants who may be eligible to enroll in a separate pregnancy registry activity that evaluates maternal and infant outcomes in those pregnant at the time of vaccination or receiving vaccine in the periconception period. We describe the development of and enhancements to v-safe, data management, promotion and communication to vaccination sites and partners, publications, strengths and limitations, and implications for future systems. We also describe enrollment in v-safe over time and demographics of persons participating in v-safe during the first year of operation (December 14, 2020 - December 13, 2021). During this time, 9,342,582 persons submitted 131,543,087 v-safe surveys. The majority of participants were female (62.3 %) and non-Hispanic White (61.2 %); median age was 49.0 years. Most participants reported receiving an mRNA COVID-19 vaccine as their first recorded dose (95.0 %). V-safe contributed to CDC's vaccine safety assessments for FDA-authorized COVID-19 vaccines by enabling near real-time reporting of reactogenicity once the COVID-19 vaccination program began in the community, encouraging reports to the Vaccine Adverse Event Reporting System and facilitating enrollment in a large post-vaccination pregnancy registry. Given that v-safe is an integral component of the most comprehensive safety monitoring program in U.S. history, we believe that this approach has promise as a potential application for future pandemic response activities as well as rollout of novel vaccines in a non-pandemic context. |
Association between history of SARS-CoV-2 infection and severe systemic adverse events after mRNA COVID-19 vaccination among U.S. adults.
Tompkins LK , Baggs J , Myers TR , Gee JM , Marquez PL , Kennedy SB , Peake D , Dua D , Hause AM , Strid P , Abara W , Rossetti R , Shimabukuro TT , Shay DK . Vaccine 2022 40 (52) 7653-7659 BACKGROUND: Risk of experiencing a systemic adverse event (AE) after mRNA coronavirus disease 2019 (COVID-19) vaccination may be greater among persons with a history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; data on serious events are limited. We assessed if adults reporting systemic AEs resulting in emergency department visits or hospitalizations during days 0-7 after mRNA COVID-19 vaccine dose 1 were more likely to have a history of prior SARS-CoV-2 infection compared with persons who reported no or non-severe systemic AEs. METHODS: We conducted a nested case-control study using v-safe surveillance data. Participants were18years and received dose 1 during December 14, 2020May 9, 2021. Cases reported severe systemic AEs 0-7days after vaccination. Three controls were frequency matched per case by age, vaccination date, and days since vaccination. Follow-up surveys collected SARS-CoV-2 histories. RESULTS: Follow-up survey response rates were 38.6% (potential cases) and 56.8% (potential controls). In multivariable analyses including 3,862 case-patients and 11,586 controls, the odds of experiencing a severe systemic AE were 2.4 (Moderna, mRNA-1273; 95% confidence interval [CI]: 1.89, 3.09) and 1.5 (Pfizer-BioNTech, BNT162b2; 95% CI: 1.17, 2.02) times higher among participants with pre-vaccination SARS-CoV-2 histories compared with those without. Medical attention of any kind for symptoms during days 0-7 following dose 2 was not common among case-patients or controls. CONCLUSIONS: History of SARS-CoV-2 infection was significantly associated with severe systemic AEs following dose 1 of mRNA COVID-19 vaccine; the effect varied by vaccine received. Most participants who experienced severe systemic AEs following dose 1 did not require medical attention of any kind for symptoms following dose 2. Vaccine providers can use these findings to counsel patients who had pre-vaccination SARS-CoV-2 infection histories, experienced severe systemic AEs following dose 1, and are considering not receiving additional mRNA COVID-19 vaccine doses. |
Preliminary Findings of mRNA Covid-19 Vaccine Safety in Pregnant Persons.
Shimabukuro TT , Kim SY , Myers TR , Moro PL , Oduyebo T , Panagiotakopoulos L , Marquez PL , Olson CK , Liu R , Chang KT , Ellington SR , Burkel VK , Smoots AN , Green CJ , Licata C , Zhang BC , Alimchandani M , Mba-Jonas A , Martin SW , Gee JM , Meaney-Delman DM . N Engl J Med 2021 384 (24) 2273-2282 BACKGROUND: Many pregnant persons in the United States are receiving messenger RNA (mRNA) coronavirus disease 2019 (Covid-19) vaccines, but data are limited on their safety in pregnancy. METHODS: From December 14, 2020, to February 28, 2021, we used data from the "v-safe after vaccination health checker" surveillance system, the v-safe pregnancy registry, and the Vaccine Adverse Event Reporting System (VAERS) to characterize the initial safety of mRNA Covid-19 vaccines in pregnant persons. RESULTS: A total of 35,691 v-safe participants 16 to 54 years of age identified as pregnant. Injection-site pain was reported more frequently among pregnant persons than among nonpregnant women, whereas headache, myalgia, chills, and fever were reported less frequently. Among 3958 participants enrolled in the v-safe pregnancy registry, 827 had a completed pregnancy, of which 115 (13.9%) resulted in a pregnancy loss and 712 (86.1%) resulted in a live birth (mostly among participants with vaccination in the third trimester). Adverse neonatal outcomes included preterm birth (in 9.4%) and small size for gestational age (in 3.2%); no neonatal deaths were reported. Although not directly comparable, calculated proportions of adverse pregnancy and neonatal outcomes in persons vaccinated against Covid-19 who had a completed pregnancy were similar to incidences reported in studies involving pregnant women that were conducted before the Covid-19 pandemic. Among 221 pregnancy-related adverse events reported to the VAERS, the most frequently reported event was spontaneous abortion (46 cases). CONCLUSIONS: Preliminary findings did not show obvious safety signals among pregnant persons who received mRNA Covid-19 vaccines. However, more longitudinal follow-up, including follow-up of large numbers of women vaccinated earlier in pregnancy, is necessary to inform maternal, pregnancy, and infant outcomes. |
Implementing a multisite clinical trial in the midst of an Ebola outbreak: Lessons learned from the Sierra Leone Trial to Introduce a Vaccine against Ebola
Carter RJ , Idriss A , Widdowson MA , Samai M , Schrag SJ , Legardy-Williams JK , Estivariz CF , Callis A , Carr W , Webber W , Fischer ME , Hadler S , Sahr F , Thompson M , Greby SM , Edem-Hotah J , Momoh RM , McDonald W , Gee JM , Kallon AF , Spencer-Walters D , Bresee JS , Cohn A , Hersey S , Gibson L , Schuchat A , Seward JF . J Infect Dis 2018 217 S16-s23 The Sierra Leone Trial to Introduce a Vaccine against Ebola (STRIVE), a phase 2/3 trial of investigational rVSVG-ZEBOV-GP vaccine, was conducted during an unprecedented Ebola epidemic. More than 8600 eligible healthcare and frontline response workers were individually randomized to immediate (within 7 days) or deferred (within 18-24 weeks) vaccination and followed for 6 months after vaccination for serious adverse events and Ebola virus infection. Key challenges included limited infrastructure to support trial activities, unreliable electricity, and staff with limited clinical trial experience. Study staff made substantial infrastructure investments, including renovation of enrollment sites, laboratories, and government cold chain facilities, and imported equipment to store and transport vaccine at </=-60oC. STRIVE built capacity by providing didactic and practical research training to >350 staff, which was reinforced with daily review and feedback meetings. The operational challenges of safety follow-up were addressed by issuing mobile telephones to participants, making home visits, and establishing a nurse triage hotline. Before the Ebola outbreak, Sierra Leone had limited infrastructure and staff to conduct clinical trials. Without interfering with the outbreak response, STRIVE responded to an urgent need and helped build this capacity. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov [NCT02378753] and Pan African Clinical Trials Registry [PACTR201502001037220]. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure