Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-30 (of 57 Records) |
Query Trace: Gage KL[original query] |
---|
Yersinia pestis Δail Mutants Are Not Susceptible to Human Complement Bactericidal Activity in the Flea.
Kolodziejek AM , Bearden SW , Maes S , Montenieri JM , Gage KL , Hovde CJ , Minnich SA . Appl Environ Microbiol 2023 89 (2) e0124422 ![]() Ail confers serum resistance in humans and is a critical virulence factor of Y. pestis, the causative agent of plague. Here, the contribution of Ail for Y. pestis survival in the flea vector was examined. Rat or human but not mouse sera were bactericidal against a Y. pestis Δail mutant at 28°C in vitro. Complement components deposited rapidly on the Y. pestis surface as measured by immunofluorescent microscopy. Ail reduced the amount of active C3b on the Y. pestis surface. Human sera retained bactericidal activity against a Y. pestis Δail mutant in the presence of mouse sera. However, in the flea vector, the serum protective properties of Ail were not required. Flea colonization studies using murine sera and Y. pestis KIM6(+) wild type, a Δail mutant, and the Δail/ail(+) control showed no differences in bacterial prevalence or numbers during the early stage of flea colonization. Similarly, flea studies with human blood showed Ail was not required for serum resistance. Finally, a variant of Ail (Ail(F100V E108_S109insS)) from a human serum-sensitive Y. pestis subsp. microtus bv. Caucasica 1146 conferred resistance to human complement when expressed in the Y. pestis KIM6(+) Δail mutant. This indicated that Ail activity was somehow blocked, most likely by lipooligosaccharide, in this serum sensitive strain. IMPORTANCE This work contributes to our understanding of how highly virulent Y. pestis evolved from its innocuous enteric predecessor. Among identified virulence factors is the attachment invasion locus protein, Ail, that is required to protect Y. pestis from serum complement in all mammals tested except mice. Murine sera is not bactericidal. In this study, we asked, is bactericidal sera from humans active in Y. pestis colonized fleas? We found it was not. The importance of this observation is that it identifies a protective niche for the growth of serum sensitive and nonsensitive Y. pestis strains. |
Epidemiology, Ecology and Prevention of Plague in the West Nile Region of Uganda: The Value of Long-Term Field Studies
Eisen RJ , Atiku LA , Enscore RE , Mpanga JT , Acayo S , Mead PS , Apangu T , Yockey BM , Borchert JN , Beard CB , Gage KL . Am J Trop Med Hyg 2021 105 (1) 18-23 Plague, a fleaborne rodent-associated zoonosis, is a neglected disease with most recent cases reported from east and central Africa and Madagascar. Because of its low incidence and sporadic occurrence, most of our knowledge of plague ecology, prevention, and control derives from investigations conducted in response to human cases. Long-term studies (which are uncommon) are required to generate data to support plague surveillance, prevention, and control recommendations. Here we describe a 15-year, multidisciplinary commitment to plague in the West Nile region of Uganda that led to significant advances in our understanding of where and when persons are at risk for plague infection and how to reduce morbidity and mortality. These findings provide data-driven support for several existing recommendations on plague surveillance and prevention and may be generalizable to other plague foci. |
The changing triad of plague in Uganda: invasive black rats (Rattus rattus), indigenous small mammals, and their fleas
Enscore RE , Babi N , Amatre G , Atiku L , Eisen RJ , Pepin KM , Vera-Tudela R , Sexton C , Gage KL . J Vector Ecol 2020 45 (2) 333-355 Rattus rattus was first reported from the West Nile Region of Uganda in 1961, an event that preceded the appearance of the first documented human plague outbreak in 1970. We investigated how invasive R. rattus and native small mammal populations, as well as their fleas, have changed in recent decades. Over an 18-month period, a total of 2,959 small mammals were captured, sampled, and examined for fleas, resulting in the identification of 20 small mammal taxa that were hosts to 5,109 fleas (nine species). Over three-fourths (75.8%) of captured mammals belonged to four taxa: R. rattus, which predominated inside huts, and Arvicanthis niloticus, Mastomys sp., and Crocidura sp., which were more common outside huts. These mammals were hosts for 85.8% of fleas collected, including the efficient plague vectors Xenopsylla cheopis and X. brasiliensis, as well as likely enzootic vectors, Dinopsyllus lypusus and Ctenophthalmus bacopus. Flea loads on small mammals were higher in certain environments in villages with a recent history of plague compared to those that lacked such a history. The significance of these results is discussed in relation to historical data, the initial spread of plague in the WNR and the continuing threat posed by the disease. |
Ecology and management of plague in diverse communities of rodents and fleas
Eads DA , Biggins DE , Gage KL . Vector Borne Zoonotic Dis 2020 20 (12) 888-896 Plague originated in Asia as a flea-borne zoonosis of mammalian hosts. Today, the disease is distributed nearly worldwide. In western United States of America, plague is maintained, transmitted, and amplified in diverse communities of rodents and fleas. We examined flea diversity on three species of prairie dogs (Cynomys spp., PDs) and six species of sympatric small rodents in Montana and Utah, United States of America. Among 2896 fleas, 19 species were identified; 13 were found on PDs and 9 were found on small rodents. In Montana, three flea species were found on PDs; the three species parasitize PDs and mice. In Utah, 12 flea species were found on PDs; the 12 species parasitize PDs, mice, voles, chipmunks, ground squirrels, rock squirrels, and marmots. Diverse flea communities and their willingness to parasitize many types of hosts, across multiple seasons and habitats, may favor plague maintenance and transmission. Flea parasitism on Peromyscus deer mice varied directly with elevation. Fleas are prone to desiccation, and might prosper at higher, mesic elevations; in addition, Peromyscus nest characteristics may vary with elevation. Effective management of plague is critical. Plague management is probably most effective when encompassing communities of rodents and fleas. Treatment of PD burrows with 0.05% deltamethrin dust, which suppressed fleas on PDs for >365 days, suppressed fleas on small rodents for at least 58 days. At one site, deltamethrin suppressed fleas on small rodents for at least 383 days. By simultaneously suppressing fleas on PDs and small rodents, deltamethrin should promote ecosystem resilience and One Health objectives. |
Historical and genomic data reveal the influencing factors on global transmission velocity of plague during the Third Pandemic.
Xu L , Stige LC , Leirs H , Neerinckx S , Gage KL , Yang R , Liu Q , Bramanti B , Dean KR , Tang H , Sun Z , Stenseth NC , Zhang Z . Proc Natl Acad Sci U S A 2019 116 (24) 11833-11838 ![]() ![]() Quantitative knowledge about which natural and anthropogenic factors influence the global spread of plague remains sparse. We estimated the worldwide spreading velocity of plague during the Third Pandemic, using more than 200 years of extensive human plague case records and genomic data, and analyzed the association of spatiotemporal environmental factors with spreading velocity. Here, we show that two lineages, 2.MED and 1.ORI3, spread significantly faster than others, possibly reflecting differences among strains in transmission mechanisms and virulence. Plague spread fastest in regions with low population density and high proportion of pasture- or forestland, findings that should be taken into account for effective plague monitoring and control. Temperature exhibited a nonlinear, U-shaped association with spread speed, with a minimum around 20 degrees C, while precipitation showed a positive association. Our results suggest that global warming may accelerate plague spread in warm, tropical regions and that the projected increased precipitation in the Northern Hemisphere may increase plague spread in relevant regions. |
Acquisition of Bartonella elizabethae by experimentally exposed oriental rat fleas (Xenopsylla cheopis; Siphonaptera, Pulicidae) and excretion of Bartonella DNA in flea feces
McKee CD , Osikowicz LM , Schwedhelm TR , Maes SE , Enscore RE , Gage KL , Kosoy MY . J Med Entomol 2018 55 (5) 1292-1298 Few studies have been able to provide experimental evidence of the ability of fleas to maintain rodent-associated Bartonella infections and excrete these bacteria. These data are important for understanding the transmission cycles and prevalence of these bacteria in hosts and vectors. We used an artificial feeding approach to expose groups of the oriental rat flea (Xenopsylla cheopis Rothschild; Siphonaptera, Pulicidae) to rat blood inoculated with varying concentrations of Bartonella elizabethae Daly (Bartonellaceae: Rhizobiales). Flea populations were maintained by membrane feeding on pathogen-free bloodmeals for up to 13 d post infection. Individual fleas and pools of flea feces were tested for the presence of Bartonella DNA using molecular methods (quantitative and conventional polymerase chain reaction [PCR]). The threshold number of Bartonellae required in the infectious bloodmeal for fleas to be detected as positive was 106 colony-forming units per milliliter (CFU/ml). Individual fleas were capable of harboring infections for at least 13 d post infection and continuously excreted Bartonella DNA in their feces over the same period. This experiment demonstrated that X. cheopis are capable of acquiring and excreting B. elizabethae over several days. These results will guide future work to model and understand the role of X. cheopis in the natural transmission cycle of rodent-borne Bartonella species. Future experiments using this artificial feeding approach will be useful for examining the horizontal transmission of B. elizabethae or other rodent-associated Bartonella species to naive hosts and for determining the viability of excreted bacteria. |
An evaluation of removal trapping to control rodents inside homes in a plague-endemic region of rural Northwestern Uganda
Eisen RJ , Atiku LA , Boegler KA , Mpanga JT , Enscore RE , MacMillan K , Gage KL . Vector Borne Zoonotic Dis 2018 18 (9) 458-463 Rodents pose a significant threat to human health, particularly in rural subsistence farming communities in Africa, where rodents threaten food security and serve as reservoirs of human pathogens, including the agents of plague, leptospirosis, murine typhus, rat-bite fever, Lassa fever, salmonellosis, and campylobacteriosis. Our study focused on the plague-endemic West Nile region of Uganda, where a majority of residents live in Uganda government-defined poverty, rely on subsistence farming for a living, and frequently experience incursions of rodents into their homes. In this study, we show that rodent removal was achieved in a median of 6 days of intensive lethal trapping with multiple trap types (range: 0-16 days). However, rodent abundance in 68.9% of homesteads returned to pretreatment levels within a median of 8 weeks (range 1-24 weeks), and at least a single rodent was captured in all homesteads by a median of 2 weeks (range 1-16 weeks) after removal efforts were terminated. Results were similar between homesteads that practiced rodent control whether or not their neighbors implemented similar strategies. Overall, intensive lethal trapping inside homes appears to be effective at reducing rodent abundance, but control was short lived after trapping ceased. |
Comparison of Zoonotic Bacterial Agents in Fleas Collected from Small Mammals or Host-Seeking Fleas from a Ugandan Region Where Plague Is Endemic.
Bai Y , Osikowicz LM , Kosoy MY , Eisen RJ , Atiku LA , Mpanga JT , Boegler KA , Enscore RE , Gage KL . mSphere 2017 2 (6) ![]() Fleas (n = 407) were collected from small mammals trapped inside huts and surroundings of homesteads in five villages within the Arua and Zombo districts of Uganda. The most common flea species were Dinopsyllus lypusus (26%) and Xenopsylla cheopis (50%). Off-host fleas (n = 225) were collected inside huts by using Kilonzo flea traps. The majority of the off-host fleas were Ctenocephalides felis (80%). All fleas were examined for the presence of Bartonella spp., Rickettsia spp., and Yersinia spp. Bartonella DNA was detected in 91 fleas, with an overall prevalence of 14%. Bartonella prevalence was significantly higher in rodent or shrew fleas than in off-host fleas (22% versus 1%). The majority of Bartonella-positive fleas were of the species D. lypusus (61%), X. cheopis (20%), and Ctenophthalmus calceatus (14%). Sequencing analysis identified 12 Bartonella genetic variants, 9 of which belonged to the zoonotic pathogen B. elizabethae species complex. Rickettsia DNA was detected in 143 fleas, giving an overall prevalence of 23%, with a significantly higher prevalence in off-host fleas than in rodent or shrew fleas (56% versus 4%). The majority (88%) of Rickettsia-positive fleas were C. felis and were collected from Kilonzo traps, while a small portion (10%) were X. cheopis collected from rodents. Sequencing analysis identified six Rickettsia genogroups that belonged either to zoonotic R. felis or to the closely related "Candidatus Ricksettia asemboensis" and "Candidatus Ricksettia sengalensis." Yersinia DNA was not detected in the fleas tested. These observations suggested that fleas in northwestern Uganda commonly carry the zoonotic agents B. elizabethae and R. felis and potentially play an important role in transmitting these infections to humans. IMPORTANCE Fleas play critical roles in transmitting some infections among animals and from animals to humans. Detection of pathogens in fleas is important to determine human risks for flea-borne diseases and can help guide diagnosis and treatment. Our findings of high prevalence rates of B. elizabethae and R. felis in fleas in the Arua and Zombo districts of Uganda implicate these agents as potential causative agents of undiagnosed febrile illnesses in this area. |
Rat fall surveillance coupled with vector control and community education as a plague prevention strategy in the West Nile Region, Uganda
Boegler KA , Atiku LA , Enscore RE , Apangu T , Mpanga JT , Acayo S , Kaggwa J , Mead PS , Yockey BM , Kugeler KJ , Schriefer ME , Horiuchi K , Gage KL , Eisen RJ . Am J Trop Med Hyg 2017 98 (1) 238-247 Plague, primarily a disease of rodents, is most frequently transmitted by fleas and causes potentially fatal infections in humans. In Uganda, plague is endemic to the West Nile region. Primary prevention for plague includes control of rodent hosts or flea vectors, but targeting these efforts is difficult given the sporadic nature of plague epizootics in the region and limited resource availability. Here, we present a community-based strategy to detect and report rodent deaths (rat fall), an early sign of epizootics. Laboratory testing of rodent carcasses is used to trigger primary and secondary prevention measures: indoor residual spraying (IRS) and community-based plague education, respectively. During the first 3 years of the program, individuals from 142 villages reported 580 small mammal deaths; 24 of these tested presumptive positive for Yersinia pestis by fluorescence microscopy. In response, for each of the 17 affected communities, village-wide IRS was conducted to control rodent-associated fleas within homes, and community sensitization was conducted to raise awareness of plague signs and prevention strategies. No additional presumptive Y. pestis-positive carcasses were detected in these villages within the 2-month expected duration of residual activity for the insecticide used in IRS. Despite comparatively high historic case counts, no human plague cases were reported from villages participating in the surveillance program; five cases were reported from elsewhere in the districts. We evaluate community participation and timeliness of response, report the frequency of human plague cases in participating and surrounding villages, and evaluate whether a program such as this could provide a sustainable model for plague prevention in endemic areas. |
Metabolomics of the tick-Borrelia interaction during the nymphal tick blood meal
Hoxmeier JC , Fleshman AC , Broeckling CD , Prenni JE , Dolan MC , Gage KL , Eisen L . Sci Rep 2017 7 44394 The causal agents of Lyme disease in North America, Borrelia burgdorferi and Borrelia mayonii, are transmitted primarily by Ixodes scapularis ticks. Due to their limited metabolic capacity, spirochetes rely on the tick blood meal for nutrients and metabolic intermediates while residing in the tick vector, competing with the tick for nutrients in the blood meal. Metabolomics is an effective methodology to explore dynamics of spirochete survival and multiplication in tick vectors before transmission to a vertebrate host via tick saliva. Using gas chromatography coupled to mass spectrometry, we identified statistically significant differences in the metabolic profile among uninfected I. scapularis nymphal ticks, B. burgdorferi-infected nymphal ticks and B. mayonii-infected nymphal ticks by measuring metabolism every 24 hours over the course of their up to 96 hour blood meals. Specifically, differences in the abundance of purines, amino acids, carbohydrates, and fatty acids during the blood meal among the three groups of nymphal ticks suggest that B. mayonii and B. burgdorferi may have different metabolic capabilities, especially during later stages of nymphal feeding. Understanding mechanisms underlying variable metabolic requirements of different Lyme disease spirochetes within tick vectors could potentially aid development of novel methods to control spirochete transmission. |
Droughts may increase susceptibility of prairie dogs to fleas: Incongruity with hypothesized mechanisms of plague cycles in rodents
Eads DA , Biggins DE , Long DH , Gage KL , Antolin MF . J Mammal 2016 97 (4) 1044-1053 Plague is a reemerging, rodent-associated zoonosis caused by the flea-borne bacterium Yersinia pestis. As a vector-borne disease, rates of plague transmission may increase when fleas are abundant. Fleas are highly susceptible to desiccation under hot-dry conditions; we posited that their densities decline during droughts. We evaluated this hypothesis with black-tailed prairie dogs (Cynomys ludovicianus) in New Mexico, June-August 2010-2012. Precipitation was relatively plentiful during 2010 and 2012 but scarce during 2011, the driest spring-summer on record for the northeastern grasslands of New Mexico. Unexpectedly, fleas were 200% more abundant in 2011 than in 2010 and 2012. Prairie dogs were in 27% better condition during 2010 and 2012, and they devoted 287% more time to grooming in 2012 than in 2011. During 2012, prairie dogs provided with supplemental food and water were in 23% better condition and carried 40% fewer fleas. Collectively, these results suggest that during dry years, prairie dogs are limited by food and water, and they exhibit weakened defenses against fleas. Long-term data are needed to evaluate the generality of whether droughts increase flea densities and how changes in flea abundance during sequences of dry and wet years might affect plague cycles in mammalian hosts. |
Ecological traits driving the outbreaks and emergence of zoonotic pathogens
Salkeld DJ , Stapp P , Tripp DW , Gage KL , Lowell J , Webb CT , Brinkerhoff RJ , Antolin MF . BioScience 2016 66 (2) 118-129 Infectious diseases that are transmitted from wildlife hosts to humans, such as the Ebola virus and MERS virus, can be difficult to understand because the pathogens emerge from complex multifaceted ecological interactions. We use a wildlife-pathogen system - prairie dogs (Cynomys ludovicianus) and the plague bacterium (Yersinia pestis) - to describe aspects of disease ecology that apply to many cases of emerging infectious disease. We show that the monitoring and surveillance of hosts and vectors during the buildup to disease outbreaks are crucial for understanding pathogen-transmission dynamics and that a community-ecology framework is important to identify reservoir hosts. Incorporating multidisciplinary approaches and frameworks may improve wildlife-pathogen surveillance and our understanding of seemingly sporadic and rare pathogen outbreaks. |
Seasonal fluctuations of small mammal and flea communities in a Ugandan plague focus: evidence to implicate Arvicanthis niloticus and Crocidura spp. as key hosts in Yersinia pestis transmission
Moore SM , Monaghan A , Borchert JN , Mpanga JT , Atiku LA , Boegler KA , Montenieri J , MacMillan K , Gage KL , Eisen RJ . Parasit Vectors 2015 8 11 BACKGROUND: The distribution of human plague risk is strongly associated with rainfall in the tropical plague foci of East Africa, but little is known about how the plague bacterium is maintained during periods between outbreaks or whether environmental drivers trigger these outbreaks. We collected small mammals and fleas over a two year period in the West Nile region of Uganda to examine how the ecological community varies seasonally in a region with areas of both high and low risk of human plague cases. METHODS: Seasonal changes in the small mammal and flea communities were examined along an elevation gradient to determine whether small mammal and flea populations exhibit differences in their response to seasonal fluctuations in precipitation, temperature, and crop harvests in areas within (above 1300 m) and outside (below 1300 m) of a model-defined plague focus. RESULTS: The abundance of two potential enzootic host species (Arvicanthis niloticus and Crocidura spp.) increased during the plague season within the plague focus, but did not show the same increase at lower elevations outside this focus. In contrast, the abundance of the domestic rat population (Rattus rattus) did not show significant seasonal fluctuations regardless of locality. Arvicanthis niloticus abundance was negatively associated with monthly precipitation at a six month lag and positively associated with current monthly temperatures, and Crocidura spp. abundance was positively associated with precipitation at a three month lag and negatively associated with current monthly temperatures. The abundance of A. niloticus and Crocidura spp. were both positively correlated with the harvest of millet and maize. CONCLUSIONS: The association between the abundance of several small mammal species and rainfall is consistent with previous models of the timing of human plague cases in relation to precipitation in the West Nile region. The seasonal increase in the abundance of key potential host species within the plague focus, but not outside of this area, suggests that changes in small mammal abundance may create favorable conditions for epizootic transmission of Y. pestis which ultimately may increase risk of human cases in this region. |
Molecular Survey of Bartonella Species and Yersinia pestis in Rodent Fleas (Siphonaptera) From Chihuahua, Mexico.
Fernandez-Gonzalez AM , Kosoy MY , Rubio AV , Graham CB , Montenieri JA , Osikowicz LM , Bai Y , Acosta-Gutierrez R , Avila-Flores R , Gage KL , Suzan G . J Med Entomol 2015 53 (1) 199-205 ![]() Rodent fleas from northwestern Chihuahua, Mexico, were analyzed for the presence of Bartonella and Yersinia pestis. In total, 760 fleas belonging to 10 species were tested with multiplex polymerase chain reaction analysis targeting the gltA (338-bp) and pla genes (478-bp) of Bartonella and Y. pestis, respectively. Although none was positive for Y. pestis, 307 fleas were infected with Bartonella spp., resulting in an overall prevalence of 40.4%. A logistic regression analysis indicated that the presence of Bartonella is more likely to occur in some flea species. From a subset of Bartonella-positive fleas, phylogenetic analyses of gltA gene sequences revealed 13 genetic variants clustering in five phylogroups (I-V), two of which were matched with known pathogenic Bartonella species (Bartonella vinsonii subsp. arupensis and Bartonella washoensis) and two that were not related with any previously described species or subspecies of Bartonella. Variants in phylogroup V, which were mainly obtained from Meringis spp. fleas, were identical to those reported recently in their specific rodent hosts (Dipodomys spp.) in the same region, suggesting that kangaroo rats and their fleas harbor other Bartonella species not reported previously. Considering the Bartonella prevalence and the flea genotypes associated with known pathogenic Bartonella species, we suggest that analysis of rodent and flea communities in the region should continue for their potential implications for human health. Given that nearby locations in the United States have reported Y. pestis in wild animals and their fleas, we suggest conducting larger-scale studies to increase our knowledge of this bacterium. |
Flea-associated bacterial communities across an environmental transect in a plague-endemic region of Uganda
Jones RT , Borchert J , Eisen R , MacMillan K , Boegler K , Gage KL . PLoS One 2015 10 (10) e0141057 The vast majority of human plague cases currently occur in sub-Saharan Africa. The primary route of transmission of Yersinia pestis, the causative agent of plague, is via flea bites. Non-pathogenic flea-associated bacteria may interact with Y. pestis within fleas and it is important to understand what factors govern flea-associated bacterial assemblages. Six species of fleas were collected from nine rodent species from ten Ugandan villages between October 2010 and March 2011. A total of 660,345 16S rRNA gene DNA sequences were used to characterize bacterial communities of 332 individual fleas. The DNA sequences were binned into 421 Operational Taxonomic Units (OTUs) based on 97% sequence similarity. We used beta diversity metrics to assess the effects of flea species, flea sex, rodent host species, site (i.e. village), collection date, elevation, mean annual precipitation, average monthly precipitation, and average monthly temperature on bacterial community structure. Flea species had the greatest effect on bacterial community structure with each flea species harboring unique bacterial lineages. The site (i.e. village), rodent host, flea sex, elevation, precipitation, and temperature also significantly affected bacterial community composition. Some bacterial lineages were widespread among flea species (e.g. Bartonella spp. and Wolbachia spp.), but each flea species also harbored unique bacterial lineages. Some of these lineages are not closely related to known bacterial diversity and likely represent newly discovered lineages of insect symbionts. Our finding that flea species has the greatest effect on bacterial community composition may help future investigations between Yersinia pestis and non-pathogenic flea-associated bacteria. Characterizing bacterial communities of fleas during a plague epizootic event in the future would be helpful. |
The role of early-phase transmission in the spread of Yersinia pestis
Eisen RJ , Dennis DT , Gage KL . J Med Entomol 2015 52 (6) 1183-92 Early-phase transmission (EPT) of Yersinia pestis by unblocked fleas is a well-documented, replicable phenomenon with poorly defined mechanisms. We review evidence demonstrating EPT and current knowledge on its biological and biomechanical processes. We discuss the importance of EPT in the epizootic spread of Y. pestis and its role in the maintenance of plague bacteria in nature. We further address the role of EPT in the epidemiology of plague. |
Single-Nucleotide Polymorphisms Reveal Spatial Diversity Among Clones of Yersinia pestis During Plague Outbreaks in Colorado and the Western United States.
Lowell JL , Antolin MF , Andersen GL , Hu P , Stokowski RP , Gage KL . Vector Borne Zoonotic Dis 2015 15 (5) 291-302 ![]() BACKGROUND: In western North America, plague epizootics caused by Yersinia pestis appear to sweep across landscapes, primarily infecting and killing rodents, especially ground squirrels and prairie dogs. During these epizootics, the risk of Y. pestis transmission to humans is highest. While empirical models that include climatic conditions and densities of rodent hosts and fleas can predict when epizootics are triggered, bacterial transmission patterns across landscapes, and the scale at which Y. pestis is maintained in nature during inter-epizootic periods, are poorly defined. Elucidating the spatial extent of Y. pestis clones during epizootics can determine whether bacteria are propagated across landscapes or arise independently from local inter-epizootic maintenance reservoirs. MATERIAL AND METHODS: We used DNA microarray technology to identify single-nucleotide polymorphisms (SNPs) in 34 Y. pestis isolates collected in the western United States from 1980 to 2006, 21 of which were collected during plague epizootics in Colorado. Phylogenetic comparisons were used to elucidate the hypothesized spread of Y. pestis between the mountainous Front Range and the eastern plains of northern Colorado during epizootics. Isolates collected from across the western United States were included for regional comparisons. RESULTS: By identifying SNPs that mark individual clones, our results strongly suggest that Y. pestis is maintained locally and that widespread epizootic activity is caused by multiple clones arising independently at small geographic scales. This is in contrast to propagation of individual clones being transported widely across landscapes. Regionally, our data are consistent with the notion that Y. pestis diversifies at relatively local scales following long-range translocation events. We recommend that surveillance and prediction by public health and wildlife management professionals focus more on models of local or regional weather patterns and ecological factors that may increase risk of widespread epizootics, rather than predicting or attempting to explain epizootics on the basis of movement of host species that may transport plague. |
Epidemiology of human plague in the United States, 1900-2012
Kugeler KJ , Staples JE , Hinckley AF , Gage KL , Mead PS . Emerg Infect Dis 2015 21 (1) 16-22 We summarize the characteristics of 1,006 cases of human plague occurring in the United States over 113 years, beginning with the first documented case in 1900. Three distinct eras can be identified on the basis of the frequency, nature, and geographic distribution of cases. During 1900-1925, outbreaks were common but were restricted to populous port cities. During 1926-1964, the geographic range of disease expanded rapidly, while the total number of reported cases fell. During 1965-2012, sporadic cases occurred annually, primarily in the rural Southwest. Clinical and demographic features of human illness have shifted over time as the disease has moved from crowded cities to the rural West. These shifts reflect changes in the populations at risk, the advent of antibiotics, and improved detection of more clinically indistinct forms of infection. Overall, the emergence of human plague in the United States parallels observed patterns of introduction of exotic plants and animals. |
LPS modification promotes maintenance of Yersinia pestis in fleas.
Aoyagi K , Brooks BD , Bearden SW , Montenieri JA , Gage KL , Fisher MA . Microbiology (Reading) 2014 161 628-38 ![]() Yersinia pestis, the causative agent of plague, can be transmitted by fleas in two different manners: by early phase transmission (EPT), which occurs shortly after flea infection, or by blocked fleas following long-term infection. Efficient flea-borne transmission is predicated upon the ability of Y. pestis to be maintained within the flea. Signature-tagged mutagenesis (STM) was used to identify genes required for Y. pestis maintenance in a genuine plague vector, Xenopsylla cheopis. The STM screen identified seven mutants that displayed markedly reduced fitness in fleas after four days, the time during which EPT occurs. Two of the mutants contained insertions in genes encoding glucose-1-phosphate uridylyltransferase (galU) and UDP-4-amino-4-deoxy-L-arabinose-oxoglutarate aminotransferase (arnB), which are involved in the modification of lipid A with aminoarabinose (Ara4N) and resistance to cationic antimicrobial peptides (CAMPs). These Y. pestis mutants were more susceptible to the CAMPs cecropin A and polymyxin B, and produced lipid A lacking Ara4N modifications. Surprisingly, an in-frame deletion of arnB retained modest levels of CAMP resistance and Ara4N modification, indicating the presence of compensatory factors. It was determined that WecE, an aminotransferase involved in biosynthesis of enterobacterial common antigen, plays a novel role in Y. pestis Ara4N modification by partially offsetting the loss of arnB. These results indicate that mechanisms of Ara4N modification of lipid A are more complex than previously thought, and these modifications, as well as several factors yet to be elucidated, play an important role in early survival and transmission of Y. pestis in the flea vector. |
Evaluation of the effect of host immune status on short-term Yersinia pestis infection in fleas with implications for the enzootic host model for maintenance of Y. pestis during interepizootic periods
Graham CB , Woods ME , Vetter SM , Petersen JM , Montenieri JA , Holmes JL , Maes SE , Bearden SW , Gage KL , Eisen RJ . J Med Entomol 2014 51 (5) 1079-1086 Plague, a primarily flea-borne disease caused by Yersinia pestis, is characterized by rapidly spreading epizootics separated by periods of quiescence. Little is known about how and where Y. pestis persists between epizootics. It is commonly proposed, however, that Y. pestis is maintained during interepizootic periods in enzootic cycles involving flea vectors and relatively resistant host populations. According to this model, while susceptible individuals serve as infectious sources for feeding fleas and subsequently die of infection, resistant hosts survive infection, develop antibodies to the plague bacterium, and continue to provide bloodmeals to infected fleas. For Y. pestis to persist under this scenario, fleas must remain infected after feeding on hosts carrying antibodies to Y. pestis. Studies of other vector-borne pathogens suggest that host immunity may negatively impact pathogen survival in the vector. Here, we report infection rates and bacterial loads for fleas (both Xenopsylla cheopis (Rothschild) and Oropsylla montana (Baker)) that consumed an infectious bloodmeal and subsequently fed on an immunized or age-matched naive mouse. We demonstrate that neither the proportion of infected fleas nor the bacterial loads in infected fleas were significantly lower within 3 d of feeding on immunized versus naive mice. Our findings thus provide support for one assumption underlying the enzootic host model of interepizootic maintenance of Y. pestis. |
Yersinia murine toxin is not required for early-phase transmission of Yersinia pestis by Oropsylla montana (siphonaptera: ceratophyllidae) or Xenopsylla cheopis (siphonaptera: pulicidae)
Johnson TL , Hinnebusch BJ , Boegler KA , Graham CB , MacMillian K , Montenieri JA , Bearden SW , Gage KL , Eisen RJ . Microbiology (Reading) 2014 160 2517-2525 ![]() Plague, caused by Yersinia pestis, is characterized by quiescent periods punctuated by rapidly spreading epizootics. The classical "blocked flea" paradigm, by which a blockage forms in the flea's proventriculus on average 1-2 weeks post infection, forces starving fleas to take multiple blood meals, thus increasing opportunities for transmission. Recently the importance of early-phase transmission (EPT), which occurs prior to blockage formation, has been emphasized during epizootics. While the physiological and molecular mechanisms of blocked flea transmission are well characterized, the pathogen-vector interactions have not been elucidated for EPT. Within the blocked flea model, Yersinia murine toxin (Ymt) has been shown to be important for facilitating colonization of the midgut within the flea. One proposed mechanism of EPT is the regurgitation of infectious material from the flea midgut during feeding. Such a mechanism would require bacteria to colonize and survive for at least brief periods in the midgut, a process that is mediated by Ymt. Two key bridging vectors of Y. pestis to humans, Oropsylla montana and Xenopsylla cheopis, were used in our study to test this hypothesis. Fleas were infected with a mutant strain of Y. pestis containing a nonfunctional ymt that was previously shown to be incapable of colonizing the midgut, and were then allowed to feed on SKH-1 mice 3 days post infection. Our results show that Ymt is not required for EPT by either flea species. |
Identification of risk factors for plague in the West Nile Region of Uganda
Eisen RJ , Macmillan K , Atiku LA , Mpanga JT , Zielinski-Gutierrez E , Graham CB , Beogler KA , Enscore RE , Gage KL . Am J Trop Med Hyg 2014 90 (6) 1047-58 Plague is an often fatal, primarily flea-borne rodent-associated zoonosis caused by Yersinia pestis. We sought to identify risk factors for plague by comparing villages with and without a history of human plague cases within a model-defined plague focus in the West Nile Region of Uganda. Although rat (Rattus rattus) abundance was similar inside huts within case and control villages, contact rates between rats and humans (as measured by reported rat bites) and host-seeking flea loads were higher in case villages. In addition, compared with persons in control villages, persons in case villages more often reported sleeping on reed or straw mats, storing food in huts where persons sleep, owning dogs and allowing them into huts where persons sleep, storing garbage inside or near huts, and cooking in huts where persons sleep. Compared with persons in case villages, persons in control villages more commonly reported replacing thatch roofing, and growing coffee, tomatoes, onions, and melons in agricultural plots adjacent to their homesteads. Rodent and flea control practices, knowledge of plague, distance to clinics, and most care-seeking practices were similar between persons in case villages and persons in control villages. Our findings reinforce existing plague prevention recommendations and point to potentially advantageous local interventions. |
Bartonella species in invasive rats and indigenous rodents from Uganda
Billeter SA , Borchert JN , Atiku LA , Mpanga JT , Gage KL , Kosoy MY . Vector Borne Zoonotic Dis 2014 14 (3) 182-8 The presence of bartonellae in invasive rats (Rattus rattus) and indigenous rodents (Arvicanthis niloticus and Cricetomys gambianus) from two districts in Uganda, Arua and Zombo, was examined by PCR detection and culture. Blood from a total of 228 R. rattus, 31 A. niloticus, and 5 C. gambianus was screened using genus-specific primers targeting the 16S-23S intergenic spacer region. Furthermore, rodent blood was plated on brain heart infusion blood agar, and isolates were verified as Bartonella species using citrate synthase gene- (gltA) specific primers. One hundred and four fleas recovered from R. rattus were also tested for the presence of Bartonella species using the same gltA primer set. An overall prevalence of 1.3% (three of 228) was obtained in R. rattus, whereas 61.3% of 31 A. niloticus and 60% of five C. gambianus were positive for the presence of Bartonella species. Genotypes related to Bartonella elizabethae, a known zoonotic pathogen, were detected in three R. rattus and one C. gambianus. Bartonella strains, similar to bacteria detected in indigenous rodents from other African countries, were isolated from the blood of A. niloticus. Bartonellae, similar to bacteria initially cultured from Ornithodorus sonrai (soft tick) from Senegal, were found in two C. gambianus. Interestingly, bartonellae detected in fleas from invasive rats were similar to bacteria identified in indigenous rodents and not their rat hosts, with an overall prevalence of 6.7%. These results suggest that if fleas are competent vectors of these bartonellae, humans residing in these two districts of Uganda are potentially at greater risk for exposure to Bartonella species from native rodents than from invasive rats. The low prevalence of bartonellae in R. rattus was quite surprising, in contrast, to the detection of these organisms in a large percentage of Rattus species from other geographical areas. A possible reason for this disparity is discussed. |
Using occupancy models to investigate the prevalence of ectoparasitic vectors on hosts: an example with fleas on prairie dogs
Eads DA , Biggins DE , Doherty PF Jr , Gage KL , Huyvaert KP , Long DH , Antolin MF . Int J Parasitol Parasites Wildl 2013 2 246-56 Ectoparasites are often difficult to detect in the field. We developed a method that can be used with occupancy models to estimate the prevalence of ectoparasites on hosts, and to investigate factors that influence rates of ectoparasite occupancy while accounting for imperfect detection. We describe the approach using a study of fleas (Siphonaptera) on black-tailed prairie dogs (Cynomys ludovicianus). During each primary occasion (monthly trapping events), we combed a prairie dog three consecutive times to detect fleas (15 s/combing). We used robust design occupancy modeling to evaluate hypotheses for factors that might correlate with the occurrence of fleas on prairie dogs, and factors that might influence the rate at which prairie dogs are colonized by fleas. Our combing method was highly effective; dislodged fleas fell into a tub of water and could not escape, and there was an estimated 99.3% probability of detecting a flea on an occupied host when using three combings. While overall detection was high, the probability of detection was always <1.00 during each primary combing occasion, highlighting the importance of considering imperfect detection. The combing method (removal of fleas) caused a decline in detection during primary occasions, and we accounted for that decline to avoid inflated estimates of occupancy. Regarding prairie dogs, flea occupancy was heightened in old/natural colonies of prairie dogs, and on hosts that were in poor condition. Occupancy was initially low in plots with high densities of prairie dogs, but, as the study progressed, the rate of flea colonization increased in plots with high densities of prairie dogs in particular. Our methodology can be used to improve studies of ectoparasites, especially when the probability of detection is low. Moreover, the method can be modified to investigate the co-occurrence of ectoparasite species, and community level factors such as species richness and interspecific interactions. |
Evidence that rodent control strategies ought to be improved to enhance food security and reduce the risk of rodent-borne illnesses within subsistence farming villages in the plague-endemic West Nile region, Uganda
Eisen RJ , Enscore RE , Atiku LA , Zielinski-Gutierrez E , Mpanga JT , Kajik E , Andama V , Mungujakisa C , Tibo E , MacMillan K , Borchert JN , Gage KL . Int J Pest Manag 2013 59 (4) 259-270 Rodents pose serious threats to human health and economics, particularly in developing countries where the animals play a dual role as pests: they are reservoirs of human pathogens, and they inflict damage levels to stored products sufficient to cause food shortages. To assess the magnitude of the damage caused by rodents to crops, their level of contact with humans, and to better understand current food storage and rodent control practices, we conducted a survey of 37 households from 17 subsistence farming villages within the West Nile region of Uganda. Our survey revealed that rodents cause both pre- and post-harvest damage to crops. Evidence of rodent access to stored foods was reported in conjunction with each of the reported storage practices. Approximately half of the respondents reported that at least one family member had been bitten by a rat within the previous three months. Approximately two-thirds of respondents practiced some form of rodent control in their homes. The abundance of rodents was similar within homes that practiced or did not practice rodent control. Together, our results show that current efforts are inadequate for effectively reducing rodent abundance in homes. |
Exposing laboratory-reared fleas to soil and wild flea feces increases transmission of Yersinia pestis
Jones RT , Vetter SM , Gage KL . Am J Trop Med Hyg 2013 89 (4) 784-7 Laboratory-reared Oropsylla montana were exposed to soil and wild-caught Oropsylla montana feces for 1 week. Fleas from these two treatments and a control group of laboratory-reared fleas were infected with Yersinia pestis, the etiological agent of plague. Fleas exposed to soil transmitted Y. pestis to mice at a significantly greater rate (50.0% of mice were infected) than control fleas (23.3% of mice were infected). Although the concentration of Y. pestis in fleas did not differ among treatments, the minimum transmission efficiency of fleas from the soil and wild flea feces treatments (6.9% and 7.6%, respectively) were more than three times higher than in control fleas (2.2%). Our results suggest that exposing laboratory-reared fleas to diverse microbes alters transmission of Y. pestis. |
Effects of low-temperature flea maintenance on the transmission of Yersinia pestis by Oropsylla montana
Williams SK , Schotthoeffer AM , Montenieri JA , Holmes JL , Vetter SM , Gage KL , Bearden SW . Vector Borne Zoonotic Dis 2013 13 (7) 468-78 Yersinia pestis, the causative agent of plague, is primarily a rodent-associated, flea-borne zoonosis maintained in sylvatic foci throughout western North America. Transmission to humans is mediated most commonly by the flea vector Oropsylla montana and occurs predominantly in the southwestern United States. With few exceptions, previous studies showed O. montana to be an inefficient vector at transmitting Y. pestis at ambient temperatures, particularly when such fleas were fed on susceptible hosts more than a few days after ingesting an infectious blood meal. We examined whether holding fleas at subambient temperatures affected the transmissibility of Y. pestis by this vector. An infectious blood meal containing a virulent Y. pestis strain (CO96-3188) was given to colony-reared O. montana fleas. Potentially infected fleas were maintained at different temperatures (6 degrees C, 10 degrees C, 15 degrees C, or 23 degrees C). Transmission efficiencies were tested by allowing up to 15 infectious fleas to feed on each of 7 naive CD-1 mice on days 1-4, 7, 10, 14, 17, and 21 postinfection (p.i.). Mice were monitored for signs of infection for 21 days after exposure to infectious fleas. Fleas held at 6 degrees C, 10 degrees C, and 15 degrees C were able to effectively transmit at every time point p.i. The percentage of transmission to naive mice by fleas maintained at low temperatures (46.0% at 6 degrees C, 71.4% at 10 degrees C, 66.7% at 15 degrees C) was higher than for fleas maintained at 23 degrees C (25.4%) and indicates that O. montana fleas efficiently transmit Y. pestis at low temperatures. Moreover, pooled percent per flea transmission efficiencies for flea cohorts maintained at temperatures of 10 degrees C and 15 degrees C (8.67% and 7.87%, respectively) showed a statistically significant difference in the pooled percent per flea transmission efficiency from fleas maintained at 23 degrees C (1.94%). This is the first comprehensive study to demonstrate efficient transmission of Y. pestis by O. montana fleas maintained at temperatures as low as 6 degrees C. Our findings further contribute to the understanding of plague ecology in temperate climates by providing support for the hypothesis that Y. pestis is able to overwinter within the flea gut and potentially cause infection during the following transmission season. The findings also might hold implications for explaining the focality of plague in tropical regions. |
Combining real-time polymerase chain reaction using SYBR Green I detection and sequencing to identify vertebrate bloodmeals in fleas.
Graham CB , Black WC , Boegler KA , Montenieri JA , Holmes JL , Gage KL , Eisen RJ . J Med Entomol 2012 49 (6) 1442-52 ![]() Programs that aim to control vector-borne zoonotic diseases require information on zoonotic hosts and on the feeding behavior of bridging vectors that are capable of transmitting pathogens from those hosts to humans. Here we describe an assay developed to identify bloodmeals in field-collected cat fleas (Ctenocephalides felis Bouche) to assess this species' potential role as a Yersinia pestis bridging vector in a plague-endemic region of Uganda. Our assay uses a single primer set and SYBR Green I-based real-time polymerase chain reaction to amplify a segment of the 12S mitochondrial ribosomal RNA gene for identification by sequencing. The assay capitalizes on the sensitivity of real-time polymerase chain reaction and the specificity of sequencing and can be used to differentiate vertebrate bloodmeals to the genus or species level without a priori knowledge of the host community. Because real-time assays that detect vertebrate DNA are highly sensitive to human DNA contamination, we analyzed detection in artificially fed and unfed fleas to establish a Ct cutoff that optimized specificity without completely sacrificing sensitivity. Using the established cutoff, our assay detected human, rat, and goat DNA in artificially fed C. felis up to 72 h postfeeding. |
Blood meal identification in off-host cat fleas (Ctenocephalides felis) from a plague-endemic region of Uganda
Graham CB , Borchert JN , Black WC4th , Atiku LA , Mpanga JT , Boegler KA , Moore SM , Gage KL , Eisen RJ . Am J Trop Med Hyg 2012 88 (2) 381-9 The cat flea, Ctenocephalides felis, is an inefficient vector of the plague bacterium (Yersinia pestis) and is the predominant off-host flea species in human habitations in the West Nile region, an established plague focus in northwest Uganda. To determine if C. felis might serve as a Y. pestis bridging vector in the West Nile region, we collected on- and off-host fleas from human habitations and used a real-time polymerase chain reaction-based assay to estimate the proportion of off-host C. felis that had fed on humans and the proportion that had fed on potentially infectious rodents or shrews. Our findings indicate that cat fleas in human habitations in the West Nile region feed primarily on domesticated species. We conclude that C. felis is unlikely to serve as a Y. pestis bridging vector in this region. |
Efficacy of indoor residual spraying using lambda-cyhalothrin for controlling nontarget vector fleas (Siphonaptera) on commensal rats in a plague endemic region of northwestern Uganda
Borchert JN , Eisen RJ , Atiku LA , Delorey MJ , Mpanga JT , Babi N , Enscore RE , Gage KL . J Med Entomol 2012 49 (5) 1027-34 Over the past two decades, the majority of human plague cases have been reported from areas in Africa, including Uganda. In an effort to develop affordable plague control methods within an integrated vector control framework, we evaluated the efficacy of indoor residual spraying (IRS) techniques commonly used for mosquito control for controlling fleas on hut-dwelling commensal rodents in a plague-endemic region of Uganda. We evaluated both the standard IRS spraying (walls and ceiling) and a modified IRS technique that included insecticide application on not only on walls and ceiling but also a portion of the floor of each treated hut. Our study demonstrated that both the standard and modified IRS applications were effective at significantly reducing the flea burden and flea infestation of commensal rodents for up to 100 d after application, suggesting that IRS could potentially provide simultaneous control of mosquito and fleaborne diseases. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure