Last data update: May 16, 2025. (Total: 49299 publications since 2009)
Records 1-30 (of 64 Records) |
Query Trace: Gade L[original query] |
---|
Metagenomic Identification of Fusarium solani Strain as Cause of US Fungal Meningitis Outbreak Associated with Surgical Procedures in Mexico, 2023
Chiu CY , Servellita V , de Lorenzi-Tognon M , Benoit P , Sumimoto N , Foresythe A , Cerqueira FM , Williams-Bouyer N , Ren P , Herrera LNS , Gaston DC , Sayyad L , Whitmer SL , Klena J , Vikram HR , Gold JAW , Gade L , Parnell L , Misas E , Chiller TM , Griffin IS , Basavaraju SV , Smith DJ , Litvintseva AP , Chow NA . Emerg Infect Dis 2025 31 (5) ![]() ![]() We used metagenomic next-generation sequencing (mNGS) to investigate an outbreak of Fusarium solani meningitis in US patients who had surgical procedures under spinal anesthesia in Matamoros, Mexico, during 2023. Using a novel method called metaMELT (metagenomic multiple extended locus typing), we performed phylogenetic analysis of concatenated mNGS reads from 4 patients (P1-P4) in parallel with reads from 28 fungal reference genomes. Fungal strains from the 4 patients were most closely related to each other and to 2 cultured isolates from P1 and an additional case (P5), suggesting that all cases arose from a point source exposure. Our findings support epidemiologic data implicating a contaminated drug or device used for epidural anesthesia as the likely cause of the outbreak. In addition, our findings show that the benefits of mNGS extend beyond diagnosis of infections to public health outbreak investigation. |
Epidemiological and clinical features of a large blastomycosis outbreak at a paper mill in Michigan
Hennessee I , Palmer S , Reik R , Miles-Jay A , Nawaz MY , Blankenship HM , Kramer R , Hughes A , Snyder M , Yin RL , Litvintseva AP , Parnell LA , Gade L , Chiller T , de Perio MA , Stobierski MG , McFadden J , Toda M . Clin Infect Dis 2024 ![]() ![]() BACKGROUND: Blastomycosis is an environmentally acquired fungal infection that can result in severe pulmonary illness and high hospitalization rates. In 2023, a blastomycosis outbreak was detected among workers at a paper mill in Delta County, Michigan. METHODS: We included patients with clinical and laboratory evidence of blastomycosis who had spent ≥40 hours in Delta County since September 1, 2022 and had illness onset December 1, 2022-July 1, 2023. We assessed epidemiological and clinical features of patients and evaluated factors associated with hospitalization. We performed whole-genome sequencing to characterize genetic relatedness of clinical isolates from eight patients. RESULTS: In total, 131 patients were identified; all had worked at or visited the mill. Sixteen patients (12%) were hospitalized; one died. Compared with non-hospitalized patients, more hospitalized patients had diabetes (p=0.03) and urine antigen titers above the lower limit of quantification (p<0.001). Hospitalized patients were also more likely to have had ≥1 healthcare visits before receiving a blastomycosis diagnostic test (p=0.02) and to have been treated with antibiotics prior to antifungal prescription (p=0.001). All sequenced isolates were identified as Blastomyces gilchristii and clustered into a distinct outbreak cluster. CONCLUSIONS: This was the largest documented blastomycosis outbreak in the United States. Epidemiologic evidence indicated exposures occurred at or near the mill, and genomic findings suggested a common exposure source. Patients with diabetes may have increased risk for hospitalization, and elevated urine antigen titers could indicate greater disease severity. Early suspicion of blastomycosis may prompt earlier diagnosis and treatment, potentially reducing unnecessary antibiotic prescriptions and improving patient outcomes. |
Evaluation of a multiplex real-time PCR targeting the β-tubulin gene for the detection and differentiation of Sporothrix schenckii and Sporothrix brasiliensis
López LF , Gade L , Litvintseva AP , Sexton DJ . Microbiol Spectr 2024 e0116224 ![]() ![]() Sporothrix sp. is a thermally dimorphic genus of fungi known to cause subacute or chronic subcutaneous lesions in humans and animals and is the cause of increasing public health concern due to spread of feline-associated cases. Here, we adapted and evaluated a recently described real-time PCR assay targeting the β-tubulin gene to rapidly detect and differentiate two related species, S. schenckii and S. brasiliensis. The assay was tested with 55 S. brasiliensis, 19 S. schenckii, and 85 isolates from other clinically relevant fungi, and showed 100% concordance with reference identification methods. The assay showed high analytical sensitivity with a limit of detection of 1 pg of DNA per microliter of sample for both targets. The assay was further evaluated with 11 fresh and 17 formalin-fixed, paraffin-embedded (FFPE) tissues. This multiplex real-time PCR assay successfully detected the DNA from both S. brasiliensis and S. schenckii isolates as well as S. schenckii from fresh and FFPE tissues. Our results demonstrate this assay performs well and could be a helpful molecular tool to support rapid species identification in cultures and primary specimens.IMPORTANCEHaving available molecular tools to identify and differentiate closely related species will allow clinical, veterinarians, and public health labs to provide diagnostic results with accuracy and short turnaround time for the routine and outbreak response activities. |
Investigation and successful control of a Candida auris outbreak at a tertiary health care facility in Kenya
Ombajo LA , Kanyua A , Ngugi R , Malcolm C , Berkow E , Gade L , Bancroft E , Osoro J , Njoroge R , Juma P , Ngirita M , Bore RC , Litvintseva A , Lyman M , Toda M . IJID Regions 2024 13 ![]() ![]() Objectives: This study aimed to conduct an epidemiological and genomic investigation of a hospital outbreak of Candida auris, and implement measures for its control. Methods: We collected demographic and clinical data from medical records of patients with C. auris from January 2017 to June 2019 after identifying increased cases in April 2019. Point-prevalence surveys for C. auris colonisation were conducted in the critical care units (CCU). Antifungal susceptibility testing and genomic sequencing of isolates were performed. A bundle of infection prevention and control measures was instituted. Results: Thirty-two patients with C. auris were identified. All patients had a history of CCU admission. A total of 283 screening swabs were obtained and 57 isolates of C. auris identified. Antifungal susceptibility testing was performed on 48 isolates. All but two isolates were resistant to fluconazole; one isolate was also resistant to amphotericin B. Forty-one of 46 isolate genomes were clonally related and formed a distinct genetic cluster in Clade III. C. auris colonisation reduced from 42% in June 2019 to 1% in August 2019, and no new hospital-acquired colonisation was identified in the subsequent 9 months. Conclusions: We identified a new genetic subcluster of Clade III C. auris. We also show that strict implementation of infection prevention measures can lead to substantial reductions in C. auris transmission. © 2024 The Authors |
Outcomes in solid organ transplant recipients receiving organs from a donor with Fusarium solani species complex meningitis
Griffin IS , Smith DJ , Annambhotla P , Gold JAW , Ostrosky-Zeichner L , Kauffman CA , Gade L , Litvintseva A , Friedman DZ , Nishio Lucar AG , Parpia TC , Lieberman J , Bujan J , Corkrean J , Divatia MK , Grimes K , Lin J , Mobley C , Schwartz MR , Hannawi B , Malilay A , O'Boye A , Lysne J , Subramani MV , Heckmann H , Servellita V , Chiu C , Basavaraju SV . Transpl Infect Dis 2024 e14331 ![]() ![]() BACKGROUND: Five organs (heart, right lung, liver, right, and left kidneys) from a deceased patient were transplanted into five recipients in four US states; the deceased patient was identified as part of a healthcare-associated fungal meningitis outbreak among patients who underwent epidural anesthesia in Matamoros, Mexico. METHODS: After transplant surgeries occurred, Fusarium solani species complex, a fungal pathogen with a high case-mortality rate, was identified in cerebrospinal fluid from the organ donor by metagenomic next-generation sequencing (mNGS) and fungal-specific polymerase chain reaction and in plasma by mNGS. RESULTS: Four of five transplant recipients received recommended voriconazole prophylaxis; four were monitored weekly by serum (1-3)-β-d-glucan testing. All five were monitored for signs of infection for at least 3 months following transplantation. The liver recipient had graft failure, which was attributed to an etiology unrelated to fungal infection. No fungal DNA was identified in sections of the explanted liver, suggesting that F. solani species complex did not contribute to graft failure. The remaining recipients experienced no signs or symptoms suggestive of fusariosis. CONCLUSION: Antifungal prophylaxis may be useful in preventing donor-derived infections in recipients of organs from donors that are found to have Fusarium meningitis. |
Molecular and epidemiological investigation of fluconazole-resistant Candida parapsilosis-Georgia, United States, 2021
Misas E , Witt LS , Farley MM , Thomas S , Jenkins EN , Gade L , Peterson JG , Mesa Restrepo A , Fridkin S , Lockhart SR , Chow NA , Lyman M . Open Forum Infect Dis 2024 11 (6) ofae264 ![]() ![]() BACKGROUND: Reports of fluconazole-resistant Candida parapsilosis bloodstream infections are increasing. We describe a cluster of fluconazole-resistant C parapsilosis bloodstream infections identified in 2021 on routine surveillance by the Georgia Emerging Infections Program in conjunction with the Centers for Disease Control and Prevention. METHODS: Whole-genome sequencing was used to analyze C parapsilosis bloodstream infections isolates. Epidemiological data were obtained from medical records. A social network analysis was conducted using Georgia Hospital Discharge Data. RESULTS: Twenty fluconazole-resistant isolates were identified in 2021, representing the largest proportion (34%) of fluconazole-resistant C parapsilosis bloodstream infections identified in Georgia since surveillance began in 2008. All resistant isolates were closely genetically related and contained the Y132F mutation in the ERG11 gene. Patients with fluconazole-resistant isolates were more likely to have resided at long-term acute care hospitals compared with patients with susceptible isolates (P = .01). There was a trend toward increased mechanical ventilation and prior azole use in patients with fluconazole-resistant isolates. Social network analysis revealed that patients with fluconazole-resistant isolates interfaced with a distinct set of healthcare facilities centered around 2 long-term acute care hospitals compared with patients with susceptible isolates. CONCLUSIONS: Whole-genome sequencing results showing that fluconazole-resistant C parapsilosis isolates from Georgia surveillance demonstrated low genetic diversity compared with susceptible isolates and their association with a facility network centered around 2 long-term acute care hospitals suggests clonal spread of fluconazole-resistant C parapsilosis. Further studies are needed to better understand the sudden emergence and transmission of fluconazole-resistant C parapsilosis. |
Sporotrichosis cluster in domestic cats and veterinary technician, Kansas, USA, 2022
Hennessee I , Barber E , Petro E , Lindemann S , Buss B , Santos A , Gade L , Lockhart SR , Sexton DJ , Chiller T , Toda M . Emerg Infect Dis 2024 30 (5) 1053-1055 ![]() ![]() We describe a feline sporotrichosis cluster and zoonotic transmission between one of the affected cats and a technician at a veterinary clinic in Kansas, USA. Increased awareness of sporotrichosis and the potential for zoonotic transmission could help veterinary professionals manage feline cases and take precautions to prevent human acquisition. |
Tracing histoplasmosis genomic epidemiology and species occurrence across the USA
Tenório BG , Kollath DR , Gade L , Litvintseva AP , Chiller T , Jenness JS , Stajich JE , Matute DR , Hanzlicek AS , Barker BM , Teixeira MM . Emerg Microbes Infect 2024 13 (1) 2315960 ![]() ![]() ABSTRACTHistoplasmosis is an endemic mycosis in North America frequently reported along the Ohio and Mississippi River Valleys, although autochthonous cases occur in non-endemic areas. In the United States, the disease is provoked by two genetically distinct clades of Histoplasma capsulatum sensu lato, Histoplasma mississippiense (Nam1) and H. ohiense (Nam2). To bridge the molecular epidemiological gap, we genotyped 93 Histoplasma isolates (62 novel genomes) including clinical, environmental, and veterinarian samples from a broader geographical range by whole-genome sequencing, followed by evolutionary and species niche modelling analyses. We show that histoplasmosis is caused by two major lineages, H. ohiense and H. mississippiense; with sporadic cases caused by H. suramericanum in California and Texas. While H. ohiense is prevalent in eastern states, H. mississipiense was found to be prevalent in the central and western portions of the United States, but also geographically overlapping in some areas suggesting that these species might co-occur. Species Niche Modelling revealed that H. ohiense thrives in places with warmer and drier conditions, while H. mississippiense is endemic to areas with cooler temperatures and more precipitation. In addition, we predicted multiple areas of secondary contact zones where the two species co-occur, potentially facilitating gene exchange and hybridization. This study provides the most comprehensive understanding of the genomic epidemiology of histoplasmosis in the USA and lays a blueprint for the study of invasive fungal diseases. |
Detection of fungal DNA in human body fluids and tissues during a multistate outbreak of fungal meningitis and other infections.
Gade L , Scheel CM , Pham CD , Lindsley MD , Iqbal N , Cleveland AA , Whitney AM , Lockhart SR , Brandt ME , Litvintseva AP . Eukaryot Cell 2013 12 (5) 677-83 ![]() Exserohilum rostratum was the major cause of an outbreak of fungal infections linked to injections of contaminated methylprednisolone acetate. Because almost 14,000 persons were exposed to product that was possibly contaminated with multiple fungal pathogens, there was unprecedented need for a rapid throughput diagnostic test that could detect both E. rostratum and other unusual agents of fungal infection. Here we report development of a novel PCR test that allowed for rapid and specific detection of fungal DNA in cerebrospinal fluid (CSF), other body fluids and tissues of infected individuals. The test relied on direct purification of free-circulating fungal DNA from fluids and subsequent PCR amplification and sequencing. Using this method, we detected Exserohilum rostratum DNA in 123 samples from 114 case-patients (28% of 413 case-patients for whom 627 samples were available), and Cladosporium DNA in one sample from one case-patient. PCR with novel Exserohilum-specific ITS-2 region primers detected 25 case-patients with samples that were negative using broad-range ITS primers. Compared to fungal culture, this molecular test was more sensitive: of 139 case-patients with an identical specimen tested by culture and PCR, E. rostratum was recovered in culture from 19 (14%), but detected by PCR in 41 (29%), showing a diagnostic sensitivity of 29% for PCR compared to 14% for culture in this patient group. The ability to rapidly confirm the etiologic role of E. rostratum in these infections provided an important contribution in the public health response to this outbreak. |
Understanding the exposure risk of aerosolized Coccidioides in a Valley fever endemic metropolis
Porter WT , Gade L , Montfort P , Mihaljevic JR , Bowers JR , Willman A , Klimowski BA , LaFleur BJ , Sunenshine RH , Collins J , Adame G , Brady S , Komatsu KK , Williams S , Toda M , Chiller T , Litvintseva AP , Engelthaler DM . Sci Rep 2024 14 (1) 1311 Coccidioides is the fungal causative agent of Valley fever, a primarily pulmonary disease caused by inhalation of fungal arthroconidia, or spores. Although Coccidioides has been an established pathogen for 120 years and is responsible for hundreds of thousands of infections per year, little is known about when and where infectious Coccidioides arthroconidia are present within the ambient air in endemic regions. Long-term air sampling programs provide a means to investigate these characteristics across space and time. Here we present data from > 18 months of collections from 11 air sampling sites across the Phoenix, Arizona, metropolitan area. Overall, prevalence was highly variable across space and time with no obvious spatial or temporal correlations. Several high prevalence periods were identified at select sites, with no obvious spatial or temporal associations. Comparing these data with weather and environmental factor data, wind gusts and temperature were positively associated with Coccidioides detection, while soil moisture was negatively associated with Coccidioides detection. These results provide critical insights into the frequency and distribution of airborne arthroconidia and the associated risk of inhalation and potential disease that is present across space and time in a highly endemic locale. |
Candida auris detected in the oral cavity of a dog in Kansas
White TC , Esquivel BD , Rouse Salcido EM , Schweiker AM , Dos Santos AR , Gade L , Petro E , KuKanich B , KuKanich KS . mBio 2024 e0308023 ![]() ![]() Candida auris is an emerging fungal infection of humans and is particularly problematic because it is multi-drug resistant and difficult to treat. It is also known to be spread from person to person by contact and can remain on surfaces for long periods of time. In this report, a dog in a shelter in Kansas is found to be colonized with Candida auris. This is the first study to document the presence of Candida auris on a pet, the first to document C. auris presence on a non-human mammal in the United States, and the first to report an isolate of C. auris within the state of Kansas. The presence of C. auris in a pet dog raises the possibility of zoonotic transmission from pets to human or vice versa. |
A phylogeographic description of histoplasma capsulatum in the United States
Bagal UR , Gade L , Benedict K , Howell V , Christophe N , Gibbons-Burgener S , Hallyburton S , Ireland M , McCracken S , Metobo AK , Signs K , Warren KA , Litvintseva AP , Chow NA . J Fungi (Basel) 2023 9 (9) ![]() ![]() Histoplasmosis is one of the most under-diagnosed and under-reported endemic mycoses in the United States. Histoplasma capsulatum is the causative agent of this disease. To date, molecular epidemiologic studies detailing the phylogeographic structure of H. capsulatum in the United States have been limited. We conducted genomic sequencing using isolates from histoplasmosis cases reported in the United States. We identified North American Clade 2 (NAm2) as the most prevalent clade in the country. Despite high intra-clade diversity, isolates from Minnesota and Michigan cases were predominately clustered by state. Future work incorporating environmental sampling and veterinary surveillance may further elucidate the molecular epidemiology of H. capsulatum in the United States and how genomic sequencing can be applied to the surveillance and outbreak investigation of histoplasmosis. |
Application of real-time PCR assays for the diagnosis of histoplasmosis in human FFPE tissues using three molecular targets
López LF , Tobón Á M , Cáceres DH , Chiller T , Litvintseva AP , Gade L , González Á , Gómez BL . J Fungi (Basel) 2023 9 (7) ![]() Histoplasmosis is a fungal infection caused by the thermally dimorphic fungus Histoplasma capsulatum. This infection causes significant morbidity and mortality in people living with HIV/AIDS, especially in countries with limited resources. Currently used diagnostic tests rely on culture and serology but with some limitations. No molecular assays are commercially available and the results from different reports have been variable. We aimed to evaluate quantitative real-time PCR (qPCR) targeting three protein-coding genes of Histoplasma capsulatum (100-kDa, H and M antigens) for detection of this fungus in formalin-fixed paraffin-embedded (FFPE) samples from patients with proven histoplasmosis. The sensitivity of 100-kDa, H and M qPCR assays were 93.9%, 91% and 57%, respectively. The specificity of 100-kDa qPCR was 93% when compared against samples from patients with other mycoses and other infections, and 100% when samples from patients with non-infectious diseases were used as controls. Our findings demonstrate that real-time PCR assays targeting 100-kDa and H antigen showed the most reliable results and can be successfully used for diagnosing this mycosis when testing FFPE samples. |
Chromosomal rearrangements and loss of subtelomeric adhesins linked to clade-specific phenotypes in Candida auris (preprint)
Muñoz JF , Welsh RM , Shea T , Batra D , Gade L , Litvintseva AP , Cuomo CA . bioRxiv 2019 754143 Candida auris is an emerging fungal pathogen of rising concern due to its increasing incidence, its ability to cause healthcare-associated outbreaks and antifungal resistance. Genomic analysis revealed that early cases of C. auris that were detected contemporaneously were geographically stratified into four major clades. Clade II, also termed East Asian clade, consists of the initial isolates described from cases of ear infection, is less frequently resistant to antifungal drugs and to date, the isolates from this group have not been associated with outbreaks. Here, we generate nearly complete genomes (“telomere-to-telomere”) of an isolate of this clade and of the more widespread Clade IV. By comparing these to genome assemblies of the other two clades, we find that the Clade II genome appears highly rearranged, with 2 inversions and 9 translocations resulting in a substantially different karyotype. In addition, large subtelomeric regions have been lost from 10 of 14 chromosome ends in the Clade II genomes. We find that shorter telomeres and genome instability might be a consequence of a naturally occurring loss-of-function mutation in DCC1 exclusively found in Clade II isolates, resulting in a hypermutator phenotype. We also determine that deleted subtelomeric regions might be linked to clade-specific adaptation as these regions are enriched in Hyr/Iff-like cell surface proteins, novel candidate cell surface proteins, and an ALS-like adhesin. The presence of these cell surface proteins in the clades responsible for global outbreaks causing invasive infections suggests an explanation for the different phenotypes observed between clades.IMPORTANCE Candida auris was unknown prior to 2009 and since then it has quickly spread around the world, causing outbreaks in healthcare facilities and representing a high fraction of candidemia cases in some regions. The emergence of C. auris is a major concern, since it is often multidrug-resistant, easily spread between patients, and causes invasive infections. While isolates from three global clades cause invasive infections, isolates from Clade II primarily cause ear infections and have not been implicated in outbreaks, though cases of Clade II infections have been reported on different continents. Here, we describe genetic differences between Clade II and Clades I, III and IV, including a loss-of-function mutation in a gene associated with telomere length maintenance and genome stability, and the loss of cell wall proteins involved in adhesion and biofilm formation, that may suggest an explanation for the lower virulence and potential for transmission of Clade II isolates. |
Genomic basis of multidrug-resistance, mating, and virulence in Candida auris and related emerging species (preprint)
Munoz JF , Gade L , Chow NA , Loparev VN , Juieng P , Berkow EL , Farrer RA , Litvintseva AP , Cuomo CA . bioRxiv 2018 299917 Candida auris is an emergent fungal pathogen of rising public health concern due to increasing reports of outbreaks in healthcare settings and resistance to multiple classes of antifungal drugs. While distantly related to the more common pathogens C. albicans and C. glabrata, C. auris is closely related to three rarely observed and often multidrug-resistant species, C. haemulonii, C. duobushaemulonii and C. pseudohaemulonii. Here, we generated and analyzed near complete genome assemblies and RNA-Seq-guided gene predictions for isolates from each of the four major C. auris clades and for C. haemulonii, C. duobushaemulonii and C. pseudohaemulonii. Our analyses mapped seven chromosomes and revealed chromosomal rearrangements between C. auris clades and related species. We found conservation of genes involved in mating and meiosis and identified both MTLa and MTLα C. auris isolates, suggesting the potential for mating between clades. Gene conservation analysis highlighted that many genes linked to drug resistance and virulence in other pathogenic Candida species are conserved in C. auris and related species including expanded families of transporters and lipases, as well as mutations and copy number variants in ERG11 that confer drug resistance. In addition, we found genetic features of the emerging species that likely underlie differences in virulence and drug response between these and other Candida species, including genes involved in cell wall structure. To begin to characterize the species-specific genes important for antifungal response, we profiled the gene expression of C. auris in response to voriconazole and amphotericin B and found induction of several transporters and metabolic regulators that may play a role in drug resistance. This study provides a comprehensive view of the genomic basis of drug resistance, potential for mating, and virulence in this emerging fungal clade. |
Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses (preprint)
Chow NA , Munoz JF , Gade L , Berkow EL , Li X , Welsh RM , Forsberg K , Lockhart SR , Adam R , Alanio A , Alastruey-Izquierdo A , Althawadi S , Arauz AB , Ben-Ami R , Bharat A , Calvo B , Desnos-Ollivier M , Escandon P , Gardam D , Gunturu R , Heath CH , Kurzai O , Martin R , Litvintseva AP , Cuomo CA . bioRxiv 2020 2020.01.06.896548 ![]() Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (Clades I, II, III, and IV) corresponding to these geographic regions. Since this description, C. auris has been reported in over 30 additional countries. To trace this global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; Clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with opposite mating types were detected contemporaneously in a single healthcare facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 339 years; outbreak-causing clusters from Clades I, III, and IV originated 34-35 years ago. We observed high rates of antifungal resistance in Clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin resistance. Copy number variants in ERG11 predominantly appeared in Clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in C. auris.Importance In less than a decade, C. auris has emerged in healthcare settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology. |
Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in C. auris (preprint)
Rybak JM , Munoz JF , Barker KS , Parker JE , Esquivel BD , Berkow EL , Lockhart SR , Gade L , Palmer GE , White TC , Kelly SL , Cuomo CA , Rogers PD . bioRxiv 2020 2020.02.18.955534 Candida auris has emerged as a multidrug-resistant pathogen of great clinical concern. Approximately 90% of clinical C. auris isolates are resistant to fluconazole, the most commonly prescribed antifungal agent, yet it remains unknown what mechanisms underpin this fluconazole resistance. To identify novel mechanisms contributing to fluconazole resistance in C. auris, the fluconazole-susceptible C. auris clinical isolate AR0387 was passaged in media supplemented with fluconazole to generate derivative strains which had acquired increased fluconazole resistance in vitro. Comparative analysis of comprehensive sterol profiles, [3H]-fluconazole uptake, sequencing of C. auris genes homologous to genes known to contribute to fluconazole resistance in other species of Candida, and the relative expression of C. auris ERG11, CDR1, and MDR1 were performed. All fluconazole-evolved derivative strains were found to have acquired mutations in the zinc-cluster transcription factor-encoding gene, TAC1B, and a corresponding increase in CDR1 expression relative to the parental clinical isolate, AR0387. Mutations in TAC1B were also identified in a set of 304 globally distributed C. auris clinical isolates representing each of the four major clades. Introduction of the most common mutation found among fluconazole-resistant clinical isolates of C. auris into the fluconazole-susceptible isolate AR0387, was confirmed to increase fluconazole resistance by 8-fold, and the correction of the same mutation in a fluconazole-resistant isolate, AR0390, decreased fluconazole MIC by 16-fold. Taken together, these data demonstrate that C. auris can rapidly acquire resistance to fluconazole in-vitro, and that mutations in TAC1B significantly contribute to clinical fluconazole resistance.IMPORTANCE Candida auris is an emerging multidrug-resistant pathogen of global concern, known to be responsible for outbreaks on six continents and commonly resistant to antifungals. While the vast majority of clinical C. auris isolates are highly resistant to fluconazole, an essential part of the available antifungal arsenal, very little is known about the mechanisms contributing to resistance. In this work, we show that mutations in the transcription factor TAC1B significantly contribute to clinical fluconazole resistance. These studies demonstrate that mutations in TAC1B can arise rapidly in vitro upon exposure to fluconazole, and that a multitude of resistance-associated TAC1B mutations are present among the majority of fluconazole-resistant C. auris isolates from a global collection and appear specific to a subset of lineages or clades. Thus, identification of this novel genetic determinant of resistance significantly adds to the understanding of clinical antifungal resistance in C. auris. |
Comparing genomic variant identification protocols for Candida auris
Li X , Muñoz JF , Gade L , Argimon S , Bougnoux ME , Bowers JR , Chow NA , Cuesta I , Farrer RA , Maufrais C , Monroy-Nieto J , Pradhan D , Uehling J , Vu D , Yeats CA , Aanensen DM , d'Enfert C , Engelthaler DM , Eyre DW , Fisher MC , Hagen F , Meyer W , Singh G , Alastruey-Izquierdo A , Litvintseva AP , Cuomo CA . Microb Genom 2023 9 (4) ![]() ![]() Genomic analyses are widely applied to epidemiological, population genetic and experimental studies of pathogenic fungi. A wide range of methods are employed to carry out these analyses, typically without including controls that gauge the accuracy of variant prediction. The importance of tracking outbreaks at a global scale has raised the urgency of establishing high-accuracy pipelines that generate consistent results between research groups. To evaluate currently employed methods for whole-genome variant detection and elaborate best practices for fungal pathogens, we compared how 14 independent variant calling pipelines performed across 35 Candida auris isolates from 4 distinct clades and evaluated the performance of variant calling, single-nucleotide polymorphism (SNP) counts and phylogenetic inference results. Although these pipelines used different variant callers and filtering criteria, we found high overall agreement of SNPs from each pipeline. This concordance correlated with site quality, as SNPs discovered by a few pipelines tended to show lower mapping quality scores and depth of coverage than those recovered by all pipelines. We observed that the major differences between pipelines were due to variation in read trimming strategies, SNP calling methods and parameters, and downstream filtration criteria. We calculated specificity and sensitivity for each pipeline by aligning three isolates with chromosomal level assemblies and found that the GATK-based pipelines were well balanced between these metrics. Selection of trimming methods had a greater impact on SAMtools-based pipelines than those using GATK. Phylogenetic trees inferred by each pipeline showed high consistency at the clade level, but there was more variability between isolates from a single outbreak, with pipelines that used more stringent cutoffs having lower resolution. This project generated two truth datasets useful for routine benchmarking of C. auris variant calling, a consensus VCF of genotypes discovered by 10 or more pipelines across these 35 diverse isolates and variants for 2 samples identified from whole-genome alignments. This study provides a foundation for evaluating SNP calling pipelines and developing best practices for future fungal genomic studies. |
Whole-Genome Sequencing of Candida haemulonii species complex from Brazil and the United States: genetic diversity and antifungal susceptibility.
de Barros Rodrigues DK , Lockhart SR , Berkow EL , Gade L , Bonfietti LX , Gimenes VMF , Ruiz LS , Macioni MB , de Souza Carvalho Melhem M . Med Mycol 2023 61 (4) ![]() ![]() Candida haemulonii complex species can be multidrug-resistant (MDR) and cause infections such as candidemia. This study determined the genetic relationship between isolates from Brazil and the United States through whole-genome sequencing and performed antifungal susceptibility testing to investigate drug resistance. Contrary to what is widely described, most isolates were susceptible to azoles. However, an atypical susceptibility profile was found in 50% of C. pseudohaemulonii strains including resistance to the three echinocandins. Isolates from both countries formed distinct clusters with wide genetic diversity. Isolates from three hospitals in Brazil were clonal and involved in candidemia cases, pointing to the importance of improving hospital infection control measures and molecular identification. | Candida haemulonii complex species is worldwide distributed and this study aimed to evaluate the resistance to antifungal drugs in cases from Brazil and the United States, and also compare their genetic relationship. Fifty strains were studied, most of them from Brazil were from cases of bloodstream infections while the strains from the United States came from cases of wounds and may be associated with diabetic patients. The vast majority of strains were resistant to amphotericin B, one of the most effective drugs, and susceptible to fluconazole. In addition, 50% of C. pseudohaemulonii strains were resistant to echinocandins. The strains from Brazil and the United States had no genetic relationship and formed two distinct groups. In 3 Brazilian hospitals, strains were clonal indicating an intrahospital transmission. Our findings contribute to guiding therapy in bloodstream fungal infections caused by Candida haemulonii species and alert for nosocomial transmission of this yeast complex species. | eng |
Genomic description of human clinical Aspergillus fumigatus isolates, California, 2020.
Misas E , Deng JZ , Gold JAW , Gade L , Nunnally NS , Georgacopoulos O , Bentz M , Berkow EL , Litvintseva AP , Chiller TM , Klausner JD , Chow NA . Med Mycol 2023 61 (2) ![]() ![]() Aspergillus fumigatus, an environmental mold, causes life-threatening infections. Studies on the phylogenetic structure of human clinical A. fumigatus isolates are limited. Here, we performed whole-genome sequencing of 24 A. fumigatus isolates collected from 18 patients in U.S. healthcare facilities in California. Single-nucleotide polymorphism (SNP) differences between patient isolates ranged from 187-70 829 SNPs. For five patients with multiple isolates, we calculated the within-host diversities. Three patients had a within-host diversity that ranged from 4-10 SNPs and two patients ranged from 2-16 977 SNPs. Findings revealed highly diverse A. fumigatus strains among patients and two patterns of diversity for isolates that come from the same patient, low and extremely high diversity. | Aspergillus fumigatus is an environmental mold. It can cause a severe infection called aspergillosis in patients with weakened immune systems. We analyzed A. fumigatus DNA from patients at California hospitals. We described genetic diversity between samples from the same patients and among different patients. Our findings provide insight on using genomic sequencing to investigate aspergillosis in hospitals. | eng |
Genomic Epidemiology Linking Nonendemic Coccidioidomycosis to Travel.
Monroy-Nieto J , Gade L , Benedict K , Etienne KA , Litvintseva AP , Bowers JR , Engelthaler DM , Chow NA . Emerg Infect Dis 2023 29 (1) 110-117 ![]() ![]() Coccidioidomycosis is a fungal infection endemic to hot, arid regions of the western United States, northern Mexico, and parts of Central and South America. Sporadic cases outside these regions are likely travel-associated; alternatively, an infection could be acquired in as-yet unidentified newly endemic locales. A previous study of cases in nonendemic regions with patient self-reported travel history suggested that infections were acquired during travel to endemic regions. We sequenced 19 Coccidioides isolates from patients with known travel histories from that earlier investigation and performed phylogenetic analysis to identify the locations of potential source populations. Our results show that those isolates were phylogenetically linked to Coccidioides subpopulations naturally occurring in 1 of the reported travel locales, confirming that these cases were likely acquired during travel to endemic regions. Our findings demonstrate that genomic analysis is a useful tool for investigating travel-related coccidioidomycosis. |
Investigation of a prolonged and large outbreak of healthcare-associated mucormycosis cases in an acute care hospital-Arkansas, June 2019-May 2021
Jordan A , James AE , Gold JAW , Wu K , Glowicz J , Wolfe F , Vyas K , Litvintseva A , Gade L , Liverett H , Alverson M , Burgess M , Wilson A , Li R , Benowitz I , Gulley T , Patil N , Chakravorty R , Chu W , Kothari A , Jackson BR , Garner K , Toda M . Open Forum Infect Dis 2022 9 (10) ofac510 BACKGROUND: Outbreaks of healthcare-associated mucormycosis (HCM), a life-threatening fungal infection, have been attributed to multiple sources, including contaminated healthcare linens. In 2020, staff at Hospital A in Arkansas alerted public health officials of a potential HCM outbreak. METHODS: We collected data on patients at Hospital A who had invasive mucormycosis during January 2017-June 2021 and calculated annual incidence of HCM (defined as mucormycosis diagnosed within ≥7 days after hospital admission). We performed targeted environmental assessments, including linen sampling at the hospital, to identify potential sources of infection. RESULTS: During the outbreak period (June 2019-June 2021), 16 patients had HCM; clinical features were similar between HCM patients and non-HCM patients. Hospital-wide HCM incidence (per 100 000 patient-days) increased from 0 in 2018 to 3 in 2019 and 6 in 2020. For the 16 HCM patients, the most common underlying medical conditions were hematologic malignancy (56%) and recent traumatic injury (38%); 38% of HCM patients died in-hospital. Healthcare-associated mucormycosis cases were not epidemiologically linked by common procedures, products, units, or rooms. At Hospital A and its contracted offsite laundry provider, suboptimal handling of laundered linens and inadequate environmental controls to prevent mucormycete contamination were observed. We detected Rhizopus on 9 (9%) of 98 linens sampled at the hospital, including on linens that had just arrived from the laundry facility. CONCLUSIONS: We describe the largest, single-center, HCM outbreak reported to date. Our findings underscore the importance of hospital-based monitoring for HCM and increased attention to the safe handling of laundered linens. |
Genomics and metagenomics of Madurella mycetomatis, a causative agent of black grain mycetoma in Sudan
Litvintseva AP , Bakhiet S , Gade L , Wagner DD , Bagal UR , Batra D , Norris E , Rishishwar L , Beer KD , Siddig EE , Mhmoud NA , Chow NA , Fahal A . PLoS Negl Trop Dis 2022 16 (11) e0010787 ![]() Madurella mycetomatis is one of the main causative agents of mycetoma, a debilitating neglected tropical disease. Improved understanding of the genomic diversity of the fungal and bacterial causes of mycetoma is essential to advances in diagnosis and treatment. Here, we describe a high-quality genome assembly of M. mycetomatis and results of the whole genome sequence analysis of 26 isolates from Sudan. We demonstrate evidence of at least seven genetically diverse lineages and extreme clonality among isolates within these lineages. We also performed shotgun metagenomic analysis of DNA extracted from mycetoma grains and showed that M. mycetomatis reads were detected in all sequenced samples with the average of 11,317 reads (s.d. +/- 21,269) per sample. In addition, 10 (12%) of the 81 tested grain samples contained bacterial reads including Streptococcus sp., Staphylococcus sp. and others. |
MycoSNP: A Portable Workflow for Performing Whole-Genome Sequencing Analysis of Candida auris.
Bagal UR , Phan J , Welsh RM , Misas E , Wagner D , Gade L , Litvintseva AP , Cuomo CA , Chow NA . Methods Mol Biol 2022 2517 215-228 ![]() ![]() Candida auris is an urgent public health threat characterized by high drug-resistant rates and rapid spread in healthcare settings worldwide. As part of the C. auris response, molecular surveillance has helped public health officials track the global spread and investigate local outbreaks. Here, we describe whole-genome sequencing analysis methods used for routine C. auris molecular surveillance in the United States; methods include reference selection, reference preparation, quality assessment and control of sequencing reads, read alignment, and single-nucleotide polymorphism calling and filtration. We also describe the newly developed pipeline MycoSNP, a portable workflow for performing whole-genome sequencing analysis of fungal organisms including C. auris. |
Comparison between Two Molecular Techniques: Nested and Real-Time Polymerase Chain Reaction Targeting 100-kDa Hc Protein for Detection of Histoplasma capsulatum in Environmental Samples.
Gmez LF , Gade L , Litvintseva AP , McEwen JG , Pelez CA , Arango M , Jimnez MDP . Am J Trop Med Hyg 2022 106 (5) 1329-32 ![]() ![]() Histoplasmosis, one of the most frequent endemic mycoses in the Americas, is caused by the inhalation of airborne conidia of Histoplasma capsulatum. Better understanding of the distribution of this fungus in the environment is important for the development of appropriate public health measures to prevent human infections. Previously, we used Hc100 nested polymerase chain reaction (PCR) to identify H. capsulatum DNA in 10% of environmental samples in Colombia. Here, we validate a 100-kDa real-time PCR assay for the detection of this fungus in the environment. Using this method, we identified H. capsulatum DNA in 80% of samples of raw organic materials, such as chicken manure, soil from caves, and bird and bat guano, as well as in 62% of samples of organic fertilizer that underwent the composting process. We demonstrated that 100-KDa real-time PCR is a useful tool for environmental surveillance that can be used to identify the potential reservoirs of H. capsulatum and to prevent outbreaks, especially in people with the higher risk of exposure, such as spelunkers, farmers, poultry manure collectors, and anyone who handle organic fertilizers or bat and bird excreta. |
Factors Influencing Distribution of Coccidioides immitis in Soil, Washington State, 2016.
Chow NA , Kangiser D , Gade L , McCotter OZ , Hurst S , Salamone A , Wohrle R , Clifford W , Kim S , Salah Z , Oltean HN , Plumlee GS , Litvintseva AP . mSphere 2021 6 (6) e0059821 ![]() ![]() Coccidioides immitis and Coccidioides posadasii are causative agents of Valley fever, a serious fungal disease endemic to regions with hot, arid climate in the United States, Mexico, and Central and South America. The environmental niche of Coccidioides spp. is not well defined, and it remains unknown whether these fungi are primarily associated with rodents or grow as saprotrophs in soil. To better understand the environmental reservoir of these pathogens, we used a systematic soil sampling approach, quantitative PCR (qPCR), culture, whole-genome sequencing, and soil chemical analysis to identify factors associated with the presence of C. immitis at a known colonization site in Washington State linked to a human case in 2010. We found that the same strain colonized an area of over 46,000 m(2) and persisted in soil for over 6 years. No association with rodent burrows was observed, as C. immitis DNA was as likely to be detected inside rodent holes as it was in the surrounding soil. In addition, the presence of C. immitis DNA in soil was correlated with elevated levels of boron, calcium, magnesium, sodium, and silicon in soil leachates. We also observed differences in the microbial communities between C. immitis-positive and -negative soils. Our artificial soil inoculation experiments demonstrated that C. immitis can use soil as a sole source of nutrients. Taken together, these results suggest that soil parameters need to be considered when modeling the distribution of this fungus in the environment. IMPORTANCE Coccidioidomycosis is considered a highly endemic disease for which geographic range is likely to expand from climate change. A better understanding of the ecological niche of Coccidioides spp. is essential for generating accurate distribution maps and predicting future changes in response to the changing environment. Our study used a systematic sampling strategy, advanced molecular detection methods, and soil chemical analysis to identify environmental factors associated with the presence of C. immitis in soil. Our results demonstrate the fungus can colonize the same areas for years and is associated with chemical and microbiological soil characteristics. Our results suggest that in addition to climate parameters, soil characteristics need to be considered when building habitat distribution models for this pathogen. |
Rapid Assessment and Containment of Candida auris Transmission in Postacute Care Settings-Orange County, California, 2019.
Karmarkar EN , O'Donnell K , Prestel C , Forsberg K , Gade L , Jain S , Schan D , Chow N , McDermott D , Rossow J , Toda M , Ruiz R , Hun S , Dale JL , Gross A , Maruca T , Glowicz J , Brooks R , Bagheri H , Nelson T , Gualandi N , Khwaja Z , Horwich-Scholefield S , Jacobs J , Cheung M , Walters M , Jacobs-Slifka K , Stone ND , Mikhail L , Chaturvedi S , Klein L , Vagnone PS , Schneider E , Berkow EL , Jackson BR , Vallabhaneni S , Zahn M , Epson E . Ann Intern Med 2021 174 (11) 1554-1562 ![]() ![]() BACKGROUND: Candida auris, a multidrug-resistant yeast, can spread rapidly in ventilator-capable skilled-nursing facilities (vSNFs) and long-term acute care hospitals (LTACHs). In 2018, a laboratory serving LTACHs in southern California began identifying species of Candida that were detected in urine specimens to enhance surveillance of C auris, and C auris was identified in February 2019 in a patient in an Orange County (OC), California, LTACH. Further investigation identified C auris at 3 associated facilities. OBJECTIVE: To assess the prevalence of C auris and infection prevention and control (IPC) practices in LTACHs and vSNFs in OC. DESIGN: Point prevalence surveys (PPSs), postdischarge testing for C auris detection, and assessments of IPC were done from March to October 2019. SETTING: All LTACHs (n = 3) and vSNFs (n = 14) serving adult patients in OC. PARTICIPANTS: Current or recent patients in LTACHs and vSNFs in OC. INTERVENTION: In facilities where C auris was detected, PPSs were repeated every 2 weeks. Ongoing IPC support was provided. MEASUREMENTS: Antifungal susceptibility testing and whole-genome sequencing to assess isolate relatedness. RESULTS: Initial PPSs at 17 facilities identified 44 additional patients with C auris in 3 (100%) LTACHs and 6 (43%) vSNFs, with the first bloodstream infection reported in May 2019. By October 2019, a total of 182 patients with C auris were identified by serial PPSs and discharge testing. Of 81 isolates that were sequenced, all were clade III and highly related. Assessments of IPC identified gaps in hand hygiene, transmission-based precautions, and environmental cleaning. The outbreak was contained to 2 facilities by October 2019. LIMITATION: Acute care hospitals were not assessed, and IPC improvements over time could not be rigorously evaluated. CONCLUSION: Enhanced laboratory surveillance and prompt investigation with IPC support enabled swift identification and containment of C auris. PRIMARY FUNDING SOURCE: Centers for Disease Control and Prevention. |
Genomic Diversity of Azole-Resistant Aspergillus fumigatus in the United States.
Etienne KA , Berkow EL , Gade L , Nunnally N , Lockhart SR , Beer K , Jordan IK , Rishishwar L , Litvintseva AP . mBio 2021 12 (4) e0180321 ![]() ![]() Azole resistance in pathogenic Aspergillus fumigatus has become a global public health issue threatening the use of medical azoles. The environmentally occurring resistance mutations, TR(34)/L98H (TR(34)) and TR(46)/Y121F/T289A (TR(46)), are widespread across multiple continents and emerging in the United States. We used whole-genome single nucleotide polymorphism (SNP) analysis on 179 nationally represented clinical and environmental A. fumigatus genomes from the United States along with 18 non-U.S. genomes to evaluate the genetic diversity and foundation of the emergence of azole resistance in the United States. We demonstrated the presence of clades of A. fumigatus isolates: clade A (17%) comprised a global collection of clinical and environmental azole-resistant strains, including all strains with the TR(34)/L98H allele from India, The Netherlands, the United Kingdom, and the United States, and clade B (83%) consisted of isolates without this marker mainly from the United States. The TR(34)/L98H polymorphism was shared among azole-resistant A. fumigatus strains from India, The Netherlands, the United Kingdom, and the United States, suggesting the common origin of this resistance mechanism. Six percent of azole-resistant A. fumigatus isolates from the United States with the TR(34) resistance marker had a mixture of clade A and clade B alleles, suggestive of recombination. Additionally, the presence of equal proportions of both mating types further suggests the ongoing presence of recombination. This study demonstrates the genetic background for the emergence of azole resistance in the United States, supporting a single introduction and subsequent propagation, possibly through recombination of environmentally driven resistance mutations. IMPORTANCE Aspergillus fumigatus is one of the most common causes of invasive mold infections in patients with immune deficiencies and has also been reported in patients with severe influenza and severe acute respiratory syndrome coronavirus 2 (SARs-CoV-2). Triazole drugs are the first line of therapy for this infection; however, their efficacy has been compromised by the emergence of azole resistance in A. fumigatus, which was proposed to be selected for by exposure to azole fungicides in the environment [P. E. Verweij, E. Snelders, G. H. J. Kema, E. Mellado, et al., Lancet Infect Dis 9:789-795, 2009, https://doi.org/10.1016/S1473-3099(09)70265-8]. Isolates with environmentally driven resistance mutations, TR(34)/L98H (TR(34)) and TR(46)/Y121F/T289A (TR(46)), have been reported worldwide. Here, we used genomic analysis of a large sample of resistant and susceptible A. fumigatus isolates to demonstrate a single introduction of TR(34) in the United States and suggest its ability to spread into the susceptible population is through recombination between resistant and susceptible isolates. |
Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris.
Muñoz JF , Welsh RM , Shea T , Batra D , Gade L , Howard D , Rowe LA , Meis JF , Litvintseva AP , Cuomo CA . Genetics 2021 218 (1) ![]() ![]() Candida auris is an emerging fungal pathogen of rising concern due to global spread, the ability to cause healthcare-associated outbreaks, and antifungal resistance. Genomic analyses revealed that early contemporaneously detected cases of C. auris were geographically stratified into four major clades. While Clades I, III, and IV are responsible for ongoing outbreaks of invasive and multidrug-resistant infections, Clade II, also termed the East Asian clade, consists primarily of cases of ear infection, is often susceptible to all antifungal drugs, and has not been associated with outbreaks. Here, we generate chromosome-level assemblies of twelve isolates representing the phylogenetic breadth of these four clades and the only isolate described to date from Clade V. This Clade V genome is highly syntenic with those of Clades I, III, and IV, although the sequence is highly divergent from the other clades. Clade II genomes appear highly rearranged, with translocations occurring near GC-poor regions, and large subtelomeric deletions in most chromosomes, resulting in a substantially different karyotype. Rearrangements and deletion lengths vary across Clade II isolates, including two from a single patient, supporting ongoing genome instability. Deleted subtelomeric regions are enriched in Hyr/Iff-like cell-surface proteins, novel candidate cell wall proteins, and an ALS-like adhesin. Cell wall proteins from these families and other drug-related genes show clade-specific signatures of selection in Clades I, III, and IV. Subtelomeric dynamics and the conservation of cell surface proteins in the clades responsible for global outbreaks causing invasive infections suggest an explanation for the different phenotypes observed between clades. |
Understanding the Emergence of Multidrug-Resistant Candida : Using Whole-Genome Sequencing to Describe the Population Structure of Candida haemulonii Species Complex.
Gade L , Munoz JF , Sheth M , Wagner D , Berkow EL , Forsberg K , Jackson BR , Ramos-Castro R , Escandon P , Dolande M , Ben-Ami R , Espinosa-Bode A , Caceres DH , Lockhart SR , Cuomo CA , Litvintseva AP . Front Genet 2020 11 554 ![]() ![]() The recent emergence of a multidrug-resistant yeast, Candida auris, has drawn attention to the closely related species from the Candida haemulonii complex that include C. haemulonii, Candida duobushaemulonii, Candida pseudohaemulonii, and the recently identified Candida vulturna. Here, we used antifungal susceptibility testing and whole-genome sequencing (WGS) to investigate drug resistance and genetic diversity among isolates of C. haemulonii complex from different geographic areas in order to assess population structure and the extent of clonality among strains. Although most isolates of all four species were genetically distinct, we detected evidence of the in-hospital transmission of C. haemulonii and C. duobushaemulonii in one hospital in Panama, indicating that these species are also capable of causing outbreaks in healthcare settings. We also detected evidence of the rising azole resistance among isolates of C. haemulonii and C. duobushaemulonii in Colombia, Panama, and Venezuela linked to substitutions in ERG11 gene as well as amplification of this gene in C. haemulonii in isolates in Colombia suggesting the presence of evolutionary pressure for developing azole resistance in this region. Our results demonstrate that these species need to be monitored as possible causes of outbreaks of invasive infection. |
- Page last reviewed:Feb 1, 2024
- Page last updated:May 16, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure