Last data update: Mar 17, 2025. (Total: 48910 publications since 2009)
Records 1-6 (of 6 Records) |
Query Trace: Fortner AR[original query] |
---|
Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part I: Real-Time Particulate and Gas-Phase Emissions
Stefaniak AB , Bowers LN , Martin SB Jr , Hammond DR , Ham JE , Wells JR , Fortner AR , Knepp AK , du Preez S , Pretty JR , Roberts JL , du Plessis JL , Schmidt A , Duling MG , Bader A , Virji MA . J Chem Health Saf 2021 28 (3) 190-200 The literature on emissions during material extrusion additive manufacturing with 3-D printers is expanding; however, there is a paucity of data for large-format additive manufacturing (LFAM) machines that can extrude high-melt-temperature polymers. Emissions from two LFAM machines were monitored during extrusion of six polymers: acrylonitrile butadiene styrene (ABS), polycarbonate (PC), high-melt-temperature polysulfone (PSU), poly(ether sulfone) (PESU), polyphenylene sulfide (PPS), and Ultem (poly(ether imide)). Particle number, total volatile organic compound (TVOC), carbon monoxide (CO), and carbon dioxide (CO(2)) concentrations were monitored in real-time. Particle emission rate values (no./min) were as follows: ABS (1.7 × 10(11) to 7.7 × 10(13)), PC (5.2 × 10(11) to 3.6 × 10(13)), Ultem (5.7 × 10(12) to 3.1 × 10(13)), PPS (4.6 × 10(11) to 6.2 × 10(12)), PSU (1.5 × 10(12) to 3.4 × 10(13)), and PESU (2.0 to 5.0 × 10(13)). For print jobs where the mass of extruded polymer was known, particle yield values (g(-1) extruded) were as follows: ABS (4.5 × 10(8) to 2.9 × 10(11)), PC (1.0 × 10(9) to 1.7 × 10(11)), PSU (5.1 × 10(9) to 1.2 × 10(11)), and PESU (0.8 × 10(11) to 1.7 × 10(11)). TVOC emission yields ranged from 0.005 mg/g extruded (PESU) to 0.7 mg/g extruded (ABS). The use of wall-mounted exhaust ventilation fans was insufficient to completely remove airborne particulate and TVOC from the print room. Real-time CO monitoring was not a useful marker of particulate and TVOC emission profiles for Ultem, PPS, or PSU. Average CO(2) and particle concentrations were moderately correlated (r (s) = 0.76) for PC polymer. Extrusion of ABS, PC, and four high-melt-temperature polymers by LFAM machines released particulate and TVOC at levels that could warrant consideration of engineering controls. LFAM particle emission yields for some polymers were similar to those of common desktop-scale 3-D printers. |
Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part II: Characterization of Particles and Gases
Stefaniak AB , Bowers LN , Martin SB Jr , Hammond DR , Ham JE , Wells JR , Fortner AR , Knepp AK , du Preez S , Pretty JR , Roberts JL , du Plessis JL , Schmidt A , Duling MG , Bader A , Virji MA . J Chem Health Saf 2021 28 (4) 268-278 Extrusion of high-melt-temperature polymers on large-format additive manufacturing (LFAM) machines releases particles and gases, though there is no data describing their physical and chemical characteristics. Emissions from two LFAM machines were monitored during extrusion of acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) polymers as well as high-melt-temperature Ultem (poly(ether imide)), polysulfone (PSU), poly(ether sulfone) (PESU), and polyphenylene sulfide (PPS) polymers. Filter samples of particles were collected for quantification of elements and bisphenol A and S (BPA, BPS) and visualization of morphology. Individual gases were quantified on substance-specific media. Aerosol sampling demonstrated that concentrations of elements were generally low for all polymers, with a maximum of 1.6 mg/m(3) for iron during extrusion of Ultem. BPA, an endocrine disruptor, was released into air during extrusion of PC (range: 0.4 ± 0.1 to 21.3 ± 5.3 μg/m(3)). BPA and BPS (also an endocrine disruptor) were released into air during extrusion of PESU (BPA, 2.0-8.7 μg/m(3); BPS, 0.03-0.07 μg/m(3)). Work surfaces and printed parts were contaminated with BPA (<8-587 ng/100 cm(2)) and BPS (<0.22-2.5 ng/100 cm(2)). Gas-phase sampling quantified low levels of respiratory irritants (phenol, SO(2), toluene, xylenes), possible or known asthmagens (caprolactam, methyl methacrylate, 4-oxopentanal, styrene), and possible occupational carcinogens (benzene, formaldehyde, acetaldehyde) in air. Characteristics of particles and gases released by high-melt-temperature polymers during LFAM varied, which indicated the need for polymer-specific exposure and risk assessments. The presence of BPA and BPS on surfaces revealed a previously unrecognized source of dermal exposure for additive manufacturing workers using PC and PESU polymers. |
Determinants of task-based exposures to alpha-diketones in coffee roasting and packaging facilities using a Bayesian model averaging approach
Blackley BH , Groth CP , Cox-Ganser JM , Fortner AR , LeBouf RF , Liang X , Virji MA . Front Public Health 2022 10 878907 ![]() Coffee production workers can be exposed to inhalational hazards including alpha-diketones such as diacetyl and 2,3-pentanedione. Exposure to diacetyl is associated with the development of occupational lung disease, including obliterative bronchiolitis, a rare and irreversible lung disease. We aimed to identify determinants contributing to task-based exposures to diacetyl and 2,3-pentanedione at 17 U.S. coffee production facilities. We collected 606 personal short-term task-based samples including roasting (n = 189), grinding (n = 74), packaging (n = 203), quality control (QC, n = 44), flavoring (n = 15), and miscellaneous production/caf tasks (n = 81), and analyzed for diacetyl and 2,3-pentanedione in accordance with the modified OSHA Method 1013/1016. We also collected instantaneous activity-based (n = 296) and source (n = 312) samples using evacuated canisters. Information on sample-level and process-level determinants relating to production scale, sources of alpha-diketones, and engineering controls was collected. Bayesian mixed-effect regression models accounting for censored data were fit for overall data (all tasks) and specific tasks. Notable determinants identified in univariate analyses were used to fit all plausible models in multiple regression analysis which were summarized using a Bayesian model averaging method. Grinding, flavoring, packaging, and production tasks with ground coffee were associated with the highest short-term and instantaneous-activity exposures for both analytes. Highest instantaneous-sources of diacetyl and 2,3-pentanedione included ground coffee, flavored coffee, liquid flavorings, and off-gassing coffee bins or packages. Determinants contributing to higher exposures to both analytes in all task models included sum of all open storage sources and average percent of coffee production as ground coffee. Additionally, flavoring ground coffee and flavoring during survey contributed to notably higher exposures for both analytes in most, but not all task groups. Alternatively, general exhaust ventilation contributed to lower exposures in all but two models. Additionally, among facilities that flavored, local exhaust ventilation during flavoring processes contributed to lower 2,3-pentanedione exposures during grinding and packaging tasks. Coffee production facilities can consider implementing additional exposure controls for processes, sources, and task-based determinants associated with higher exposures to diacetyl and 2,3-pentanedione, such as isolating, enclosing, and directly exhausting grinders, flavoring mixers, and open storage of off-gassing whole bean and ground coffee, to reduce exposures and minimize risks for lung disease among workers. |
Model predictions of occupational exposures to diacetyl and 2,3-pentanedione emitted from roasted whole bean and ground coffee: Influence of roast level and physical form on specific emission rates
LeBouf RF , Ranpara A , Fernandez E , Burns DA , Fortner AR . Front Public Health 2022 10 786924 Roasted coffee emits hazardous volatile organic compounds including diacetyl and 2,3-pentanedione. Workers in non-flavored coffee roasting and packaging facilities might inhale diacetyl and 2,3-pentanedione from roasted coffee above occupational exposure limits depending on their work activities and proximity to the source of emissions. Objectives of this laboratory study were to: (1) investigate factors affecting specific emission rates (SERs) of diacetyl and 2,3-pentanedione from freshly roasted coffee, (2) explore the effect of time on SERs of coffee stored in sealed bags for 10-days, and (3) predict exposures to workers in hypothetical workplace scenarios. Two roast levels (light and dark) and three physical forms (whole bean, coarse ground, and fine ground) were investigated. Particle size for whole bean and ground coffee were analyzed using geometric mean of Feret diameter. Emitted chemicals were collected on thermal desorption tubes and quantified using mass spectrometry analysis. SERs developed here coupled with information from previous field surveys provided model input to estimate worker exposures during various activities using a probabilistic, near-field/far-field model. For freshly roasted coffee, mean SER of diacetyl and 2,3-pentantedione increased with decreasing particle size of the physical form (whole bean < coarse ground < fine ground) but was not consistent with roast levels. SERs from freshly roasted coffee increased with roast level for diacetyl but did not change for 2,3-pentanedione. Mean SERs were greatest for diacetyl at 3.60 mg kg(-1) h(-1) for dark, fine ground and for 2,3-pentanedione at 3.88 mg kg(-1) h(-1) for light, fine ground. For storage, SERs of whole bean remained constant while SERs of dark roast ground coffee decreased and light roast ground coffee increased. Modeling demonstrated that near-field exposures depend on proximity to the source, duration of exposure, and air velocities in the near-field further supporting previously reported chemical air measurements in coffee roasting and packaging facilities. Control of source emissions using local exhaust ventilation especially around grinding activities as well as modification of work practices could be used to reduce exposures in this workforce. |
Towards sustainable additive manufacturing: The need for awareness of particle and vapor releases during polymer recycling, making filament, and fused filament fabrication 3-D printing
Stefaniak AB , Bowers LN , Cottrell G , Erdem E , Knepp AK , Martin SB Jr , Pretty J , Duling MG , Arnold ED , Wilson Z , Krider B , Fortner AR , LeBouf RF , Virji MA , Sirinterlikci A . Resour Conserv Recycl 2022 176 Fused filament fabrication three-dimensional (FFF 3-D) printing is thought to be environmentally sustainable; however, significant amounts of waste can be generated from this technology. One way to improve its sustainability is via distributed recycling of plastics in homes, schools, and libraries to create feedstock filament for printing. Risks from exposures incurred during recycling and reuse of plastics has not been incorporated into life cycle assessments. This study characterized contaminant releases from virgin (unextruded) and recycled plastics from filament production through FFF 3-D printing. Waste polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) plastics were recycled to create filament; virgin PLA, ABS, high and low density polyethylenes, high impact polystyrene, and polypropylene pellets were also extruded into filament. The release of particles and chemicals into school classrooms was evaluated using standard industrial hygiene methodologies. All tasks released particles that contained hazardous metals (e.g., manganese) and with size capable of depositing in the gas exchange region of the lung, i.e., granulation of waste PLA and ABS (667 to 714 nm) and filament making (608 to 711 nm) and FFF 3-D printing (616 to 731 nm) with waste and virgin plastics. All tasks released vapors, including respiratory irritants and potential carcinogens (benzene and formaldehyde), mucus membrane irritants (acetone, xylenes, ethylbenzene, and methyl methacrylate), and asthmagens (styrene, multiple carbonyl compounds). These data are useful for incorporating risks of exposure to hazardous contaminants in future life cycle evaluations to demonstrate the sustainability and circular economy potential of FFF 3-D printing in distributed spaces. © 2021 |
Exposures and emissions in coffee roasting facilities and cafes: diacetyl, 2,3-pentanedione, and other volatile organic compounds
LeBouf RF , Blackley BH , Fortner AR , Stanton M , Martin SB , Groth CP , McClelland TL , Duling MG , Burns DA , Ranpara A , Edwards N , Fedan KB , Bailey RL , Cummings KJ , Nett RJ , Cox-Ganser JM , Virji MA . Front Public Health 2020 8 561740 Roasted coffee and many coffee flavorings emit volatile organic compounds (VOCs) including diacetyl and 2,3-pentanedione. Exposures to VOCs during roasting, packaging, grinding, and flavoring coffee can negatively impact the respiratory health of workers. Inhalational exposures to diacetyl and 2,3-pentanedione can cause obliterative bronchiolitis. This study summarizes exposures to and emissions of VOCs in 17 coffee roasting and packaging facilities that included 10 cafés. We collected 415 personal and 760 area full-shift, and 606 personal task-based air samples for diacetyl, 2,3-pentanedione, 2,3-hexanedione, and acetoin using silica gel tubes. We also collected 296 instantaneous activity and 312 instantaneous source air measurements for 18 VOCs using evacuated canisters. The highest personal full-shift exposure in part per billion (ppb) to diacetyl [geometric mean (GM) 21 ppb; 95th percentile (P95) 79 ppb] and 2,3-pentanedione (GM 15 ppb; P95 52 ppb) were measured for production workers in flavored coffee production areas. These workers also had the highest percentage of measurements above the NIOSH Recommended Exposure Limit (REL) for diacetyl (95%) and 2,3-pentanedione (77%). Personal exposures to diacetyl (GM 0.9 ppb; P95 6.0 ppb) and 2,3-pentanedione (GM 0.7 ppb; P95 4.4 ppb) were the lowest for non-production workers of facilities that did not flavor coffee. Job groups with the highest personal full-shift exposures to diacetyl and 2,3-pentanedione were flavoring workers (GM 34 and 38 ppb), packaging workers (GM 27 and 19 ppb) and grinder operator (GM 26 and 22 ppb), respectively, in flavored coffee facilities, and packaging workers (GM 8.0 and 4.4 ppb) and production workers (GM 6.3 and 4.6 ppb) in non-flavored coffee facilities. Baristas in cafés had mean full-shift exposures below the RELs (GM 4.1 ppb diacetyl; GM 4.6 ppb 2,3-pentanedione). The tasks, activities, and sources associated with flavoring in flavored coffee facilities and grinding in non-flavored coffee facilities, had some of the highest GM and P95 estimates for both diacetyl and 2,3-pentanedione. Controlling emissions at grinding machines and flavoring areas and isolating higher exposure areas (e.g., flavoring, grinding, and packaging areas) from the main production space and from administrative or non-production spaces is essential for maintaining exposure control. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 17, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure