Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-3 (of 3 Records) |
Query Trace: Fitzgerald BL[original query] |
---|
Metabolic response in patients with post-treatment Lyme disease symptoms/syndrome
Fitzgerald BL , Graham B , Delorey MJ , Pegalajar-Jurado A , Islam MN , Wormser GP , Aucott JN , Rebman AW , Soloski MJ , Belisle JT , Molins CR . Clin Infect Dis 2020 73 (7) e2342-e2349 BACKGROUND: Post-treatment Lyme disease symptoms/syndrome (PTLDS) occurs in approximately 10% of Lyme disease patients following antibiotic treatment. Biomarkers or specific clinical symptoms to identify PTLDS patients do not currently exist and the PTLDS classification is based on the report of persistent, subjective symptoms for ≥ 6 months following antibiotic treatment for Lyme disease. METHODS: Untargeted liquid chromatography-mass spectrometry metabolomics was used to determine longitudinal metabolic responses and biosignatures in PTLDS and clinically cured non-PTLDS Lyme patients. Evaluation of biosignatures included: 1) defining altered classes of metabolites; 2) elastic net regularization to define metabolites that most strongly defined PTLDS and non-PTLDS patients at different timepoints; 3) changes in the longitudinal abundance of metabolites; 4) linear discriminant analysis to evaluate robustness in a second patient cohort. RESULTS: This study determined that observable metabolic differences exist between PTLDS and non-PTLDS patients at multiple timepoints. The metabolites with differential abundance included those from glycerophospholipid, bile acid and acylcarnitine metabolism. Distinct longitudinal patterns of metabolite abundance indicated a greater metabolic variability in PTLDS vs non-PTLDS patients. Small numbers of metabolites (6-40) could be used to define PTLDS vs. non-PTLDS patients at defined time points, and the findings were validated in a second cohort of PTLDS and non-PTLDS patients. CONCLUSIONS: These data provide evidence that an objective metabolite-based measurement can distinguish patients with PTLDS and help understand the underlying biochemistry of PTLDS. |
Host metabolic response in early Lyme disease
Fitzgerald BL , Molins CR , Islam MN , Graham B , Hove PR , Wormser GP , Hu L , Ashton LV , Belisle JT . J Proteome Res 2020 19 (2) 610-623 Lyme disease is a tick-borne bacterial illness that occurs in areas of North America, Europe, and Asia. Early infection typically presents as generalized symptoms with an erythema migrans (EM) skin lesion. Dissemination of the pathogen Borrelia burgdorferi can result in multiple EM skin lesions or in extracutaneous manifestations such as Lyme neuroborreliosis. Metabolic biosignatures of patients with early Lyme disease can potentially provide diagnostic targets as well as highlight metabolic pathways that contribute to pathogenesis. Sera from well-characterized patients diagnosed with either early localized Lyme disease (ELL) or early disseminated Lyme disease (EDL), plus healthy controls (HC), from the United States were analyzed by liquid chromatography-mass spectrometry (LC-MS). Comparative analyses were performed between ELL, or EDL, or ELL combined with EDL, and the HC to develop biosignatures present in early Lyme disease. A direct comparison between ELL and EDL was also performed to develop a biosignature for stages of early Lyme disease. Metabolic pathway analysis and chemical identification of metabolites with LC-tandem mass spectrometry (LC-MS/MS) demonstrated alterations of eicosanoid, bile acid, sphingolipid, glycerophospholipid, and acylcarnitine metabolic pathways during early Lyme disease. These metabolic alterations were confirmed using a separate set of serum samples for validation. The findings demonstrated that infection of humans with B. burgdorferi alters defined metabolic pathways that are associated with inflammatory responses, liver function, lipid metabolism, and mitochondrial function. Additionally, the data provide evidence that metabolic pathways can be used to mark the progression of early Lyme disease. |
Identification of urine metabolites as biomarkers of early Lyme disease
Pegalajar-Jurado A , Fitzgerald BL , Islam MN , Belisle JT , Wormser GP , Waller KS , Ashton LV , Webb KJ , Delorey MJ , Clark RJ , Molins CR . Sci Rep 2018 8 (1) 12204 Metabolites detectible in human biofluids are attractive biomarkers for the diagnosis of early Lyme disease (ELD), a vector-borne infectious disease. Urine represents an easily obtained clinical sample that can be applied for diagnostic purposes. However, few studies have explored urine for biomarkers of ELD. In this study, metabolomics approaches were applied to evaluate small molecule metabolites in urine from patients with ELD (n = 14), infectious mononucleosis (n = 14) and healthy controls (n = 14). Metabolic biosignatures for ELD versus healthy controls and ELD versus infectious mononucleosis were generated using untargeted metabolomics. Pathway analyses and metabolite identification revealed the dysregulation of several metabolic processes in ELD as compared to healthy controls or mononucleosis, including metabolism of tryptophan. Linear discriminant analyses demonstrated that individual metabolic biosignatures can correctly discriminate ELD from the other patient groups with accuracies of 71 to 100%. These data provide proof-of-concept for use of urine metabolites as biomarkers for diagnostic classification of ELD. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure