Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-6 (of 6 Records) |
Query Trace: Fitter David[original query] |
---|
Ebola Virus Disease Outbreak - Democratic Republic of the Congo, August 2018-November 2019.
Aruna A , Mbala P , Minikulu L , Mukadi D , Bulemfu D , Edidi F , Bulabula J , Tshapenda G , Nsio J , Kitenge R , Mbuyi G , Mwanzembe C , Kombe J , Lubula L , Shako JC , Mossoko M , Mulangu F , Mutombo A , Sana E , Tutu Y , Kabange L , Makengo J , Tshibinkufua F , Ahuka-Mundeke S , Muyembe JJ , Ebola Response CDC , Alarcon Walter , Bonwitt Jesse , Bugli Dante , Bustamante Nirma D , Choi Mary , Dahl Benjamin A , DeCock Kevin , Dismer Amber , Doshi Reena , Dubray Christine , Fitter David , Ghiselli Margherita , Hall Noemi , Hamida Amen Ben , McCollum Andrea M , Neatherlin John , Raghunathan Pratima L , Ravat Fatima , Reynolds Mary G , Rico Adriana , Smith Nailah , Soke Gnakub Norbert , Trudeau Aimee T , Victory Kerton R , Worrell Mary Claire . MMWR Morb Mortal Wkly Rep 2019 68 (50) 1162-1165 On August 1, 2018, the Democratic Republic of the Congo Ministry of Health (DRC MoH) declared the tenth outbreak of Ebola virus disease (Ebola) in DRC, in the North Kivu province in eastern DRC on the border with Uganda, 8 days after another Ebola outbreak was declared over in northwest Équateur province. During mid- to late-July 2018, a cluster of 26 cases of acute hemorrhagic fever, including 20 deaths, was reported in North Kivu province.* Blood specimens from six patients hospitalized in the Mabalako health zone and sent to the Institut National de Recherche Biomédicale (National Biomedical Research Institute) in Kinshasa tested positive for Ebola virus. Genetic sequencing confirmed that the outbreaks in North Kivu and Équateur provinces were unrelated. From North Kivu province, the outbreak spread north to Ituri province, and south to South Kivu province (1). On July 17, 2019, the World Health Organization designated the North Kivu and Ituri outbreak a public health emergency of international concern, based on the geographic spread of the disease to Goma, the capital of North Kivu province, and to Uganda and the challenges to implementing prevention and control measures specific to this region (2). This report describes the outbreak in the North Kivu and Ituri provinces. As of November 17, 2019, a total of 3,296 Ebola cases and 2,196 (67%) deaths were reported, making this the second largest documented outbreak after the 2014-2016 epidemic in West Africa, which resulted in 28,600 cases and 11,325 deaths.(†) Since August 2018, DRC MoH has been collaborating with partners, including the World Health Organization, the United Nations Children's Fund, the United Nations Office for the Coordination of Humanitarian Affairs, the International Organization of Migration, The Alliance for International Medical Action (ALIMA), Médecins Sans Frontières, DRC Red Cross National Society, and CDC, to control the outbreak. Enhanced communication and effective community engagement, timing of interventions during periods of relative stability, and intensive training of local residents to manage response activities with periodic supervision by national and international personnel are needed to end the outbreak. |
Effectiveness of monovalent rotavirus vaccine against hospitalizations due to all rotavirus and equine-like G3P[8] genotypes in Haiti 2014-2019.
Burnett E , Juin S , Esona MD , Desormeaux AM , Aliabadi N , Pierre M , Andre-Alboth J , Leshem E , Etheart MD , Patel R , Dely P , Fitter D , Jean-Denis G , Kalou M , Katz MA , Bowen MD , Grant-Greene Y , Boncy J , Parashar UD , Joseph GA , Tate JE . Vaccine 2021 39 (32) 4458-4462 BACKGROUND: Rotavirus vaccines are effective in preventing severe rotavirus. Haiti introduced 2-dose monovalent (G1P[8]) rotavirus vaccine recommended for infants at 6 and 10 weeks of age in 2014. We calculated the effectiveness of rotavirus vaccine against hospitalization for acute gastroenteritis in Haiti. METHODS: We enrolled children 6-59 months old admitted May 2014-September 2019 for acute watery diarrhea at any sentinel surveillance hospital. Stool was tested for rotavirus using enzyme immunoassay (EIA) and genotyped with multiplex one-step RT-PCR assay and Sanger sequencing for stratification by genotype. We used a case-negative design where cases were children positive for rotavirus and controls were negative for rotavirus. Only children eligible for vaccination were included and a child was considered vaccinated if vaccine was given ≥ 14 days before enrollment. We used unconditional logistic regression to calculate odds ratios and calculated 2-dose and 1-dose vaccine effectiveness (VE) as (1 - odds ratio) * 100. RESULTS: We included 129 (19%) positive cases and 543 (81%) negative controls. Among cases, 77 (60%) were positive for equine-like G3P[8]. Two doses of rotavirus vaccine were 66% (95% CI: 44, 80) effective against hospitalizations due to any strain of rotavirus and 64% (95% CI: 33, 81) effective against hospitalizations due to the equine-like G3P[8] genotype. CONCLUSIONS: These findings are comparable to other countries in the Americas region. To the best of our knowledge, this is the first VE estimate both against the equine-like G3P[8] genotype and from a Caribbean country. Overall, these results support rotavirus vaccine use and demonstrate the importance of complete vaccination. |
COVID-19 Vaccine Second-Dose Completion and Interval Between First and Second Doses Among Vaccinated Persons - United States, December 14, 2020-February 14, 2021.
Kriss JL , Reynolds LE , Wang A , Stokley S , Cole MM , Harris LQ , Shaw LK , Black CL , Singleton JA , Fitter DL , Rose DA , Ritchey MD , Toblin RL . MMWR Morb Mortal Wkly Rep 2021 70 (11) 389-395 In December 2020, two COVID-19 vaccines (Pfizer-BioNTech and Moderna) received Emergency Use Authorization from the Food and Drug Administration.*(,)(†) Both vaccines require 2 doses for a completed series. The recommended interval between doses is 21 days for Pfizer-BioNTech and 28 days for Moderna; however, up to 42 days between doses is permissible when a delay is unavoidable.(§) Two analyses of COVID-19 vaccine administration data were conducted among persons who initiated the vaccination series during December 14, 2020-February 14, 2021, and whose doses were reported to CDC through February 20, 2021. The first analysis was conducted to determine whether persons who received a first dose and had sufficient time to receive the second dose (i.e., as of February 14, 2021, >25 days from receipt of Pfizer-BioNTech vaccine or >32 days from receipt of Moderna vaccine had elapsed) had received the second dose. A second analysis was conducted among persons who received a second COVID-19 dose by February 14, 2021, to determine whether the dose was received during the recommended dosing interval, which in this study was defined as 17-25 days (Pfizer-BioNTech) and 24-32 days (Moderna) after the first dose. Analyses were stratified by jurisdiction and by demographic characteristics. In the first analysis, among 12,496,258 persons who received the first vaccine dose and for whom sufficient time had elapsed to receive the second dose, 88.0% had completed the series, 8.6% had not received the second dose but remained within the allowable interval (≤42 days since the first dose), and 3.4% had missed the second dose (outside the allowable interval, >42 days since the first dose). The percentage of persons who missed the second dose varied by jurisdiction (range = 0.0%-9.1%) and among demographic groups was highest among non-Hispanic American Indian/Alaska Native (AI/AN) persons (5.1%) and persons aged 16-44 years (4.0%). In the second analysis, among 14,205,768 persons who received a second dose, 95.6% received the dose within the recommended interval, although percentages varied by jurisdiction (range = 79.0%-99.9%). Public health officials should identify and address possible barriers to completing the COVID-19 vaccination series to ensure equitable coverage across communities and maximum health benefits for recipients. Strategies to ensure series completion could include scheduling second-dose appointments at the first-dose administration and sending reminders for second-dose visits. |
Vaccination of contacts of Ebola virus disease survivors to prevent further transmission.
Doshi RH , Fleming M , Mukoka AK , Carter RJ , Hyde TB , Choi M , Nzaji MK , Bateyi SH , Christie A , Nichol ST , Damon IK , Beach M , Musenga EM , Fitter DL . Lancet Glob Health 2020 8 (12) e1455-e1456 On April 10, 2020, just 2 days before the anticipated declaration of the end of the North Kivu and Ituri Ebola virus disease (EVD) outbreak in DR Congo, and 53 days after the last confirmed case of EVD had been reported, a new case was confirmed. Sequencing of patient samples from the case in April and six others that followed indicated that these cases were likely to have come from a reintroduction of the virus from a persistently infected survivor.1 This group of cases marked the second flare-up linked to an EVD survivor during this outbreak. In November, 2019, a relapse case in North Kivu resulted in widespread transmission across multiple health zones, helping to extend the outbreak by at least 3 months. |
Public Health Responses to COVID-19 Outbreaks on Cruise Ships - Worldwide, February-March 2020.
Moriarty LF , Plucinski MM , Marston BJ , Kurbatova EV , Knust B , Murray EL , Pesik N , Rose D , Fitter D , Kobayashi M , Toda M , Canty PT , Scheuer T , Halsey ES , Cohen NJ , Stockman L , Wadford DA , Medley AM , Green G , Regan JJ , Tardivel K , White S , Brown C , Morales C , Yen C , Wittry B , Freeland A , Naramore S , Novak RT , Daigle D , Weinberg M , Acosta A , Herzig C , Kapella BK , Jacobson KR , Lamba K , Ishizumi A , Sarisky J , Svendsen E , Blocher T , Wu C , Charles J , Wagner R , Stewart A , Mead PS , Kurylo E , Campbell S , Murray R , Weidle P , Cetron M , Friedman CR . MMWR Morb Mortal Wkly Rep 2020 69 (12) 347-352 An estimated 30 million passengers are transported on 272 cruise ships worldwide each year* (1). Cruise ships bring diverse populations into proximity for many days, facilitating transmission of respiratory illness (2). SARS-CoV-2, the virus that causes coronavirus disease (COVID-19) was first identified in Wuhan, China, in December 2019 and has since spread worldwide to at least 187 countries and territories. Widespread COVID-19 transmission on cruise ships has been reported as well (3). Passengers on certain cruise ship voyages might be aged >/=65 years, which places them at greater risk for severe consequences of SARS-CoV-2 infection (4). During February-March 2020, COVID-19 outbreaks associated with three cruise ship voyages have caused more than 800 laboratory-confirmed cases among passengers and crew, including 10 deaths. Transmission occurred across multiple voyages of several ships. This report describes public health responses to COVID-19 outbreaks on these ships. COVID-19 on cruise ships poses a risk for rapid spread of disease, causing outbreaks in a vulnerable population, and aggressive efforts are required to contain spread. All persons should defer all cruise travel worldwide during the COVID-19 pandemic. |
Ebola virus persistence in breast milk after no reported illness: a likely source of virus transmission from mother to child.
Sissoko D , Keita M , Diallo B , Aliabadi N , Fitter DL , Dahl BA , Bore JA , Koundouno FR , Singethan K , Meisel S , Enkirch T , Mazzarelli A , Amburgey V , Faye O , Sall AA , Magassouba N , Carroll MW , Anglaret X , Malvy D , Formenty P , Aylward RB , Keita S , Djingarey MH , Loman NJ , Gunther S , Duraffour S . Clin Infect Dis 2016 64 (4) 513-516 A nine-month-old infant died from Ebola virus (EBOV) disease with unknown epidemiological link. While her parents did not report previous illness, laboratory investigations revealed persisting EBOV RNA in the mother's breast milk and the father's seminal fluid. Genomic analysis strongly suggests EBOV transmission to the child through breastfeeding. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure