Last data update: Oct 07, 2024. (Total: 47845 publications since 2009)
Records 1-12 (of 12 Records) |
Query Trace: Fishman J[original query] |
---|
Introduction to A Compendium of Strategies to Prevent Healthcare-Associated Infections In Acute-Care Hospitals: 2022 Updates
Yokoe DS , Advani SD , Anderson DJ , Babcock HM , Bell M , Berenholtz SM , Bryant KA , Buetti N , Calderwood MS , Calfee DP , Deloney VM , Dubberke ER , Ellingson KD , Fishman NO , Gerding DN , Glowicz J , Hayden MK , Kaye KS , Kociolek LK , Landon E , Larson EL , Malani AN , Marschall J , Meddings J , Mermel LA , Patel PK , Perl TM , Popovich KJ , Schaffzin JK , Septimus E , Trivedi KK , Weinstein RA , Maragakis LL . Infect Control Hosp Epidemiol 2023 44 (10) 1533-1539 Since the initial publication of A Compendium of Strategies to Prevent Healthcare-Associated Infections in Acute Care Hospitals in 2008, the prevention of healthcare-associated infections (HAIs) has continued to be a national priority. Progress in healthcare epidemiology, infection prevention, antimicrobial stewardship, and implementation science research has led to improvements in our understanding of effective strategies for HAI prevention. Despite these advances, HAIs continue to affect ∼1 of every 31 hospitalized patients, leading to substantial morbidity, mortality, and excess healthcare expenditures, and persistent gaps remain between what is recommended and what is practiced.The widespread impact of the coronavirus disease 2019 (COVID-19) pandemic on HAI outcomes in acute-care hospitals has further highlighted the essential role of infection prevention programs and the critical importance of prioritizing efforts that can be sustained even in the face of resource requirements from COVID-19 and future infectious diseases crises.The Compendium: 2022 Updates document provides acute-care hospitals with up-to-date, practical expert guidance to assist in prioritizing and implementing HAI prevention efforts. It is the product of a highly collaborative effort led by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Disease Society of America (IDSA), the Association for Professionals in Infection Control and Epidemiology (APIC), the American Hospital Association (AHA), and The Joint Commission, with major contributions from representatives of organizations and societies with content expertise, including the Centers for Disease Control and Prevention (CDC), the Pediatric Infectious Disease Society (PIDS), the Society for Critical Care Medicine (SCCM), the Society for Hospital Medicine (SHM), the Surgical Infection Society (SIS), and others. |
Executive summary: A compendium of strategies to prevent healthcare-associated infections in acute-care hospitals: 2022 updates
Yokoe DS , Advani SD , Anderson DJ , Babcock HM , Bell M , Berenholtz SM , Bryant KA , Buetti N , Calderwood MS , Calfee DP , Dubberke ER , Ellingson KD , Fishman NO , Gerding DN , Glowicz J , Hayden MK , Kaye KS , Klompas M , Kociolek LK , Landon E , Larson EL , Malani AN , Marschall J , Meddings J , Mermel LA , Patel PK , Perl TM , Popovich KJ , Schaffzin JK , Septimus E , Trivedi KK , Weinstein RA , Maragakis LL . Infect Control Hosp Epidemiol 2023 44 (10) 1-15 Strategies to prevent catheter-associated urinary tract infections (CAUTIs) | Essential practices | Infrastructure and resources | 1 Perform a CAUTI risk assessment and implement an organization-wide program to identify and remove catheters that are no longer necessary using 1 or | more methods documented to be effective. (Quality of evidence: MODERATE) | 2 Provide appropriate infrastructure for preventing CAUTI. (Quality of evidence: LOW) | 3 Provide and implement evidence-based protocols to address multiple steps of the urinary catheter life cycle: catheter appropriateness (step 0), insertion | technique (step 1), maintenance care (step 2), and prompt removal (step 3) when no longer appropriate. (Quality of evidence: LOW) | 4 Ensure that only trained healthcare personnel (HCP) insert urinary catheters and that competency is assessed regularly. (Quality of evidence: LOW) | 5 Ensure that supplies necessary for aseptic technique for catheter insertion are available and conveniently located. (Quality of evidence: LOW) | 6 Implement a system for documenting the following in the patient record: physician order for catheter placement, indications for catheter insertion, date | and time of catheter insertion, name of individual who inserted catheter, nursing documentation of placement, daily presence of a catheter and | maintenance care tasks, and date and time of catheter removal. Record criteria for removal and justification for continued use. (Quality of evidence: | LOW) | 7 Ensure that sufficiently trained HCP and technology resources are available to support surveillance for catheter use and outcomes. (Quality of evidence: | LOW) | 8 Perform surveillance for CAUTI if indicated based on facility risk assessment or regulatory requirements. (Quality of evidence: LOW) | 9 Standardize urine culturing by adapting an institutional protocol for appropriate indications for urine cultures in patients with and without indwelling | catheters. Consider incorporating these indications into the electronic medical record, and review indications for ordering urine cultures in the CAUTI | risk assessment. (Quality of evidence: LOW) | Education and training | 1 Educate HCP involved in the insertion, care, and maintenance of urinary catheters about CAUTI prevention, including alternatives to indwelling | catheters, and procedures for catheter insertion, management, and removal. (Quality of evidence: LOW) | 2 Assess healthcare professional competency in catheter use, catheter care, and maintenance. (Quality of evidence: LOW) | 3 Educate HCP about the importance of urine-culture stewardship and provide indications for urine cultures. (Quality of evidence: LOW) | 4 Provide training on appropriate collection of urine. Specimens should be collected and should arrive at the microbiology laboratory as soon as possible, | preferably within an hour. If delay in transport to the laboratory is expected, samples should be refrigerated (no more than 24 hours) or collected in | preservative urine transport tubes. (Quality of evidence: LOW) | 5 Train clinicians to consider other methods for bladder management, such as intermittent catheterization or external male or female collection devices, | when appropriate, before placing an indwelling urethral catheter. (Quality of evidence: LOW) | 6 Share data in a timely fashion and report to appropriate stakeholders. (Quality of evidence: LOW) | Insertion of indwelling catheters | 1 Insert urinary catheters only when necessary for patient care and leave in place only as long as indications remain. (Quality of evidence: MODERATE) | 2 Consider other methods for bladder management such as intermittent catheterization, or external male or female collection devices, when appropriate. | (Quality of evidence: LOW) | 3 Use appropriate technique for catheter insertion. (Quality of evidence: MODERATE). | 4 Consider working in pairs to help perform patient positioning and monitor for potential contamination during placement. (Quality of evidence: LOW) | 5 Practice hand hygiene (based on CDC or WHO guidelines) immediately before insertion of the catheter and before and after any manipulation of the | catheter site or apparatus. (Quality of evidence: LOW) | 6 Insert catheters following aseptic technique and using sterile equipment. (Quality of evidence: LOW) | 7 Use sterile gloves, drape, and sponges, a sterile antiseptic solution for cleaning the urethral meatus, and a sterile single-use packet of lubricant jelly for | insertion. (Quality of evidence: LOW) | 8 Use a catheter with the smallest feasible diameter consistent with proper drainage to minimize urethral trauma but consider other catheter types and | sizes when warranted for patients with anticipated difficult catheterization to reduce the likelihood that a patient will experience multiple, sometimes | traumatic, catheterization attempts. (Quality of evidence: LOW) | Management of indwelling catheters | 1 Properly secure indwelling catheters after insertion to prevent movement and urethral traction. (Quality of evidence: LOW) | 2 Maintain a sterile, continuously closed drainage system. (Quality of evidence: LOW) | 3 Replace the catheter and the collecting system using aseptic technique when breaks in aseptic technique, disconnection, or leakage occur. (Quality of | evidence: LOW) | 4 For examination of fresh urine, collect a small sample by aspirating urine from the needleless sampling port with a sterile syringe/cannula adaptor after | cleansing the port with disinfectant. (Quality of evidence: LOW) | (Continued) | 2 Deborah S. Yokoe et al | https://doi.org/10.1017/ice.2023.138 Published online by Cambridge University Press | Strategies to prevent central-line–associated bloodstream infections (CLABSIs) | (Continued ) | 5 Facilitate timely transport of urine samples to laboratory. If timely transport is not feasible, consider refrigerating urine samples or using samplecollection cups with preservatives. Obtain larger volumes of urine for special analyses (eg, 24-hour urine) aseptically from the drainage bag. (Quality of | evidence: LOW) | 6 Maintain unobstructed urine flow. (Quality of evidence: LOW) | 7 Employ routine hygiene. Cleaning the meatal area with antiseptic solutions is an unresolved issue, though emerging literature supports chlorhexidine | use prior to catheter insertion. Alcohol-based products should be avoided given concerns about the alcohol causing drying of the mucosal tissues. | (Quality of evidence: LOW) | Additional approaches | 1 Develop a protocol for standardizing diagnosis and management of postoperative urinary retention, including nurse-directed use of intermittent | catheterization and use of bladder scanners when appropriate as alternatives to indwelling urethral catheterization. (Quality of evidence: MODERATE) | 2 Establish a system for analyzing and reporting data on catheter use and adverse events from catheter use. (Quality of evidence: LOW) | 3 Establish a system for defining, analyzing, and reporting data on non–catheter-associated UTIs, particularly UTIs associated with the use of devices | being used as alternatives to indwelling urethral catheters. (Quality of evidence: LOW) | Essential practices | Before insertion | 1 Provide easy access to an evidence-based list of indications for CVC use to minimize unnecessary CVC placement. (Quality of evidence: LOW) | 2 Require education and competency assessment of healthcare personnel (HCP) involved in insertion, care and maintenance of CVCs about CLABSI | prevention. (Quality of evidence: MODERATE) | 3 Bathe ICU patients aged >2 months with a chlorhexidine preparation on a daily basis. (Quality of evidence: HIGH) | At insertion | 1 In ICU and non-ICU settings, a facility should have a process in place, such as a checklist, to ensure adherence to infection prevention practices at the | time of CVC insertion. (Quality of evidence: MODERATE) | 2 Perform hand hygiene prior to catheter insertion or manipulation. (Quality of evidence: MODERATE) | 3 The subclavian site is preferred to reduce infectious complications when the catheter is placed in the ICU setting. (Quality of evidence: HIGH) | 4 Use an all-inclusive catheter cart or kit. (Quality of evidence: MODERATE) | 5 Use ultrasound guidance for catheter insertion. (Quality of evidence: HIGH) | 6 Use maximum sterile barrier precautions during CVC insertion. (Quality of evidence: MODERATE) | After insertion | 1 Ensure appropriate nurse-to-patient ratio and limit use of float nurses in ICUs. (Quality of evidence: HIGH) | 2 Use chlorhexidine-containing dressings for CVCs in patients aged >2 months. (Quality of evidence: HIGH) | 3 For nontunneled CVCs in adults and children, change transparent dressings and perform site care with a chlorhexidine-based antiseptic at least every 7 | days or immediately if the dressing is soiled, loose, or damp. Change gauze dressings every 2 days or earlier if the dressing is soiled, loose, or damp. | (Quality of evidence: MODERATE) | 4 Disinfect catheter hubs, needleless connectors, and injection ports before accessing the catheter. (Quality of evidence: MODERATE) | 5 Remove nonessential catheters. (Quality of evidence: MODERATE) | 6 Routine replacement of administration sets not used for blood, blood products, or lipid formulations can be performed at intervals up to 7 days. | (Quality of evidence: HIGH) | 7 Perform surveillance for CLABSI in ICU and non-ICU settings. (Quality of evidence: HIGH) | Additional approaches | 1 Use antiseptic or antimicrobial-impregnated CVCs. (Quality of evidence: HIGH in adult patients; MODERATE in pediatric patients) | 2 Use antimicrobial lock therapy for long-term CVCs. (Quality of evidence: HIGH) | 3 Use recombinant tissue plasminogen activating factor (rt-PA) once weekly after hemodialysis in patients undergoing hemodialysis through a CVC. | (Quality of evidence: HIGH) | 4 Utilize infusion or vascular access teams for reducing CLABSI rates. (Quality of evidence: LOW) | 5 Use antimicrobial ointments for hemodialysis catheter-insertion sites. (Quality of evidence: HIGH) | 6 Use an antiseptic-containing hub, connector cap, or port protector to cover connectors. (Quality of evidence: MODERATE) | Infection Control & Hospital Epidemiology 3 | https://doi.org/10.1017/ice.2023.138 Published online by Cambridge University Press | Strategies to prevent Clostridioides difficile infections (CDIs) | Strategies to prevent methicillin-resistant Staphylococcus aureus (MRSA) transmission and infection | Essential practices | 1 Encourage appropriate use of antimicrobials through implementation of an antimicrobial stewardship program. (Quality of evidence: MODERATE) | 2 Implement diagnostic stewardship practices for ensuring appropriate use and interpretation of C. difficile testing. (Quality of evidence: LOW) | 3 Use contact precautions for infected patients, single-patient room preferred. (Quality of evidence: LOW for hand hygiene; MODERATE for gloves; LOW | for gowns; LOW for single-patient room) | 4 Adequately clean and disinfect equipment and the environment of patients with CDI. (Quality of evidence: LOW for equipment; LOW for environment) | 5 Assess the adequacy of room cleaning. (Quality of evidence: LOW) | 6 Implement a laboratory-based alert system to provide immediate notification to infection preventionists and clinical personnel about newly diagnosed | patients with CDI. (Quality of evidence: LOW) | 7 Conduct CDI surveillance and analyze and report CDI data. (Quality of evidence: LOW) | 8 Educate healthcare personnel (HCP), environmental service personnel, and hospital administration about CDI. (Quality of evidence: LOW) | 9 Educate patients and their families about CDI as appropriate. (Quality of evidence: LOW) | 10 Measure compliance with CDC or WHO hand hygiene and contact precaution recommendations. (Quality of evidence: LOW) | Additional approaches | 1 Intensify the assessment of compliance with process measures. (Quality of evidence: LOW) | 2 Perform hand hygiene with soap and water as the preferred method following care of or interacting with the healthcare environment of a patient with | CDI. (Quality of evidence: LOW) | 3 Place patients with diarrhea on contact precautions while C. difficile testing is pending. (Quality of evidence: LOW) | 4 Prolong the duration of contact precautions after the patient becomes asymptomatic until hospital discharge. (Quality of evidence: LOW) | 5 Use an EPA-approved sporicidal disinfectant, such as diluted (1:10) sodium hypochlorite, for environmental cleaning and disinfection. Implement a | system to coordinate with environmental services if it is determined that sodium hypochlorite is needed for environmental disinfection. (Quality of | evidence: LOW) | Essential practices | 1 Implement an MRSA monitoring program. (Quality of evidence: LOW) | 2 Conduct an MRSA risk assessment. (Quality of evidence: LOW) | 3 Promote compliance with CDC or World Health Organization (WHO) hand hygiene recommendations. (Quality of evidence: MODERATE) | 4 Use contact precautions for MRSA-colonized and MRSA-infected patients. A facility that chooses or has already chosen to modify the use of contact | precautions for some or all of these patients should conduct an MRSA-specific risk assessment to evaluate the facility for transmission risks and to | assess the effectiveness of other MRSA risk mitigation strategies (eg, hand hygiene, cleaning and disinfection of the environment, single occupancy | patient rooms) and should establish a process for ongoing monitoring, oversight, and risk assessment. (Quality of evidence: MODERATE) | 5 Ensure cleaning and disinfection of equipment and the environment. (Quality of evidence: MODERATE) | 6 Implement a laboratory-based alert system that notifies healthcare personnel (HCP) of new MRSA-colonized or MRSA-infected patients in a timely | manner. (Quality of evidence: LOW) | 7 Implement an alert system that identifies readmitted or transferred MRSA-colonized or MRSA-infected patients. (Quality of evidence: LOW) | 8 Provide MRSA data and outcome measures to key stakeholders, including senior leadership, physicians, nursing staff, and others. (Quality of evidence: | LOW) | 9 Educate healthcare personnel about MRSA. (Quality of evidence: LOW) | 10 Educate patients and families about MRSA. (Quality of evidence: LOW) | 11 Implement an antimicrobial stewardship program. (Quality of evidence: LOW) | Additional approaches | Active surveillance testing (AST) | 1 Implement an MRSA AST program for select patient populations as part of a multifaceted strategy to control and prevent MRSA. (Quality of evidence: | MODERATE) Note: specific populations may have different evidence ratings. | 2 Active surveillance for MRSA in conjunction with decolonization can be performed in targeted populations prior to surgery to prevent postsurgical | MRSA infection. (Quality of evidence: MODERATE) | (Continued) | 4 Deborah S. Yokoe et al | https://doi.org/10.1017/ice.2023.138 Published online by Cambridge University Press | Strategies to prevent surgical-site infections (SSIs) | (Continued ) | 3 Active surveillance with contact precautions is inferior to universal decolonization for reduction of MRSA clinical isolates in adult ICUs. (Quality of | evidence: HIGH) | 4 Hospital-wide active surveillance for MRSA can be used in conjunction with contact precautions to reduce the incidence of MRSA infection. (Quality of | evidence: MODERATE) | 5 Active surveillance can be performed in the setting of an MRSA outbreak or evidence of ongoing transmission of MRSA within a unit as part of a | multifaceted strategy to halt transmission. (Quality of evidence: MODERATE) | Screen healthcare personnel for MRSA infection or colonization | 1 Screen HCP for MRSA infection or colonization if they are epidemiologically linked to a cluster of MRSA infections. (Quality of evidence: LOW) | MRSA decolonization therapy | 1 Use universal decolonization (ie, daily CHG bathing plus 5 days of nasal decolonization) for all patients in adult ICUs to reduce endemic MRSA clinical | cultures. (Quality of evidence: HIGH) | 2 Perform preoperative nares screening with targeted use of CHG and nasal decolonization in MRSA carriers to reduce MRSA SSI from surgical | procedures involving implantation of hardware. (Quality of evidence: MODERATE) | 3 Screen for MRSA and provide targeted decolonization with CHG bathing and nasal decolonization to MRSA carriers in surgical units to reduce | postoperative MRSA inpatient infections. (Quality of evidence: MODERATE) | 4 Provide CHG bathing plus nasal decolonization to known MRSA carriers outside the ICU with medical devices, specifically central lines, midline | catheters, and lumbar drains to reduce MRSA clinical cultures. (Quality of evidence: MODERATE) | 5 Consider postdischarge decolonization of MRSA carriers to reduce postdischarge MRSA infections and readmissions. (Quality of evidence: HIGH) | 6 Neonatal ICUs should consider targeted or universal decolonization during times of above-average MRSA infection rates or targeted decolonization for | patients at high risk of MRSA infection (eg, low birth weight, indwelling devices, or prior to high-risk surgeries). (Quality of evidence: MODERATE) | 7 Burn units should consider targeted or universal decolonization during times of above-average MRSA infection rates. (Quality of evidence: MODERATE) | 8 Consider targeted or universal decolonization of hemodialysis patients. (Quality of evidence: MODERATE) | 9 Decolonization should be strongly considered as part of a multimodal approach to control MRSA outbreaks. (Quality of evidence: MODERATE) | Universal use of gowns and gloves | 1 Use gowns and gloves when providing care to or entering the room of any adult ICU patient, regardless of MRSA colonization status. (Quality of | evidence: MODERATE) | Essential practices | 1 Administer antimicrobial prophylaxis according to evidence-based standards and guidelines. (Quality of evidence: HIGH) | 2 Use a combination of parenteral and oral antimicrobial prophylaxis prior to elective colorectal surgery to reduce the risk of SSI. (Quality of evidence: | HIGH) | 3 Decolonize surgical patients with an anti-staphylococcal agent in the preoperative setting for orthopedic and cardiothoracic procedures. (Quality of | evidence: HIGH) | Decolonize surgical patients in other procedures at high risk of staphylococcal SSI, such as those involving prosthetic material. (Quality of evidence: | LOW) | 4 Use antiseptic-containing preoperative vaginal preparation agents for patients undergoing cesarean delivery or hysterectomy. (Quality of evidence: | MODERATE) | 5 Do not remove hair at the operative site unless the presence of hair will interfere with the surgical procedure. (Quality of evidence: MODERATE) | 6 Use alcohol-containing preoperative skin preparatory agents in combination with an antiseptic. (Quality of evidence: HIGH) | 7 For procedures not requiring hypothermia, maintain normothermia (temperature >35.5 °C) during the perioperative period. (Quality of evidence: HIGH). | 8 Use impervious plastic wound protectors for gastrointestinal and biliary tract surgery. (Quality of evidence: HIGH) | 9 Perform intraoperative antiseptic wound lavage. (Quality of evidence: MODERATE) | 10 Control blood glucose level during the immediate postoperative period for all patients. (Quality of evidence: HIGH) | 11 Use a checklist and/or bundle to ensure compliance with best practices to improve surgical patient safety. (Quality of evidence: HIGH) | 12 Perform surveillance for SSI. (Quality of evidence: MODERATE) | 13 Increase the efficiency of surveillance by utilizing automated data. (Quality of evidence: MODERATE) | 14 Provide ongoing SSI rate feedback to surgical and perioperative personnel and leadership. (Quality of evidence: MODERATE) | 15 Measure and provide feedback to healthcare personnel (HCP) regarding rates of compliance with process measures. (Quality of evidence: LOW) | (Continued) | Infection Control & Hospital Epidemiology 5 | https://doi.org/10.1017/ice.2023.138 Published online by Cambridge University Press | Strategies to prevent ventilator-associated pneumonia (VAP) and ventilator-associated events (VAEs) | Adult patients | (Continued ) | 16 Educate surgeons and perioperative personnel about SSI prevention measures. (Quality of evidence: LOW) | 17 Educate patients and their families about SSI prevention as appropriate. (Quality of evidence: LOW) | 18 Implement policies and practices to reduce the risk of SSI for patients that align with applicable evidence-based standards, rules and regulations, and | medical device manufacturer instructions for use. (Quality of evidence: MODERATE) | 19 Observe and review operating room personnel and the environment of care in the operating room and in central sterile reprocessing. (Quality of | evidence: LOW) | Additional approaches | 1 Perform an SSI risk assessment. (Quality of evidence: LOW) | 2 Consider use of negative-pressure dressings in patients who may benefit. (Quality of evidence: MODERATE) | 3 Observe and review practices in the preoperative clinic, post-anesthesia care unit, surgical intensive care unit, and/or surgical ward. (Quality of | evidence: MODERATE) | 4 Use antiseptic-impregnated sutures as a strategy to prevent SSI. (Quality of evidence: MODERATE) | Essential practices | Interventions with little risk of harm and that are associated with decreases in duration of mechanical ventilation, length of stay, mortality, antibiotic utilization, | and/or costs | Avoid intubation and prevent reintubation if possible. | 1 Use high flow nasal oxygen or non-invasive positive pressure ventilation (NIPPV) as appropriate, whenever safe and feasible. (Quality of evidence: HIGH) | Minimize sedation. | 1 Minimize sedation of ventilated patients whenever possible. (Quality of evidence: HIGH) | 2 Preferentially use multimodal strategies and medications other than benzodiazepines to manage agitation. (Quality of evidence: HIGH) | 3 Utilize a protocol to minimize sedation. (Quality of evidence: HIGH) | 4 Implement a ventilator liberation protocol. (Quality of evidence: HIGH) | Maintain and improve physical conditioning. | 1 Provide early exercise and mobilization. (Quality of evidence: MODERATE) | Elevate the head of the bed to 30°–45°. (Quality of evidence: LOW) | Provide oral care with toothbrushing but without chlorhexidine. (Quality of evidence: MODERATE) | Provide early enteral rather than parenteral nutrition. (Quality of evidence: HIGH) | Maintain ventilator circuits. | 1 Change the ventilator circuit only if visibly soiled or malfunctioning (or per manufacturers’ instructions) (Quality of evidence: HIGH). | Additional approaches | May decrease duration of mechanical ventilation, length of stay, and/or mortality in some populations but not in others, and they may confer some risk of harm | in some populations. | 1 Consider using selective decontamination of the oropharynx and digestive tract to decrease microbial burden in ICUs with low prevalence of antibiotic | resistant organisms. Antimicrobial decontamination is not recommended in countries, regions, or ICUs with high prevalence of antibiotic-resistant | organisms. (Quality of evidence: HIGH) | Additional approaches | May lower VAP rates, but current data are insufficient to determine their impact on duration of mechanical ventilation, length of stay, and mortality. | 1 Consider using endotracheal tubes with subglottic secretion drainage ports to minimize pooling of secretions above the endotracheal cuff in patients | likely to require >48–72 hours of intubation. (Quality of evidence: MODERATE) | 2 Consider early tracheostomy. (Quality of evidence: MODERATE) | 3 Consider postpyloric feeding tube placement in patients with gastric feeding intolerance at high risk for aspiration. (Quality of evidence: MODERATE) | 6 Deborah S. Yokoe et al | https://doi.org/10.1017/ice.2023.138 Published online by Cambridge University Press | Preterm neonatal patients | Pediatric patients | Essential practices | Confer minimal risk of harm and may lower VAP and/or PedVAE rates. | Avoid intubation. (Quality of evidence: HIGH) | Minimize duration of mechanical ventilation. (Quality of evidence: HIGH) | 1 Manage patients without sedation whenever possible. (Quality of evidence: LOW) | 2 Use caffeine therapy for apnea of prematurity within 72 hours after birth to facilitate extubation. (Quality of evidence: HIGH) | 3 Assess readiness to extubate daily. (Quality of evidence: LOW) | 4 Take steps to minimize unplanned extubation and reintubation. (Quality of evidence: LOW) | 5 Provide regular oral care with sterile water (extrapolated from practice in infants and children, no data in preterm neonates). (Quality of evidence: | LOW) | 6 Change the ventilator circuit only if visibly soiled or malfunctioning or according to the manufacturer’s instructions for use (extrapolated from studies in | adults and children, no data in preterm neonates). (Quality of evidence: LOW) | Additional approaches | Minimal risks of harm, but impact on VAP and VAE rates is unknown. | 1 Lateral recumbent positioning. (Quality of evidence: LOW) | 2 Reverse Trendelenberg positioning. (Quality of evidence: LOW) | 3 Closed or in-line suctioning. (Quality of evidence: LOW) | 4 Oral care with maternal colostrum. (Quality of evidence: MODERATE) | Essential practices | Confer minimal risk of harm and some data suggest that they may lower VAP rates, PedVAE rates, and/or duration of mechanical ventilation. | Avoid intubation. | 1 Use noninvasive positive pressure ventilation (NIPPV) or high-flow oxygen by nasal cannula whenever safe and feasible. (Quality of evidence: | MODERATE) | Minimize duration of mechanical ventilation. | 1 Assess readiness to extubate daily using spontaneous breathing trials in patients without contraindications. (Quality of evidence: MODERATE) | 2 Take steps to minimize unplanned extubations and reintubations. (Quality of evidence: LOW) | 3 Avoid fluid overload. (Quality of evidence: MODERATE) | Provide regular oral care (ie, toothbrushing or gauze if no teeth). (Quality of evidence: LOW) | Elevate the head of the bed unless medically contraindicated. (Quality of evidence: LOW) | Maintain ventilator circuits. | 1 Change ventilator circuits only when visibly soiled or malfunctioning (or per manufacturer’s instructions). (Quality of evidence: MODERATE) | 2 Remove condensate from the ventilator circuit frequently and avoid draining the condensate toward the patient. (Quality of evidence: LOW) | Endotracheal tube selection and management | 1 Use cuffed endotracheal tubes. (Quality of evidence: LOW) | 2 Maintain cuff pressure and volume at the minimal occlusive settings to prevent clinically significant air leaks around the endotracheal tube, typically | 20-25cm H2O. This “minimal leak” approach is associated with lower rates of post-extubation stridor. (Quality of evidence: LOW) | 3 Suction oral secretions before each position change. (Quality of evidence: LOW) | Additional approaches | Minimal risks of harm and some evidence of benefit in adult patients but data in pediatric populations are limited. | 1 Minimize sedation. (Quality of evidence: MODERATE) | 2 Use endotracheal tubes with subglottic secretion drainage ports for patients ≥10 years of age. (Quality of evidence: LOW) | 3 Consider early tracheostomy. (Quality of evidence: LOW) | Infection Control & Hospital Epidemiology 7 | https://doi.org/10.1017/ice.2023.138 Published online by Cambridge University Press | Strategies to prevent nonventilator hospital-acquired pneumonia (NV-HAP) | Strategies to prevent healthcare-associated infections through hand hygiene | Essential practices | Promote the maintenance of healthy hand skin and nails. (Quality of evidence: HIGH) | 1 Promote the preferential use of alcohol-based hand sanitizer (ABHS) in most clinical situations. (Quality of evidence: HIGH) | 2 Perform hand hygiene as indicated by CDC or the WHO Five Moments. (Quality of evidence: HIGH) | 3 Include fingernail care in facility-specific policies related to hand hygiene. (Quality of evidence: HIGH) | a) Healthcare personnel (HCP) should maintain short, natural fingernails. | b) Nails should not extend past the fingertip. | c) HCP who provide direct or indirect care in high-risk areas | (eg, ICU or perioperative) should not wear artificial fingernail extenders. | d) Prohibitions against fingernail polish (standard or gel shellac) are at the discretion of the infection prevention program, except among scrubbed | individuals who interact with the sterile field during surgical procedures; these individuals should not wear fingernail polish or gel shellac. | 4 Engage all HCP in primary prevention of occupational irritant and allergic contact dermatitis. (Quality of evidence: HIGH) | 5 Provide cotton glove liners for HCP with hand irritation and educate these HCP on their use. (Quality of evidence: MODERATE) | Select appropriate products. | 1 For routine hand hygiene, choose liquid, gel, or foam ABHS with at least 60% alcohol. (Quality of evidence: HIGH) | 2 Involve HCP in selection of products. (Quality of evidence: HIGH) | 3 Obtain and consider manufacturers’ product-specific data if seeking ABHS with ingredients that may enhance efficacy against organisms anticipated to | be less susceptible to biocides. (Quality of evidence: MODERATE) | 4 Confirm that the volume of ABHS dispensed is consistent with the volume shown to be efficacious. (Quality of evidence: HIGH) | 5 Educate HCP about an appropriate volume of ABHS and the time required to obtain effectiveness. (Quality of evidence: HIGH) | 6 Provide facility-approved hand moisturizer that is compatible with antiseptics and gloves. (Quality of evidence: HIGH) | 7 For surgical antisepsis, use an FDA-approved surgical hand scrub or waterless surgical hand rub. (Quality of evidence: HIGH) | Ensure the accessibility of hand hygiene supplies. (Quality of evidence: HIGH) | 1 Ensure ABHS dispensers are unambiguous, visible, and accessible within the workflow of HCP. (Quality of evidence: HIGH) | 2 In private rooms, consider 2 ABHS dispensers the minimum threshold for adequate numbers of dispensers: 1 dispenser in the hallway, and 1 in the | patient room. (Quality of evidence: HIGH) | 3 In semiprivate rooms, suites, bays, and other multipatient bed configurations, consider 1 dispenser per 2 beds the minimum threshold for adequate | numbers of dispensers. Place ABHS dispensers in the workflow of HCP. (Quality of evidence: LOW) | 4 Ensure that the placement of hand hygiene supplies (eg, individual pocket-sized dispensers, bed mounted ABHS dispenser, single use pump bottles) is | easily accessible for HCP in all areas where patients receive care. (Quality of evidence: HIGH) | 5 Evaluate for the risk of intentional consumption. Utilize dispensers that mitigate this risk, such as wall-mounted dispensers that allow limited numbers | of activations within short periods (eg, 5 seconds). (Quality of evidence: LOW) | 6 Have surgical hand rub and scrub available in perioperative areas. (Quality of evidence: HIGH) | 7 Consider providing ABHS hand rubs or handwash with FDA-approved antiseptics for use in procedural areas and prior to high-risk bedside procedures | (eg, central-line insertion). (Quality of evidence: LOW) | (Continued) | Practices supported by interventional studies suggesting lower | NV-HAP rates | 1 Provide regular oral care. | 2 Diagnose and manage dysphagia. | 3 Provide early mobilization. | 4 Implement multimodal interventions to prevent viral infections. | 5 Use prevention bundles. | 8 Deborah S. Yokoe et al | https://doi.org/10.1017/ice.2023.138 Published online by Cambridge University Press | Implementing strategies to prevent healthcare-associated infections | Standard approach to implementation | Examples of implementation frameworks | (Continued ) | Ensure appropriate glove use to reduce hand and environmental contamination. (Quality of Evidence: HIGH) | 1 Use gloves for all contact with the patient and environment as indicated by standard and contact precautions during the care of individuals with | organisms confirmed to be less susceptible to biocides (e.g., C. difficile or norovirus) | 2 Educate HCP about the potential for self-contamination and environmental contamination when gloves are worn. (Quality of evidence: HIGH) | 3 Educate and confirm the ability of HCP to doff gloves in a manner that avoids contamination. (Quality of evidence: HIGH) | Take steps to reduce environmental contamination associated with sinks and sink drains. (Quality of evidence: HIGH) | Monitor adherence to hand hygiene. (Quality of evidence: HIGH) | Provide timely and meaningful feedback to enhance a culture of safety. (Quality of evidence: MODERATE) | Additional approaches during outbreaks | 1 Consider educating HCP using a structured approach (eg, WHO Steps) for handwashing or hand sanitizing. Evaluate HCP adherence to technique. | (Quality of evidence: LOW) | 2 For waterborne pathogens of premise plumbing, consider disinfection of sink drains using an EPA-registered disinfectant with claims against biofilms. | Consult with state or local public health for assistance in determining appropriate protocols for use and other actions needed to ensure safe supply. | (Quality of evidence: LOW) | 3 For C. difficile and norovirus, in addition to contact precautions, encourage hand washing with soap and water after the care of patients with known or | suspected infections. (Quality of evidence: LOW) | 1 Assess determinants of change and | classify as follows: | • Facilitators: promote practice or | change, or | • Barriers: hinder practice or change | Individual level: healthcare personnel, leaders, patients, and visitors’ preferences, needs, attitudes, and | knowledge. | Facility level: team composition, communication, culture, capacity, policies, resources. | Partners: degree of support and buy-in. | 2 Choose measures Measurement methods must be appropriate for the question(s) they seek to answer and adhere to the | methods’ data collection and analysis rules: | • Outcome measure: ultimate goal (eg, HAI reduction). | • Process measure: action reliability (eg, bundle adherence). | • Balancing measure: undesired outcome of change (eg, staff absences due to required vaccine side effects). | 3 Select framework(s) See below and “Implementing Strategies to Prevent Infections in Acute Care Settings” (Table 3) | 32 | Framework Published Experience Resources | 4Es Settings | • Healthcare facilities | • Large-scale projects including multiple | sites | Infection prevention and control | • HAI prevention (including mortality | reduction and cost savings) | • 4Es Framework11 | • HAI reduction12–14 | • Mortality reduction15 | • Cost savings16 | Behavior Change Wheel Settings | • Community-based practice | • Healthcare facilities | Healthy behaviors | • Smoking cessation | • Obesity prevention | • Increased physical activity | Infection prevention and control | • Hand hygiene adherence | • Antibiotic prescribing17 | • Behavior Change Wheel: A Guide to Designing Interventions18 | • Stand More at Work (SMArT Work)19 | (Continued) | Infection Control & Hospital Epidemiology 9 | https://doi.org/10.1017/ice.2023.138 Published online by Cambridge University Press | Acknowledgments. The Compendium Partners thank the authors for their | dedication to this work, including maintaining adherence to the rigorous | process for the development of the Compendium: 2022 Updates, involving but | not limited to screening of thousands of articles; achieving multilevel consensus; | and consideration of, response to, and incorporation of many organizations’ | feedback and comments. We acknowledge these efforts especially because they | occurred as the authors handled the demands of the COVID-19 pandemic. The | authors thank Valerie Deloney, MBA, for her organizational expertise in the | development of this manuscript and Janet Waters, MLS, BSN, RN, for her | expertise in developing the strategies used for the literature searches that | informed this manuscript. The authors thank the many individuals and | organizations who gave their time and expertise to review and provide | (Continued ) | Comprehensive Unit-based | Safety Program (CUSP) | Settings | • Intensive care units | • Ambulatory centers | Improvements | • Antibiotic prescribing | • CLABSI prevention | • CAUTI prevention | • CUSP Implementation Toolkit20 | • AHA/HRET: Eliminating CAUTI (Stop CAUTI)21 | • AHRQ Toolkit to Improve Safety in Ambulatory Surgery Centers22 | European Mixed Methods Settings | • European institutions of varied | healthcare systems and cultures | Improvements: | • CLABSI prevention | • Hand hygiene | • PROHIBIT: Description and Materials23 | Getting to Outcomes (GTO)® Settings | • Community programs and services | Improvements | • Sexual health promotion | • Dual-disorder treatment program in | veterans | • Community emergency preparedness | • RAND Guide for Emergency Preparedness24 (illustrated overview of GTO® methodology) | Model for Improvement Settings | • Healthcare (inpatient, perioperative, | ambulatory) | • Public health | Interventions | • PPE use | • HAI prevention | • Public health process evaluation | • Institute for Healthcare Improvement25 | • The Improvement Guide26 | • Deming’s System of Profound Knowledge27 | Reach, Effectiveness, Adoption, | Implementation, Maintenance | (RE-AIM) | Settings | • Healthcare | • Public health | • Community programs | • Sexual health | Evaluations | • Antimicrobial stewardship in the ICU | • Clinical practice guidelines for STIs | • Promotion of vaccination | • Implementation of contact tracing | • RE-AIM.org28 | • Understanding and applying the RE-AIM framework: Clarifications and | resources29 | Replicating Effective Practices | (REP) | Settings | • Healthcare | • Public health | • HIV prevention | Interventions that have produced | positive results are reframed for local | relevance | CDC Compendium of HIV Prevention Interventions with Evidence of | Effectiveness30 (see Section C, Intervention Checklist) | Theoretical Domains Settings | • Healthcare (inpatient, perioperative, | ambulatory) | • Community (individual and communitybased behaviors) | Health maintenance | • Diabetes management in primary care | • Pregnancy weight management | HCP practice | • ICU blood transfusion | • Selective GI tract decontamination | • Preoperative testing | • Spine imaging | • Hand hygiene |
Publication and Impact of Preprints Included in the First 100 Editions of the CDC COVID-19 Science Update: Content Analysis.
Otridge J , Ogden C , Bernstein K , Knuth M , Fishman J , Brooks J . JMIR Public Health Surveill 2022 8 (7) e35276 BACKGROUND: Preprints are publicly available manuscripts posted to various servers that have not been peer-reviewed. Although preprints have existed since 1961, they have gained increased popularity during the COVID-19 pandemic due to the need for immediate, relevant information. OBJECTIVE: The aim of this study is to evaluate the publication rate and impact of preprints included in the CDC COVID-19 Science Update and assess the performance of the COVID-19 Science Update team in selecting impactful preprints. METHODS: All preprints in the first 100 editions (April 1, 2020 - July 30, 2021) of the Science Update were included in the study. Preprints that were not published were categorized as "unpublished preprints". Preprints that were subsequently published exist in two versions (in a peer-reviewed journal and on the original preprint server) which were analyzed separately and referred to as "peer-reviewed preprint" and "original preprint", respectively. Time-to-publish was the time interval between the date on which a preprint was first posted to the date on which it was first available as a peer-reviewed article. Impact was quantified by Altmetric Attention Score and citation count for all available manuscripts on August 6, 2021. Preprints were analyzed by publication status, rate, and time to publication. RESULTS: Among 275 preprints included in the CDC COVID-19 Science Update during the study period, most came from three servers: medRxiv (n=201), bioRxiv (n=41), and SSRN (n=25), with eight coming from other sources. More than half (152 of 275, 55.3%) were eventually published. The median time-to-publish was 2.31 months (IQR 1.38-3.73). When preprints posted in the last 2.31 months were excluded (to account for the time-to-publish), the publication rate was to 67.8%. Seventy-six journals published at least one preprint from the CDC COVID-19 Science Update and 18 journals published at least three. The median Altmetric Attention Score for unpublished preprints (n=123) was 146 (IQR 22-552) and median citation count of 2 (IQR 0-8); for original preprints (n=152) these values were 212 (IQR 22-1164) and 14 (IQR 2-40), respectively; for peer-review preprints, these values were 265 (IQR 29-1896) 19 (IQR 3-101), respectively. CONCLUSIONS: Prior studies of COVID-19 preprints found publication rates between 5.4% and 21.1%. Preprints included in the CDC COVID-19 Science Update were published at a higher rate than overall COVID-19 preprints, and those that were ultimately published were published within months and received higher attention scores than unpublished preprints. These findings indicate that the Science Update process for selecting preprints appears have done so with high fidelity in terms of their likelihood to be published and impactful. Incorporation of high-quality preprints into the CDC COVID-19 Science Update improves this activity's capacity to inform meaningful public health decision making. |
A sub-group evaluation of the multi-month dispensing strategy for differentiated HIV care: is personalization of care guidelines warranted in Haiti
Parrish C , Basu A , Fishman P , Koama JB , Robin E , Francois K , Honoré JG , Van Onacker JD , Puttkammer N . BMC Health Serv Res 2022 22 (1) 80 BACKGROUND: Differentiated care strategies are rapidly becoming the norm for HIV care delivery globally. Building upon an interest in tailoring antiretroviral therapy (ART) delivery for client-centered needs, the Ministry of Health and Population in Haiti formally endorsed multiple-month dispenses (MMD) in the 2016 national ART guidelines This study explores heterogeneity in retention in care with MMD for specific Haitian populations living with HIV and evaluates if a targeted algorithm for optimal ART prescription intervals is warranted in Haiti. METHODS: This study included ART-naïve individuals who started ART on or after January 1st, 2017 in Haiti. To identify subgroups in which to explore heterogeneity of retention, we implemented a double-lasso regression method to determine which individual characteristics would define the subgroups. Characteristics evaluated for potential subgroup definition included: sex, age category, WHO clinical stage, and body mass index category. We employed instrumental variable models to estimate the causal effect of increasing ART dispensing length on ART retention, by client subgroup. The outcome of interest was retention in care after one year in treatment. We then estimated the marginal effect of a 30-day increase to ART dispensing length to retention in care for each of these subgroups. RESULTS: There was evidence for heterogeneity in the effect of extending ART dispensing intervals on retention by WHO clinical stage. We observed significant improvements to retention in care at one year with a 30-day increase in ART dispense length for all subgroups defined by WHO clinical stages 1-4. The effects ranged from a 14.7% increase (95% CI: 12.4-17.0) to the likelihood of retention for people with HIV in WHO stage 1 to a 21.6% increase (95% CI: 18.7-24.5) to the likelihood of retention for those in WHO stage 3. CONCLUSIONS: All the subgroups defined by WHO clinical stage experienced a benefit of extending ART intervals to retention in care at one year. Though the effect did differ slightly by WHO stage, the effects went in the same direction and were of similar magnitude. Therefore, a standardized recommendation for MMD among those living with HIV and new on ART is appropriate for Haiti treatment guidelines. |
Estimating the effect of increasing dispensing intervals on retention in care for people with HIV in Haiti
Parrish C , Basu A , Fishman P , Koama JB , Robin E , Francois K , Honore JG , Van Onacker JD , Puttkammer N . EClinicalMedicine 2021 38 101039 Background: Multi-month dispensing (MMD) for antiretroviral therapy (ART) is a promising care strategy to improve HIV treatment adherence. The effectiveness of MMD in routine settings has not yet been evaluated within a causal inference framework. We analyzed data from a robust clinical data system to evaluate MMD in Haiti. Method(s): We assessed 1-year retention in care among 21,880 ART-naive HIV-positive persons who started ART on or after January 1, 2017, up until November 1, 2018. We used an instrumental variable analysis to estimate the causal impact of MMD. This approach was used to address potential selection into specific dispensing intervals because MMD is not randomly applied to individuals. Finding(s): We found that extending ART dispensing intervals increased the probability of retention at 12 months after ART initiation, with up to a 24.2%-point increase (95%CI: 21.9, 26.5) in the likelihood of retention with extending dispenses by 30 days for those receiving one-month dispenses. We observed statistically significant gains to retention with MMD with up to an approximately 4-month supply of ART; +5.1%-points (95%CI: 2.4,7.8). Increasing dispensing lengths for those already receiving >=5-month supply of ART had a potentially negative effect on retention. Interpretation(s): MMD for ART is an effective service delivery strategy that improves care retention for new ART recipients. There is a potentially negative effect of increasing prescription lengths for those new ART recipients already receiving longer ART supplies, though more research is needed to characterize this effect given medication supplies of this length are not common for newer ART recipients. Copyright © 2021 The Author(s) |
Choosing Wisely in Healthcare Epidemiology and Antimicrobial Stewardship
Morgan DJ , Croft LD , Deloney V , Popovich KJ , Crnich C , Srinivasan A , Fishman NO , Bryant K , Cosgrove SE , Leekha S . Infect Control Hosp Epidemiol 2016 37 (7) 755-60 OBJECTIVE To identify Choosing Wisely items for the American Board of Internal Medicine Foundation. METHODS The Society for Healthcare Epidemiology of America (SHEA) elicited potential items from a hospital epidemiology listserv, SHEA committee members, and a SHEA-Infectious Diseases Society of America compendium with SHEA Research Network members ranking items by Delphi method voting. The SHEA Guidelines Committee reviewed the top 10 items for appropriateness for Choosing Wisely. Five final recommendations were approved via individual member vote by committees and the SHEA Board. RESULTS Ninety-six items were proposed by 87 listserv members and 99 SHEA committee members. Top 40 items were ranked by 24 committee members and 64 of 226 SHEA Research Network members. The 5 final recommendations follow: 1. Don't continue antibiotics beyond 72 hours in hospitalized patients unless patient has clear evidence of infection. 2. Avoid invasive devices (including central venous catheters, endotracheal tubes, and urinary catheters)and, if required, use no longer than necessary. They pose a major risk for infections. 3. Don't perform urinalysis, urine culture, blood culture, or Clostridium difficile testing unless patients have signs or symptoms of infection. Tests can be falsely positive leading to overdiagnosis and overtreatment. 4. Do not use antibiotics in patients with recent C. difficile without convincing evidence of need. Antibiotics pose a high risk of C. difficile recurrence. 5. Don't continue surgical prophylactic antibiotics after the patient has left the operating room. Five runner-up recommendations are included. CONCLUSIONS These 5 SHEA Choosing Wisely and 5 runner-up items limit medical overuse. Infect Control Hosp Epidemiol 2016;37:755-760. |
Executive Summary: Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America
Barlam TF , Cosgrove SE , Abbo LM , MacDougall C , Schuetz AN , Septimus EJ , Srinivasan A , Dellit TH , Falck-Ytter YT , Fishman NO , Hamilton CW , Jenkins TC , Lipsett PA , Malani PN , May LS , Moran GJ , Neuhauser MM , Newland JG , Ohl CA , Samore MH , Seo SK , Trivedi KK . Clin Infect Dis 2016 62 (10) 1197-202 Evidence-based guidelines for implementation and measurement of antibiotic stewardship interventions in inpatient populations including long-term care were prepared by a multidisciplinary expert panel of the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. The panel included clinicians and investigators representing internal medicine, emergency medicine, microbiology, critical care, surgery, epidemiology, pharmacy, and adult and pediatric infectious diseases specialties. These recommendations address the best approaches for antibiotic stewardship programs to influence the optimal use of antibiotics. |
Implementing an antibiotic stewardship program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America
Barlam TF , Cosgrove SE , Abbo LM , MacDougall C , Schuetz AN , Septimus EJ , Srinivasan A , Dellit TH , Falck-Ytter YT , Fishman NO , Hamilton CW , Jenkins TC , Lipsett PA , Malani PN , May LS , Moran GJ , Neuhauser MM , Newland JG , Ohl CA , Samore MH , Seo SK , Trivedi KK . Clin Infect Dis 2016 62 (10) e51-77 Evidence-based guidelines for implementation and measurement of antibiotic stewardship interventions in inpatient populations including long-term care were prepared by a multidisciplinary expert panel of the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. The panel included clinicians and investigators representing internal medicine, emergency medicine, microbiology, critical care, surgery, epidemiology, pharmacy, and adult and pediatric infectious diseases specialties. These recommendations address the best approaches for antibiotic stewardship programs to influence the optimal use of antibiotics. |
A compendium of strategies to prevent healthcare-associated infections in acute care hospitals: 2014 updates
Yokoe DS , Anderson DJ , Berenholtz SM , Calfee DP , Dubberke ER , Ellingson KD , Gerding DN , Haas JP , Kaye KS , Klompas M , Lo E , Marschall J , Mermel LA , Nicolle LE , Salgado CD , Bryant K , Classen D , Crist K , Deloney VM , Fishman NO , Foster N , Goldmann DA , Humphreys E , Jernigan JA , Padberg J , Perl TM , Podgorny K , Septimus EJ , VanAmringe M , Weaver T , Weinstein RA , Wise R , Maragakis LL . Am J Infect Control 2014 42 (8) 820-8 Since the publication of "A Compendium of Strategies to Prevent Healthcare-Associated Infections in Acute Care Hospitals" in 2008, prevention of healthcare-associated infections (HAIs) has become a national priority. Despite improvements, preventable HAIs continue to occur. The 2014 updates to the Compendium were created to provide acute care hospitals with up-to-date, practical, expert guidance to assist in prioritizing and implementing their HAI prevention efforts. They are the product of a highly collaborative effort led by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), the American Hospital Association (AHA), the Association for Professionals in Infection Control and Epidemiology (APIC), and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise, including the Centers for Disease Control and Prevention (CDC), the Institute for Healthcare Improvement (IHI), the Pediatric Infectious Diseases Society (PIDS), the Society for Critical Care Medicine (SCCM), the Society for Hospital Medicine (SHM), and the Surgical Infection Society (SIS). |
Antimicrobial stewardship 2012: science driving practice
Srinivasan A , Fishman N . Infect Control Hosp Epidemiol 2012 33 (4) 319-21 This edition of Infection Control and Hospital Epidemiology | (ICHE) is dedicated to articles on antimicrobial stewardship. | Though such articles appear regularly in the pages of ICHE, | this is the first time that an entire issue has been devoted to | the topic. By design, this issue comes at a time of tremendous | growth in the importance of antimicrobial stewardship. The | combination of rising rates of antimicrobial resistance, a rapidly dwindling effective antimicrobial armamentarium, and | increasing financial pressures for hospitals has spurred new | interest in the one intervention that has been proven to address all these problems simultaneously. | A number of organizations have recognized the importance of implementing stewardship interventions and programs in hospitals, with major efforts being spearheaded by | the Centers for Disease Control and Prevention (CDC) and | the Society for Healthcare Epidemiology of America (SHEA). | The creation of SHEA's Antimicrobial Stewardship Taskforce | and the launch of CDC's "Get Smart for Healthcare" campaign (http://www.cdc.gov/getsmart/healfhcare) marked the | start of a new era of a nationally coordinated effort to promote inpatient antibiotic stewardship in the United States. | The growing importance and profile of antibiotic stewardship are reflected in the inclusion of several antibiotic | quality measures in the new "inpatient infection control | worksheet" currently being piloted by the Center for Medicare | and Medicaid Services (available at https://www.cms.gov/ | Surveycertificationgeninfo/downloads/SCLetter 12_01 .pdf). | The measures are not all encompassing, nor will they independently improve antibiotic use in hospitals. However, it is | hoped that they will both raise awareness of the importance | of improving antibiotic use in hospitals and help lay a foundation for accomplishing that goal. |
Moving toward elimination of healthcare-associated infections: a call to action
Cardo D , Dennehy PH , Halverson P , Fishman N , Kohn M , Murphy CL , Whitley RJ , Brennan PJ , Bright J , Curry C , Graham D , Haerum B , Kainer M , Kaye K , Lundstrom T , Richards C , Tomlinson L , Skillen EL , Streed S , Young M , Septimus E . Infect Control Hosp Epidemiol 2010 31 (11) 1101-5 Jointly, the Association for Professionals in Infection Control and Epidemiology (APIC), the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), the Association of State and Territorial Health Officials (ASTHO), the Council of State and Territorial Epidemiologists (CSTE), Pediatric Infectious Diseases Society (PIDS), and the Centers for Disease Control and Prevention (CDC) propose a call to action to move toward the elimination of healthcare-associated infections (HAIs) by adapting the concept and plans used for the elimination of other diseases, including infections. Elimination, as defined for other infectious diseases, is the maximal reduction of “the incidence of infection caused by a specific agent in a defined geographical area as a result of deliberate efforts; continued measures to prevent reestablishment of transmission are required.” (p24) This definition has been useful for elimination efforts directed toward polio, tuberculosis, and syphilis and can be readily adapted to HAIs. Sustained elimination of HAIs can be based on this public health model of constant action and vigilance. Elimination will require the implementation of evidence-based practices, the alignment of financial incentives, the closing of knowledge gaps, and the acquisition of information to assess progress and to enable response to emerging threats. These efforts must be under-pinned by substantial research investments, the development of novel prevention tools, improved organizational and personal accountabilities, strong collaboration among a broad coalition of public and private stakeholders, and a clear national will to succeed in this arena. |
Organ and tissue safety workshop 2007: advances and challenges
Fishman JA , Strong DM , Kuehnert MJ . Cell Tissue Bank 2009 10 (3) 271-80 A workshop in June 2005 ("Preventing Organ and Tissue Allograft-Transmitted Infection: Priorities for Public Health Intervention") identified gaps in organ and tissue safety in the US. Participants developed a series of allograft safety initiatives. "The Organ and Tissue Safety Workshop 2007: Advances and Challenges" assessed progress and identified priorities for future interventions. Awareness of the challenges of allograft-associated disease transmission has increased. The Transplantation Transmission Sentinel Network will enhance communication surrounding allograft-associated disease transmission. Other patient safety initiatives have focused on adverse event reporting and microbiologic screening technologies. Despite progress, improved recognition and prevention of donor-derived transmission events is needed. This requires systems integration across the organ and tissue transplantation communities including organ procurement organizations, eye and tissue banks, and transplant infectious disease experts. Commitment of resources and improved coordination of efforts are required to develop essential tools to enhance safety for allograft recipients. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 07, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure