Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-10 (of 10 Records) |
Query Trace: Fernback JE[original query] |
---|
Association of pulmonary, cardiovascular, and hematologic metrics with carbon nanotube and nanofiber exposure among U.S. workers: a cross-sectional study
Schubauer-Berigan MK , Dahm MM , Erdely A , Beard JD , Eileen Birch M , Evans DE , Fernback JE , Mercer RR , Bertke SJ , Eye T , de Perio MA . Part Fibre Toxicol 2018 15 (1) 22 BACKGROUND: Commercial use of carbon nanotubes and nanofibers (CNT/F) in composites and electronics is increasing; however, little is known about health effects among workers. We conducted a cross-sectional study among 108 workers at 12 U.S. CNT/F facilities. We evaluated chest symptoms or respiratory allergies since starting work with CNT/F, lung function, resting blood pressure (BP), resting heart rate (RHR), and complete blood count (CBC) components. METHODS: We conducted multi-day, full-shift sampling to measure background-corrected elemental carbon (EC) and CNT/F structure count concentrations, and collected induced sputum to measure CNT/F in the respiratory tract. We measured (nonspecific) fine and ultrafine particulate matter mass and count concentrations. Concurrently, we conducted physical examinations, BP measurement, and spirometry, and collected whole blood. We evaluated associations between exposures and health measures, adjusting for confounders related to lifestyle and other occupational exposures. RESULTS: CNT/F air concentrations were generally low, while 18% of participants had evidence of CNT/F in sputum. Respiratory allergy development was positively associated with inhalable EC (p=0.040) and number of years worked with CNT/F (p=0.008). No exposures were associated with spirometry-based metrics or pulmonary symptoms, nor were CNT/F-specific metrics related to BP or most CBC components. Systolic BP was positively associated with fine particulate matter (p-values: 0.015-0.054). RHR was positively associated with EC, at both the respirable (p=0.0074) and inhalable (p=0.0026) size fractions. Hematocrit was positively associated with the log of CNT/F structure counts (p=0.043). CONCLUSIONS: Most health measures were not associated with CNT/F. The positive associations between CNT/F exposure and respiratory allergies, RHR, and hematocrit counts may not be causal and require examination in other studies. |
Carbon nanotube and nanofiber exposure and sputum and blood biomarkers of early effect among U.S. workers
Beard JD , Erdely A , Dahm MM , de Perio MA , Birch ME , Evans DE , Fernback JE , Eye T , Kodali V , Mercer RR , Bertke SJ , Schubauer-Berigan MK . Environ Int 2018 116 214-228 BACKGROUND: Carbon nanotubes and nanofibers (CNT/F) are increasingly used for diverse applications. Although animal studies suggest CNT/F exposure may cause deleterious health effects, human epidemiological studies have typically been small, confined to single workplaces, and limited in exposure assessment. OBJECTIVES: We conducted an industrywide cross-sectional epidemiological study of 108 workers from 12 U.S. sites to evaluate associations between occupational CNT/F exposure and sputum and blood biomarkers of early effect. METHODS: We assessed CNT/F exposure via personal breathing zone, filter-based air sampling to measure background-corrected elemental carbon (EC) (a CNT/F marker) mass and microscopy-based CNT/F structure count concentrations. We measured 36 sputum and 37 blood biomarkers. We used factor analyses with varimax rotation to derive factors among sputum and blood biomarkers separately. We used linear, Tobit, and unconditional logistic regression models to adjust for potential confounders and evaluate associations between CNT/F exposure and individual biomarkers and derived factors. RESULTS: We derived three sputum and nine blood biomarker factors that explained 78% and 67%, respectively, of the variation. After adjusting for potential confounders, inhalable EC and total inhalable CNT/F structures were associated with the most sputum and blood biomarkers, respectively. Biomarkers associated with at least three CNT/F metrics were 72kDa type IV collagenase/matrix metalloproteinase-2 (MMP-2), interleukin-18, glutathione peroxidase (GPx), myeloperoxidase, and superoxide dismutase (SOD) in sputum and MMP-2, matrix metalloproteinase-9, metalloproteinase inhibitor 1/tissue inhibitor of metalloproteinases 1, 8-hydroxy-2'-deoxyguanosine, GPx, SOD, endothelin-1, fibrinogen, intercellular adhesion molecule 1, vascular cell adhesion protein 1, and von Willebrand factor in blood, although directions of associations were not always as expected. CONCLUSIONS: Inhalable rather than respirable CNT/F was more consistently associated with fibrosis, inflammation, oxidative stress, and cardiovascular biomarkers. |
Exposure assessments for a cross-sectional epidemiologic study of US carbon nanotube and nanofiber workers
Dahm MM , Schubauer-Berigan MK , Evans DE , Birch ME , Bertke S , Beard JD , Erdely A , Fernback JE , Mercer RR , Grinshpun SA . Int J Hyg Environ Health 2018 221 (3) 429-440 BACKGROUND: Recent animal studies have suggested the potential for wide-ranging health effects resulting from exposure to carbon nanotubes and nanofibers (CNT/F). To date, no studies in the US have directly examined the relationship between occupational exposure and potential human health effects. OBJECTIVES: Our goal was to measure CNT/F exposures among US workers with representative job types, from non-exposed to highly exposed, for an epidemiologic study relating exposure to early biologic effects. METHODS: 108 participants were enrolled from 12 facilities across the US. Personal, full-shift exposures were assessed based on the mass of elemental carbon (EC) at the respirable and inhalable aerosol particle size fractions, along with quantitatively characterizing CNT/F and estimating particle size via transmission electron microscopy (TEM). Additionally, sputum and dermal samples were collected and analyzed to determine internal exposures and exposures to the hands/wrists. RESULTS: The mean exposure to EC was 1.00mug/m(3) at the respirable size fraction and 6.22mug/m(3) at the inhalable fraction. Analysis by TEM found a mean exposure of 0.1275 CNT/F structures/cm(3), generally to agglomerated materials between 2 and 10mum. Internal exposures to CNT/F via sputum analysis were confirmed in 18% of participants while approximately 70% had positive dermal exposures. CONCLUSIONS: We demonstrated the occurrence of a broad range of exposures to CNT/F within 12 facilities across the US. Analysis of collected sputum indicated internal exposures are currently occurring within the workplace. This is an important first step in determining if exposures in the workforce have any acute or lasting health effects. |
Carbon nanotube and nanofiber exposure assessments: an analysis of 14 site visits
Dahm MM , Schubauer-Berigan MK , Evans DE , Birch ME , Fernback JE , Deddens JA . Ann Occup Hyg 2015 59 (6) 705-23 Recent evidence has suggested the potential for wide-ranging health effects that could result from exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF). In response, the National Institute for Occupational Safety and Health (NIOSH) set a recommended exposure limit (REL) for CNT and CNF: 1 microg m-3 as an 8-h time weighted average (TWA) of elemental carbon (EC) for the respirable size fraction. The purpose of this study was to conduct an industrywide exposure assessment among US CNT and CNF manufacturers and users. Fourteen total sites were visited to assess exposures to CNT (13 sites) and CNF (1 site). Personal breathing zone (PBZ) and area samples were collected for both the inhalable and respirable mass concentration of EC, using NIOSH Method 5040. Inhalable PBZ samples were collected at nine sites while at the remaining five sites both respirable and inhalable PBZ samples were collected side-by-side. Transmission electron microscopy (TEM) PBZ and area samples were also collected at the inhalable size fraction and analyzed to quantify and size CNT and CNF agglomerate and fibrous exposures. Respirable EC PBZ concentrations ranged from 0.02 to 2.94 microg m-3 with a geometric mean (GM) of 0.34 microg m-3 and an 8-h TWA of 0.16 microg m-3. PBZ samples at the inhalable size fraction for EC ranged from 0.01 to 79.57 microg m-3 with a GM of 1.21 microg m-3. PBZ samples analyzed by TEM showed concentrations ranging from 0.0001 to 1.613 CNT or CNF-structures per cm3 with a GM of 0.008 and an 8-h TWA concentration of 0.003. The most common CNT structure sizes were found to be larger agglomerates in the 2-5 microm range as well as agglomerates >5 microm. A statistically significant correlation was observed between the inhalable samples for the mass of EC and structure counts by TEM (Spearman rho = 0.39, P < 0.0001). Overall, EC PBZ and area TWA samples were below the NIOSH REL (96% were <1 mug m-3 at the respirable size fraction), while 30% of the inhalable PBZ EC samples were found to be >1 mug m-3. Until more information is known about health effects associated with larger agglomerates, it seems prudent to assess worker exposure to airborne CNT and CNF materials by monitoring EC at both the respirable and inhalable size fractions. Concurrent TEM samples should be collected to confirm the presence of CNT and CNF. |
Airborne fiber size characterization in exposure estimation: evaluation of a modified transmission electron microcopy protocol for asbestos and potential use for carbon nanotubes and nanofibers
Dement JM , Kuempel ED , Zumwalde RD , Ristich AM , Fernback JE , Smith RJ . Am J Ind Med 2015 58 (5) 494-508 BACKGROUND: Airborne fiber size has been shown to be an important factor relative to adverse lung effects of asbestos and suggested in animal studies of carbon nanotubes and nanofibers (CNT/CNF). MATERIALS AND METHODS: The International Standards Organization (ISO) transmission electron microscopy (TEM) method for asbestos was modified to increase the statistical precision of fiber size determinations, improve efficiency, and reduce analysis costs. Comparisons of the fiber size distributions and exposure indices by laboratory and counting method were performed. RESULTS: No significant differences in size distributions by the ISO and modified ISO methods were observed. Small but statistically-significant inter-lab differences in the proportion of fibers in some size bins were found, but these differences had little impact on the summary exposure indices. The modified ISO method produced slightly more precise estimates of the long fiber fraction (>15 mum). CONCLUSIONS: The modified ISO method may be useful for estimating size-specific structure exposures, including CNT/CNF, for risk assessment research. |
Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology
Erdely A , Dahm M , Chen BT , Zeidler-Erdely PC , Fernback JE , Birch ME , Evans DE , Kashon ML , Deddens JA , Hulderman T , Bilgesu SA , Battelli L , Schwegler-Berry D , Leonard HD , McKinney W , Frazer DG , Antonini JM , Porter DW , Castranova V , Schubauer-Berigan MK . Part Fibre Toxicol 2013 10 (1) 53 BACKGROUND: Dosimetry for toxicology studies involving carbon nanotubes (CNT) is challenging because of a lack of detailed occupational exposure assessments. Therefore, exposure assessment findings, measuring the mass concentration of elemental carbon from personal breathing zone (PBZ) samples, from 8 U.S.-based multi-walled CNT (MWCNT) manufacturers and users were extrapolated to results of an inhalation study in mice. RESULTS: Upon analysis, an inhalable elemental carbon mass concentration arithmetic mean of 10.6 mug/m3 (geometric mean 4.21 mug/m3) was found among workers exposed to MWCNT. The concentration equates to a deposited dose of approximately 4.07 mug/d in a human, equivalent to 2 ng/d in the mouse. For MWCNT inhalation, mice were exposed for 19 d with daily depositions of 1970 ng (equivalent to 1000 d of a human exposure; cumulative 76 yr), 197 ng (100 d; 7.6 yr), and 19.7 ng (10 d; 0.76 yr) and harvested at 0, 3, 28, and 84 d post-exposure to assess pulmonary toxicity. The high dose showed cytotoxicity and inflammation that persisted through 84 d after exposure. The middle dose had no polymorphonuclear cell influx with transient cytotoxicity. The low dose was associated with a low grade inflammatory response measured by changes in mRNA expression. Increased inflammatory proteins were present in the lavage fluid at the high and middle dose through 28 d post-exposure. Pathology, including epithelial hyperplasia and peribronchiolar inflammation, was only noted at the high dose. CONCLUSION: These findings showed a limited pulmonary inflammatory potential of MWCNT at levels corresponding to the average inhalable elemental carbon concentrations observed in U.S.-based CNT facilities and estimates suggest considerable years of exposure are necessary for significant pathology to occur at that level. |
Single-walled carbon nanotubes induce fibrogenic effect by disturbing mitochondrial oxidative stress and activating NF-kappaB signaling
He X , Young SH , Fernback JE , Ma Q . J Clin Toxicol 2012 Single-walled carbon nanotubes (SWCNTs) are newly discovered material of crystalline carbon that forms single-carbon layer cylinders with nanometer diameters and varying lengths. Although SWCNTs are potentially suitable for a range of novel applications, their extremely small size, fiber-like shape, large surface area, and unique surface chemistry raise potential hazard to humans, including lung toxicity and fibrosis. The molecular mechanisms by which SWCNTs cause lung damage remain elusive. Here we show that SWCNTs dose and time-dependently caused toxicity in cultured human bronchial epithelial (BEAS-2B), alveolar epithelial (A549), and lung fibroblast (WI38) cells. At molecular levels, SWCNTs induced significant mitochondrial depolarization and ROS production at subtoxic doses. SWCNTs stimulated the secretion of proinflammatory cytokines and chemokines TNFalpha, IL-1beta, IL-6, IL-10 and MCP1 from macrophages (Raw 264.7), which was attributed to the activation of the canonical signaling pathway of NF-kappaB by SWCNT. Finally, SWCNTs stimulated profibrogenic growth factors TGFbeta1 production and fibroblast-to-myofibroblast-transformation. These results indicate that SWCNTs has a potential to induce human lung damage and fibrosis by damaging mitochondria, generating ROS, and stimulating production of proinflammatory and profibrogenic cytokines and growth factors. |
Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers
Dahm MM , Evans DE , Schubauer-Berigan MK , Birch ME , Fernback JE . Ann Occup Hyg 2011 56 (5) 542-56 RESEARCH SIGNIFICANCE: Toxicological evidence suggests the potential for a wide range of health effects, which could result from exposure to carbon nanotubes (CNTs) and carbon nanofibers (CNFs). The National Institute for Occupational Safety and Health (NIOSH) has proposed a recommended exposure limit (REL) for CNTs/CNFs at the respirable size fraction. The current literature is lacking exposure information, with few studies reporting results for personal breathing zone (PBZ) samples in occupational settings. To address this gap, exposure assessments were conducted at six representative sites identified as CNT/CNF primary or secondary manufacturers. METHODS: Personal and area filter-based samples were collected for both the inhalable mass concentration and the respirable mass concentration of elemental carbon (EC) as well as CNT structure count analysis by transmission electron microscopy to assess exposures. When possible, full-shift PBZ samples were collected; area samples were collected on a task-based approach. RESULTS: The vast majority of samples collected in this study were below the proposed REL (7 mcg m(-3)). Two of the three secondary manufacturers' surveyed found concentrations above the proposed REL. None of the samples collected at primary manufacturers were found to be above the REL. Visual and microscopy-based evidence of CNTs/CNFs were found at all sites, with the highest CNT/CNF structure counts being found in samples collected at secondary manufacturing sites. The statistical correlations between the filter-based samples for the mass concentration of EC and CNT structure counts were examined. A general trend was found with a P-value of 0.01 and a corresponding Pearson correlation coefficient of 0.44. CONCLUSIONS: CNT/CNF concentrations were above the proposed NIOSH REL for PBZ samples in two secondary manufacturing facilities that use these materials for commercial applications. These samples were collected during dry powder handling processes, such as mixing and weighing, using fairly large quantities of CNTs/CNFs. |
Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-κB signaling, and promoting fibroblast-to-myofibroblast transformation.
He X , Young SH , Schwegler-Berry D , Chisholm WP , Fernback JE , Ma Q . Chem Res Toxicol 2011 24 (12) 2237-48 ![]() Carbon nanotubes (CNTs) are novel materials with unique electronic and mechanical properties. The extremely small size, fiberlike shape, large surface area, and unique surface chemistry render their distinctive chemical and physical characteristics and raise potential hazards to humans. Several reports have shown that pulmonary exposure to CNTs caused inflammation and lung fibrosis in rodents. The molecular mechanisms that govern CNT lung toxicity remain largely unaddressed. Here, we report that multiwalled carbon nanotubes (MWCNTs) have potent, dose-dependent toxicity on cultured human lung cells (BEAS-2B, A549, and WI38-VA13). Mechanistic analyses were carried out at subtoxic doses (≤20 mcg/mL, ≤ 24 h). MWCNTs induced substantial ROS production and mitochondrial damage, implicating oxidative stress in cellular damage by MWCNT. MWCNTs activated the NF-kB signaling pathway in macrophages (RAW264.7) to increase the secretion of a panel of cytokines and chemokines (TNFa, IL-1b, IL-6, IL-10, and MCP1) that promote inflammation. Activation of NF-kB involved rapid degradation of IkBa, nuclear accumulation of NF-kBp65, binding of NF-kB to specific DNA-binding sequences, and transactivation of target gene promoters. Finally, MWCNTs induced the production of profibrogenic growth factors TGFb1 and PDGF from macrophages that function as paracrine signals to promote the transformation of lung fibroblasts (WI38-VA13) into myofibroblasts, a key step in the development of fibrosis. Our results revealed that MWCNTs elicit multiple and intertwining signaling events involving oxidative damage, inflammatory cytokine production, and myofibroblast transformation, which potentially underlie the toxicity and fibrosis in human lungs by MWCNTs. |
Extraction of beryllium from refractory beryllium oxide with dilute ammonium bifluoride and determination by fluorescence: a multiparameter performance evaluation
Goldcamp MJ , Goldcamp DM , Ashley K , Fernback JE , Agrawal A , Millson M , Marlow D , Harrison K . J Occup Environ Hyg 2009 6 (12) 735-44 Beryllium exposure can cause a number of deleterious health effects, including beryllium sensitization and the potentially fatal chronic beryllium disease. Efficient methods for monitoring beryllium contamination in workplaces are valuable to help prevent dangerous exposures to this element. In this work, performance data on the extraction of beryllium from various size fractions of high-fired beryllium oxide (BeO) particles (from < 32 microm up to 212 microm) using dilute aqueous ammonium bifluoride (ABF) solution were obtained under various conditions. Beryllium concentrations were determined by fluorescence using a hydroxybenzoquinoline fluorophore. The effects of ABF concentration and volume, extraction temperature, sample tube types, and presence of filter or wipe media were examined. Three percent ABF extracts beryllium nearly twice as quickly as 1% ABF; extraction solution volume has minimal influence. Elevated temperatures increase the rate of extraction dramatically compared with room temperature extraction. Sample tubes with constricted tips yield poor extraction rates owing to the inability of the extraction medium to access the undissolved particles. The relative rates of extraction of Be from BeO of varying particle sizes were examined. Beryllium from BeO particles in fractions ranging from less than 32 microm up to 212 microm were subjected to various extraction schemes. The smallest BeO particles are extracted more quickly than the largest particles, although at 90 degrees C even the largest BeO particles reach nearly quantitative extraction within 4 hr in 3% ABF. Extraction from mixed cellulosic-ester filters, cellulosic surface-sampling filters, wetted cellulosic dust wipes, and cotton gloves yielded 90% or greater recoveries. Scanning electron microscopy of BeO particles, including partially dissolved particles, shows that dissolution in dilute ABF occurs not just on the exterior surface but also via accessing particles' interiors due to porosity of the BeO material. Comparison of dissolution kinetics data shows that as particle diameter approximately doubles, extraction time is increased by a factor of about 1.5, which is consistent with the influence of porosity on dissolution. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure