Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-30 (of 35 Records) |
Query Trace: Estivariz CF[original query] |
---|
Immunodeficiency-related vaccine-derived poliovirus (iVDPV) infections: A review of epidemiology and progress in detection and management
Estivariz CF , Krow-Lucal ER , Mach O . Pathogens 2024 13 (12) Individuals with certain primary immunodeficiency disorders (PID) may be unable to clear poliovirus infection after exposure to oral poliovirus vaccine (OPV). Over time, vaccine-related strains can revert to immunodeficiency-associated vaccine-derived poliovirus (iVDPVs) that can cause paralysis in the patient and potentially spread in communities with low immunity. We reviewed the efforts for detection and management of PID patients with iVDPV infections and the epidemiology through an analysis of 184 cases reported to the World Health Organization (WHO) during 1962-2024 and a review of polio program and literature reports. Most iVDPV patients (79%) reported in the WHO Registry were residents in middle-income countries and almost half (48%) in the Eastern Mediterranean Region. Type 2 iVDPV was most frequently isolated (53%), but a sharp decline was observed after the switch to bivalent OPV in 2016, with only six cases reported during 2017-2024 compared to 63 during 2009-2016. Patients with common variable immunodeficiency have longer excretion of iVDPV than with other PID types. Implementation of sensitive sentinel surveillance to detect cases of iVDPV infection in high-risk countries and offer antiviral treatment to patients is challenged by competition with other health priorities and regulatory hurdles to the compassionate use of investigational antiviral drugs. |
Increasing population immunity prior to globally-coordinated cessation of bivalent oral poliovirus vaccine (bOPV)
Badizadegan ND , Wassilak SGF , Estívariz CF , Wiesen E , Burns CC , Bolu O , Thompson KM . Pathogens 2024 13 (9) In 2022, global poliovirus modeling suggested that coordinated cessation of bivalent oral poliovirus vaccine (bOPV, containing Sabin-strain types 1 and 3) in 2027 would likely increase the risks of outbreaks and expected paralytic cases caused by circulating vaccine-derived polioviruses (cVDPVs), particularly type 1. The analysis did not include the implementation of planned, preventive supplemental immunization activities (pSIAs) with bOPV to achieve and maintain higher population immunity for types 1 and 3 prior to bOPV cessation. We reviewed prior published OPV cessation modeling studies to support bOPV cessation planning. We applied an integrated global poliovirus transmission and OPV evolution model after updating assumptions to reflect the epidemiology, immunization, and polio eradication plans through the end of 2023. We explored the effects of bOPV cessation in 2027 with and without additional bOPV pSIAs prior to 2027. Increasing population immunity for types 1 and 3 with bOPV pSIAs (i.e., intensification) could substantially reduce the expected global risks of experiencing cVDPV outbreaks and the number of expected polio cases both before and after bOPV cessation. We identified the need for substantial increases in overall bOPV coverage prior to bOPV cessation to achieve a high probability of successful bOPV cessation. |
Persistence of immunity following a single dose of inactivated poliovirus vaccine: a phase 4, open label, non-randomised clinical trial
Sharma AK , Verma H , Estivariz CF , Bajracharaya L , Rai G , Shah G , Sherchand J , Jones KAV , Mainou BA , Chavan S , Jeyaseelan V , Sutter RW , Shrestha LP . Lancet Microbe 2023 4 (11) e923-e930 BACKGROUND: The polio eradication endgame required the withdrawal of Sabin type 2 from the oral poliovirus vaccine and introduction of one or more dose of inactivated poliovirus vaccine (IPV) into routine immunisation schedules. However, the duration of single-dose IPV immunity is unknown. We aimed to address this deficiency. METHODS: In this phase 4, open-label, non-randomised clinical trial, we assessed single-dose IPV immunity. Two groups of infants or children were screened: the first group had previously received IPV at 14 weeks of age or older (previous IPV group; age >2 years); the second had not previously received IPV (no previous IPV group; age 7-12 months). At enrolment, all participants received an IPV dose. Children in the no previous IPV group received a second IPV dose at day 30. Blood was collected three times in each group: on days 0, 7, and 30 in the previous IPV group and on days 0, 30, and 37 in the no previous IPV group. Poliovirus antibody was measured by microneutralisation assay. Immunity was defined as the presence of a detectable antibody or a rapid anamnestic response (ie, priming). We used the χ(2) to compare proportions and the Mann-Whitney U test to assess continuous variables. To assess safety, vaccinees were observed for 30 min, caregivers for each participating child reported adverse events after each follow-up visit and were questioned during each follow-up visit regarding any adverse events during the intervening period. Adverse events were recorded and graded according to the severity of clinical symptoms. The study is registered with ClinicalTrials.gov, NCT03723837. FINDINGS: From Nov 18, 2018, to July 31, 2019, 502 participants enrolled in the study, 458 (255 [65%] boys and 203 [44%] girls) were included in the per protocol analysis: 234 (93%) in the previous IPV group and 224 (90%) in the no previous IPV group. In the previous IPV group, 28 months after one IPV dose 233 (>99%) of 234 children had persistence of poliovirus type 2 immunity (100 [43%] of 234 children were seropositive; 133 [99%] of 134 were seronegative and primed). In the no previous IPV group, 30 days after one IPV dose all 224 (100%) children who were type 2 poliovirus naive had seroconverted (223 [>99%] children) or were primed (one [<1%]). No adverse events were deemed attributable to study interventions. INTERPRETATION: A single IPV dose administered at 14 weeks of age or older is highly immunogenic and induces nearly universal type 2 immunity (seroconversion and priming), with immunity persisting for at least 28 months. The polio eradication initiative should prioritise first IPV dose administration to mitigate the paralytic burden caused by poliovirus type 2. FUNDING: WHO and Rotary International. |
Response to vaccine-derived polioviruses detected through environmental surveillance, Guatemala, 2019
Rodríguez R , Juárez E , Estívariz CF , Cajas C , Rey-Benito G , Amézquita MOB , Miles SJ , Orantes O , Freire MC , Chévez AE , Signor LC , Sayyad L , Jarquin C , Cain E , Villalobos Rodríguez AP , Mendoza L , Ovando CA , Mayorga HJB , Gaitán E , Paredes A , Belgasmi-Allen H , Gobern L , Rondy M . Emerg Infect Dis 2023 29 (8) 1524-1530 Guatemala implemented wastewater-based poliovirus surveillance in 2018, and three genetically unrelated vaccine-derived polioviruses (VDPVs) were detected in 2019. The Ministry of Health (MoH) response included event investigation through institutional and community retrospective case searches for acute flaccid paralysis (AFP) during 2018-2020 and a bivalent oral polio/measles, mumps, and rubella vaccination campaign in September 2019. This response was reviewed by an international expert team in July 2021. During the campaign, 93% of children 6 months <7 years of age received a polio-containing vaccine dose. No AFP cases were detected in the community search; institutional retrospective searches found 37% of unreported AFP cases in 2018‒2020. No additional VDPV was isolated from wastewater. No evidence of circulating VDPV was found; the 3 isolated VDPVs were classified as ambiguous VDPVs by the international team of experts. These detections highlight risk for poliomyelitis reemergence in countries with low polio vaccine coverage. |
Poliovirus type 1 systemic humoral and intestinal mucosal immunity induced by monovalent oral poliovirus vaccine, fractional inactivated poliovirus vaccine, and bivalent oral poliovirus vaccine: A randomized controlled trial
Snider CJ , Zaman K , Wilkinson AL , Binte Aziz A , Yunus M , Haque W , Jones KAV , Wei L , Estivariz CF , Konopka-Anstadt JL , Mainou BA , Patel JC , Lickness JS , Pallansch MA , Wassilak SGF , Steven Oberste M , Anand A . Vaccine 2023 41 (41) 6083-6092 BACKGROUND: To inform response strategies, we examined type 1 humoral and intestinal immunity induced by 1) one fractional inactivated poliovirus vaccine (fIPV) dose given with monovalent oral poliovirus vaccine (mOPV1), and 2) mOPV1 versus bivalent OPV (bOPV). METHODS: We conducted a randomized, controlled, open-label trial in Dhaka, Bangladesh. Healthy infants aged 5 weeks were block randomized to one of four arms: mOPV1 at age 6-10-14 weeks/fIPV at 6 weeks (A); mOPV1 at 6-10-14 weeks/fIPV at 10 weeks (B); mOPV1 at 6-10-14 weeks (C); and bOPV at 6-10-14 weeks (D). Immune response at 10 weeks and cumulative response at 14 weeks was assessed among the modified intention-to-treat population, defined as seroconversion from seronegative (<1:8 titers) to seropositive (≥1:8) or a four-fold titer rise among seropositive participants sustained to age 18 weeks. We examined virus shedding after two doses of mOPV1 with and without fIPV, and after the first mOPV1 or bOPV dose. The trial is registered at ClinicalTrials.gov (NCT03722004). FINDINGS: During 18 December 2018 - 23 November 2019, 1,192 infants were enrolled (arms A:301; B:295; C:298; D:298). Immune responses at 14 weeks did not differ after two mOPV1 doses alone (94% [95% CI: 91-97%]) versus two mOPV1 doses with fIPV at 6 weeks (96% [93-98%]) or 10 weeks (96% [93-98%]). Participants who received mOPV1 and fIPV at 10 weeks had significantly lower shedding (p < 0·001) one- and two-weeks later compared with mOPV1 alone. Response to one mOPV1 dose was significantly higher than one bOPV dose (79% versus 67%; p < 0·001) and shedding two-weeks later was significantly higher after mOPV1 (76% versus 56%; p < 0·001) indicating improved vaccine replication. Ninety-nine adverse events were reported, 29 serious including two deaths; none were attributed to study vaccines. INTERPRETATION: Given with the second mOPV1 dose, fIPV improved intestinal immunity but not humoral immunity. One mOPV1 dose induced higher humoral and intestinal immunity than bOPV. FUNDING: U.S. Centers for Disease Control and Prevention. |
Assessing the mucosal intestinal and systemic humoral immunity of sequential schedules of inactivated poliovirus vaccine and bivalent oral poliovirus vaccine for essential immunization in Bangladesh: An open-label, randomized controlled trial
Snider CJ , Zaman K , Estivariz CF , Aziz AB , Yunus M , Haque W , Hendley WS , Weldon WC , Oberste MS , Pallansch MA , Wassilak SGF , Anand A . Vaccine 2024 42 (22) 126216 In 2012, the Strategic Advisory Group of Experts on Immunization (SAGE) recommended introduction of at least one inactivated poliovirus vaccine (IPV) dose in essential immunization programs. We evaluated systemic humoral and intestinal mucosal immunity of a sequential IPV-bivalent oral poliovirus vaccine (bOPV) schedule compared with a co-administration IPV + bOPV schedule in an open-label, randomized, controlled, non-inferiority, inequality trial in Dhaka, Bangladesh. Healthy infants aged 6 weeks were randomized to either: (A) IPV and bOPV at 6 and bOPV at 10 and 14 weeks (IPV + bOPV-bOPV-bOPV); or (B) IPV at 6 and bOPV at 10 and 14 weeks (IPV-bOPV-bOPV). Of 456 participants enrolled and randomly assigned during May-August 2015, 428 (94%) were included in the modified intention-to-treat analysis (arm A: 211, arm B: 217). Humoral immune responses did not differ at 18 weeks between study arms: type 1 (98% versus 96%; p = 0.42), type 2 (37% versus 39%; p = 0.77), and type 3 (97% versus 93%; p = 0.07). Virus shedding one week after the bOPV challenge dose in arm B was non-inferior to arm A (type 1 difference = -3% [90% confidence interval: -6 - 0.4%]; type 3 difference: -3% [-6 to -0.2%]). Twenty-six adverse events including seven serious adverse events were reported among 25 participants including one death; none were attributed to study vaccines. An IPV-bOPV-bOPV sequential schedule induced comparable systemic humoral immunity to all poliovirus types and types 1 and 3 intestinal mucosal immunity as an IPV + bOPV-bOPV-bOPV co-administration schedule. |
Immunogenicity of novel oral poliovirus vaccine type 2 administered concomitantly with bivalent oral poliovirus vaccine: an open-label, non-inferiority, randomised, controlled trial
Wilkinson AL , Zaman K , Hoque M , Estivariz CF , Burns CC , Konopka-Anstadt JL , Mainou BA , Kovacs SD , An Q , Lickness JS , Yunus M , Snider CJ , Zhang Y , Coffee E , Abid T , Wassilak SGF , Pallansch MA , Oberste MS , Vertefeuille JF , Anand A . Lancet Infect Dis 2023 23 (9) 1062-1071 ![]() BACKGROUND: Novel oral poliovirus vaccine type 2 (nOPV2) was developed by modifying the Sabin strain to increase genetic stability and reduce risk of seeding new circulating vaccine-derived poliovirus type 2 outbreaks. Bivalent oral poliovirus vaccine (bOPV; containing Sabin types 1 and 3) is the vaccine of choice for type 1 and type 3 outbreak responses. We aimed to assess immunological interference between nOPV2 and bOPV when administered concomitantly. METHODS: We conducted an open-label, non-inferiority, randomised, controlled trial at two clinical trial sites in Dhaka, Bangladesh. Healthy infants aged 6 weeks were randomly assigned (1:1:1) using block randomisation, stratified by site, to receive nOPV2 only, nOPV2 plus bOPV, or bOPV only, at the ages of 6 weeks, 10 weeks, and 14 weeks. Eligibility criteria included singleton and full term (≥37 weeks' gestation) birth and parents intending to remain in the study area for the duration of study follow-up activities. Poliovirus neutralising antibody titres were measured at the ages of 6 weeks, 10 weeks, 14 weeks, and 18 weeks. The primary outcome was cumulative immune response for all three poliovirus types at the age of 14 weeks (after two doses) and was assessed in the modified intention-to-treat population, which was restricted to participants with adequate blood specimens from all study visits. Safety was assessed in all participants who received at least one dose of study product. A non-inferiority margin of 10% was used to compare single and concomitant administration. This trial is registered with ClinicalTrials.gov, NCT04579510. FINDINGS: Between Feb 8 and Sept 26, 2021, 736 participants (244 in the nOPV2 only group, 246 in the nOPV2 plus bOPV group, and 246 in the bOPV only group) were enrolled and included in the modified intention-to-treat analysis. After two doses, 209 (86%; 95% CI 81-90) participants in the nOPV2 only group and 159 (65%; 58-70) participants in the nOPV2 plus bOPV group had a type 2 poliovirus immune response; 227 (92%; 88-95) participants in the nOPV2 plus bOPV group and 229 (93%; 89-96) participants in the bOPV only group had a type 1 response; and 216 (88%; 83-91) participants in the nOPV2 plus bOPV group and 212 (86%; 81-90) participants in the bOPV only group had a type 3 response. Co-administration was non-inferior to single administration for types 1 and 3, but not for type 2. There were 15 serious adverse events (including three deaths, one in each group, all attributable to sudden infant death syndrome); none were attributed to vaccination. INTERPRETATION: Co-administration of nOPV2 and bOPV interfered with immunogenicity for poliovirus type 2, but not for types 1 and 3. The blunted nOPV2 immunogenicity we observed would be a major drawback of using co-administration as a vaccination strategy. FUNDING: The US Centers for Disease Control and Prevention. |
Review of use of inactivated poliovirus vaccine in campaigns to control type 2 circulating vaccine derived poliovirus (cVDPV) outbreaks
Estivariz CF , Kovacs SD , Mach O . Vaccine 2022 41 Suppl 1 A113-A121 Delivering inactivated poliovirus vaccine (IPV) with oral poliovirus vaccine (OPV) in campaigns has been explored to accelerate the control of type 2 circulating vaccine-derived poliovirus (cVDPV) outbreaks. A review of scientific literature suggests that among populations with high prevalence of OPV failure, a booster with IPV after at least two doses of OPV may close remaining humoral and mucosal immunity gaps more effectively than an additional dose of trivalent OPV. However, IPV alone demonstrates minimal advantage on humoral immunity compared with monovalent and bivalent OPV, and cannot provide the intestinal immunity that prevents infection and spread to those individuals not previously exposed to live poliovirus of the same serotype (i.e. type 2 for children born after the switch from trivalent to bivalent OPV in April 2016). A review of operational data from polio campaigns shows that addition of IPV increases the cost and logistic complexity of campaigns. As a result, campaigns in response to an outbreak often target small areas. Large campaigns require a delay to ensure logistics are in place for IPV delivery, and may need implementation in phases that last several weeks. Challenges to delivery of injectable vaccines through house-to-house visits also increases the risk of missing the children who are more likely to benefit from IPV: those with difficult access to routine immunization and other health services. Based upon this information, the Strategic Advisory Group of Experts in immunization (SAGE) recommended in October 2020 the following strategies: provision of a second dose of IPV in routine immunization to reduce the risk and number of paralytic cases in countries at risk of importation or new emergences; and use of type 2 OPV in high-quality campaigns to interrupt transmission and avoid seeding new type 2 cVDPV outbreaks. |
Assessing the immunogenicity of three different inactivated polio vaccine schedules for use after oral polio vaccine cessation, an open label, phase IV, randomized controlled trial
Zaman K , Kovacs SD , Vanderende K , Aziz A , Yunus M , Khan S , Snider CJ , An Q , Estivariz CF , Oberste MS , Pallansch MA , Anand A . Vaccine 2021 39 (40) 5814-5821 BACKGROUND: After global oral poliovirus vaccine (OPV) cessation, the Strategic Advisory Group of Experts on Immunization (SAGE) currently recommends a two-dose schedule of inactivated poliovirus vaccine (IPV) beginning ≥14-weeks of age to achieve at least 90% immune response. We aimed to compare the immunogenicity of three different two-dose IPV schedules started before or at 14-weeks of age. METHODS: We conducted a randomized, controlled, open-label, inequality trial at two sites in Dhaka, Bangladesh. Healthy infants at 6-weeks of age were randomized into one of five arms to receive two-dose IPV schedules at different ages with and without OPV. The three IPV-only arms are presented: Arm C received IPV at 14-weeks and 9-months; Arm D received IPV at 6-weeks and 9-months; and Arm E received IPV at 6 and 14-weeks. The primary outcome was immune response defined as seroconversion from seronegative (<1:8) to seropositive (≥1:8) after vaccination, or a four-fold rise in antibody titers and median reciprocal antibody titers to all three poliovirus types measured at 10-months of age. FINDINGS: Of the 987 children randomized to Arms C, D, and E, 936 were included in the intention-to-treat analysis. At 10-months, participants in Arm C (IPV at 14-weeks and 9-months) had ≥99% cumulative immune response to all three poliovirus types which was significantly higher than the 77-81% observed in Arm E (IPV at 6 and 14-weeks). Participants in Arm D (IPV at 6-weeks and 9-months) had cumulative immune responses of 98-99% which was significantly higher than that of Arm E (p value < 0.0001) but not different from Arm C. INTERPRETATION: Results support current SAGE recommendations for IPV following OPV cessation and provide evidence that the schedule of two full IPV doses could begin as early as 6-weeks. |
No Serological Evidence of Trachoma or Yaws Among Residents of Registered Camps and Makeshift Settlements in Cox's Bazar, Bangladesh
Cooley GM , Feldstein LR , Bennett SD , Estivariz CF , Weil L , Bohara R , Vandenent M , Mainul Hasan A , Akhtar MS , Uzzaman MS , Billah MM , Conklin L , Ehlman DC , Asiedu K , Solomon AW , Alamgir A , Flora MS , Martin DL . Am J Trop Med Hyg 2021 104 (6) 2031-2037 Successful achievement of global targets for elimination of trachoma as a public health problem and eradication of yaws will require control efforts to reach marginalized populations, including refugees. Testing for serologic evidence of transmission of trachoma and yaws in residents of registered camps and a Makeshift Settlement in Cox's Bazar District, Bangladesh, was added to a serosurvey for vaccine-preventable diseases (VPDs) conducted April-May 2018. The survey was primarily designed to estimate remaining immunity gaps for VPDs, including diphtheria, measles, rubella, and polio. Blood specimens from 1- to 14-year-olds from selected households were collected and tested for antibody responses against antigens from Treponema pallidum and Chlamydia trachomatis using a multiplex bead assay to evaluate for serologic evidence of the neglected tropical diseases (NTDs) yaws and trachoma, respectively. The prevalence of antibodies against two C. trachomatis antigens in children ranged from 1.4% to 1.5% for Pgp3 and 2.8% to 7.0% for CT694. The prevalence of antibody responses against both of two treponemal antigens (recombinant protein17 and treponemal membrane protein A) tested was 0% to 0.15% in two camps. The data are suggestive of very low or no transmission of trachoma and yaws, currently or previously, in children resident in these communities. This study illustrates how integrated serologic testing can provide needed data to help NTD programs prioritize limited resources. |
Immunogenicity of reduced-dose monovalent type 2 oral poliovirus vaccine in Mocuba, Mozambique
de Deus N , Capitine IPU , Bauhofer AFL , Marques S , Cassocera M , Chissaque A , Bero DM , Langa JP , Padama FM , Jeyaseelan V , Oberste MS , Estivariz CF , Verma H , Jani I , Mach O , Sutter RW . J Infect Dis 2020 226 (2) 292-298 BACKGROUND: Monovalent type 2 oral poliovirus vaccine (mOPV2) stockpile is low. One potential strategy to stretch the existing mOPV2 supply is to administer a reduced dose: one-drop instead of two-drops. METHODS: We conducted a randomized, controlled, open-label, non-inferiority trial (10% margin) to compared immunogenicity following administration of one versus two-drops of mOPV2. We enrolled 9-22-months old infants from Mocuba district of Mozambique. Poliovirus neutralizing antibodies were measured in sera collected before and one month after mOPV2 administration. Immune response was defined as seroconversion from seronegative (<1:8) at baseline to seropositive (>1:8) after vaccination or boosting titers by >4-fold for those with titers between 1:8 and 1:362 at baseline. The trial was registered at anzctr.org.au (number ACTRN12619000184178p). RESULTS: We enrolled 378 children and 262 (69%) completed per-protocol requirements. Immune response of mOPV2 was 53.6% (95% confidence interval [CI]: 44.9%-62.1%) and 60.6% (95% CI: 52.2%-68.4%) in 1-drop and 2-drops recipients, respectively. The non-inferiority margin of the 10% was not reached (difference=7.0%; 95%CI= -5.0-19.0). CONCLUSION: A small loss of immunogenicity of reduced mOPV2 was observed. Although the non-inferiority target was not achieved, the Strategic Advisory Group of Experts on Immunization, recommended the 1-drop strategy as a dose-sparing measure if mOPV2 supplies deteriorate further. |
Assessment of immunity to polio among Rohingya children in Cox's Bazar, Bangladesh, 2018: A cross-sectional survey
Estivariz CF , Bennett SD , Lickness JS , Feldstein LR , Weldon WC , Leidman E , Ehlman DC , Khan MFH , Adhikari JM , Hasan M , Billah MM , Oberste MS , Alamgir ASM , Flora MD . PLoS Med 2020 17 (3) e1003070 BACKGROUND: We performed a cross-sectional survey in April-May 2018 among Rohingya in Cox's Bazar, Bangladesh, to assess polio immunity and inform vaccination strategies. METHODS AND FINDINGS: Rohingya children aged 1-6 years (younger group) and 7-14 years (older group) were selected using multi-stage cluster sampling in makeshift settlements and simple random sampling in Nayapara registered camp. Surveyors asked parents/caregivers if the child received any oral poliovirus vaccine (OPV) in Myanmar and, for younger children, if the child received vaccine in any of the 5 campaigns delivering bivalent OPV (serotypes 1 and 3) conducted during September 2017-April 2018 in Cox's Bazar. Dried blood spot (DBS) specimens were tested for neutralizing antibodies to poliovirus types 1, 2, and 3 in 580 younger and 297 older children. Titers >/= 1:8 were considered protective. Among 632 children (335 aged 1-6 years, 297 aged 7-14 years) enrolled in the study in makeshift settlements, 51% were male and 89% had arrived after August 9, 2017. Among 245 children (all aged 1-6 years) enrolled in the study in Nayapara, 54% were male and 10% had arrived after August 9, 2017. Among younger children, 74% in makeshift settlements and 92% in Nayapara received >3 bivalent OPV doses in campaigns. Type 1 seroprevalence was 85% (95% CI 80%-89%) among younger children and 91% (95% CI 86%-95%) among older children in makeshift settlements, and 92% (88%-95%) among younger children in Nayapara. Type 2 seroprevalence was lower among younger children than older children in makeshift settlements (74% [95% CI 68%-79%] versus 97% [95% CI 94%-99%], p < 0.001), and was 69% (95% CI 63%-74%) among younger children in Nayapara. Type 3 seroprevalence was below 75% for both age groups and areas. The limitations of this study are unknown routine immunization history and poor retention of vaccination cards. CONCLUSIONS: Younger Rohingya children had immunity gaps to all 3 polio serotypes and should be targeted by future campaigns and catch-up routine immunization. DBS collection can enhance the reliability of assessments of outbreak risk and vaccination strategy impact in emergency settings. |
Vaccination coverage survey and seroprevalence among forcibly displaced Rohingya children, Cox's Bazar, Bangladesh, 2018: A cross-sectional study
Feldstein LR , Bennett SD , Estivariz CF , Cooley GM , Weil L , Billah MM , Uzzaman MS , Bohara R , Vandenent M , Adhikari JM , Leidman E , Hasan M , Akhtar S , Hasman A , Conklin L , Ehlman D , Alamgir A , Flora MS . PLoS Med 2020 17 (3) e1003071 BACKGROUND: During August 2017-January 2018, more than 700,000 forcibly displaced Rohingyas crossed into Cox's Bazar, Bangladesh. In response to measles and diphtheria cases, first documented in September and November 2017, respectively, vaccination campaigns targeting children <15 years old were mobilized during September 2017-March 2018. However, in a rapidly evolving emergency situation, poor sanitation, malnutrition, overcrowding, and lack of access to safe water and healthcare can increase susceptibility to infectious diseases, particularly among children. We aimed to estimate population immunity to vaccine-preventable diseases (VPDs) after vaccination activities in the camps to identify any remaining immunity gaps among Rohingya children. METHODS AND FINDINGS: We conducted a cross-sectional serologic and vaccination coverage survey in Nayapara Registered Refugee Camp ("Nayapara") and makeshift settlements (MSs) April 28, 2018 to May 31, 2018, among 930 children aged 6 months to 14 years. MSs are informal, self-settled areas with a population of more than 850,000, the majority of whom arrived after August 2017, whereas Nayapara is a registered camp and has better infrastructure than MSs, including provision of routine immunization services. Households were identified using simple random sampling (SRS) in Nayapara and multistage cluster sampling in MSs (because household lists were unavailable). Dried blood spots (DBSs) were collected to estimate seroprotection against measles, rubella, diphtheria, and tetanus, using Luminex multiplex bead assay (MBA). Caregiver interviews assessed vaccination campaign participation using vaccination card or recall. In Nayapara, 273 children aged 1 to 6 years participated; 46% were female and 88% were registered refugees. In MSs, 358 children aged 1 to 6 years and 299 children aged 7 to 14 years participated; 48% of all children in MSs were female, and none were registered refugees. In Nayapara, estimated seroprotection among 1- to 6-year-olds was high for measles, rubella, diphtheria, and tetanus (91%-98%; 95% confidence interval [CI] 87%-99%); children >6 years were not assessed. In MSs, measles seroprotection was similarly high among 1- to 6-year-olds and 7- to 14-year-olds (91% [95% CI 86%-94%] and 99% [95% CI 96%-100%], respectively, p < 0.001). Rubella and diphtheria seroprotection in MSs were significantly lower among 1- to 6-year-olds (84% [95% CI 79%-88%] and 63% [95% CI 56%-70%]) compared to 7- to 14-year-olds (96% [95% CI 90%-98%] and 77% [95% CI 69%-84%]) (p < 0.001). Tetanus seroprevalence was similar among 1- to 6-year-olds and 7- to 14-year-olds (76% [95% CI 69%-81%] and 84% [95% CI 77%-89%], respectively; p = 0.07). Vaccination campaign coverage was consistent with seroprotection in both camps. However, nonresponse, the main limitation of the study, may have biased the seroprotection and campaign coverage results. CONCLUSIONS: In this study, we observed that despite multiple vaccination campaigns, immunity gaps exist among children in MSs, particularly for diphtheria, which requires serial vaccinations to achieve maximum protection. Therefore, an additional tetanus-diphtheria campaign may be warranted in MSs to address these remaining immunity gaps. Rapid scale-up and strengthening of routine immunization services to reach children and to deliver missed doses to older children is also critically needed to close immunity gaps and prevent future outbreaks. |
Field performance of two methods for detection of poliovirus in wastewater samples, Mexico 2016-2017
Estivariz CF , Perez-Sanchez EE , Bahena A , Burns CC , Gary HEJr , Garcia-Lozano H , Rey-Benito G , Penaranda S , Castillo-Montufar KV , Nava-Acosta RS , Meschke JS , Oberste MS , Lopez-Martinez I , Diaz-Quinonez JA . Food Environ Virol 2019 11 (4) 364-373 To enhance our ability to monitor poliovirus circulation and certify eradication, we evaluated the performance of the bag-mediated filtration system (BMFS) against the two-phase separation (TPS) method for concentrating wastewater samples for poliovirus detection. Sequential samples were collected at two sites in Mexico; one L was collected by grab and ~ 5 L were collected and filtered in situ with the BMFS. In the laboratory, 500 mL collected by grab were concentrated using TPS and the sample contained in the filter of the BMFS was eluted without secondary concentration. Concentrates were tested for the presence of poliovirus and non-poliovirus enterovirus (NPEV) using Global Poliovirus Laboratory Network standard procedures. Between February 16, 2016, and April 18, 2017, 125 pairs of samples were obtained. Collectors spent an average (+/- standard deviation) of 4.3 +/- 2.2 min collecting the TPS sample versus 73.5 +/- 30.5 min collecting and filtering the BMFS sample. Laboratory processing required an estimated 5 h for concentration by TPS and 3.5 h for elution. Sabin 1 poliovirus was detected in 37 [30%] samples with the TPS versus 24 [19%] samples with the BMFS (McNemar's mid p value = 0.004). Sabin 3 poliovirus was detected in 59 [47%] versus 49 (39%) samples (p = 0.043), and NPEV was detected in 67 [54%] versus 40 [32%] samples (p < 0.001). The BMFS method without secondary concentration did not perform as well as the TPS method for detecting Sabin poliovirus and NPEV. Further studies are needed to guide the selection of cost-effective environmental surveillance methods for the polio endgame. |
Immunogenicity of full and fractional dose of inactivated poliovirus vaccine for use in routine immunisation and outbreak response: an open-label, randomised controlled trial
Snider CJ , Zaman K , Estivariz CF , Yunus M , Weldon WC , Wannemuehler KA , Oberste MS , Pallansch MA , Wassilak SG , Bari TIA , Anand A . Lancet 2019 393 (10191) 2624-2634 BACKGROUND: Intradermal administration of fractional inactivated poliovirus vaccine (fIPV) is a dose-sparing alternative to the intramuscular full dose. We aimed to compare the immunogenicity of two fIPV doses versus one IPV dose for routine immunisation, and also assessed the immunogenicity of an fIPV booster dose for an outbreak response. METHODS: We did an open-label, randomised, controlled, inequality, non-inferiority trial in two clinics in Dhaka, Bangladesh. Healthy infants were randomly assigned at 6 weeks to one of four groups: group A received IPV at age 14 weeks and IPV booster at age 22 weeks; group B received IPV at age 14 weeks and fIPV booster at age 22 weeks; group C received IPV at age 6 weeks and fIPV booster at age 22 weeks; and group D received fIPV at 6 weeks and 14 weeks and fIPV booster at age 22 weeks. IPV was administered by needle-syringe as an intramuscular full dose (0.5 mL), and fIPV was administered intradermally (0.1 mL of the IPV formulation was administered using the 0.1 mL HelmJect auto-disable syringe with a Helms intradermal adapter). Both IPV and fIPV were administered on the outer, upper right thigh of infants. The primary outcome was vaccine response to poliovirus types 1, 2, and 3 at age 22 weeks (routine immunisation) and age 26 weeks (outbreak response). Vaccine response was defined as seroconversion from seronegative (<1:8) at baseline to seropositive (>/=1:8) or four-fold increase in reciprocal antibody titres adjusted for maternal antibody decay and was assessed in the modified intention-to-treat population (infants who received polio vaccines per group assignment and polio antibody titre results to serotypes 1, 2, and 3 at 6, 22, 23, and 26 weeks of age). The non-inferiority margin was 12.5%. This trial is registered with ClinicalTrials.gov, number NCT02847026. FINDINGS: Between Sept 1, 2016 and May 2, 2017, 1076 participants were randomly assigned and included in the modified intention-to-treat analysis: 271 in Group A, 267 in group B, 268 in group C, and 270 in group D. Vaccine response at 22 weeks to two doses of fIPV (group D) was significantly higher (p<0.0001) than to one dose of IPV (groups A and B) for all three poliovirus serotypes: the type 1 response comprised 212 (79% [95% CI 73-83]) versus 305 (57% [53-61]) participants, the type 2 response comprised 173 (64% [58-70]) versus 249 (46% [42-51]) participants, and the type 3 response comprised 196 (73% [67-78]) versus 196 (36% [33-41]) participants. At 26 weeks, the fIPV booster was non-inferior to IPV (group B vs group A) for serotype 1 (-1.12% [90% CI -2.18 to -0.06]), serotype 2 (0.40%, [-2.22 to 1.42]), and serotype 3 (1.51% [-3.23 to -0.21]). Of 129 adverse events, 21 were classified as serious including one death; none were attributed to IPV or fIPV. INTERPRETATION: fIPV appears to be an effective dose-sparing strategy for routine immunisation and outbreak responses. FUNDING: US Centers for Disease Control and Prevention. |
Implementing a multisite clinical trial in the midst of an Ebola outbreak: Lessons learned from the Sierra Leone Trial to Introduce a Vaccine against Ebola
Carter RJ , Idriss A , Widdowson MA , Samai M , Schrag SJ , Legardy-Williams JK , Estivariz CF , Callis A , Carr W , Webber W , Fischer ME , Hadler S , Sahr F , Thompson M , Greby SM , Edem-Hotah J , Momoh RM , McDonald W , Gee JM , Kallon AF , Spencer-Walters D , Bresee JS , Cohn A , Hersey S , Gibson L , Schuchat A , Seward JF . J Infect Dis 2018 217 S16-s23 The Sierra Leone Trial to Introduce a Vaccine against Ebola (STRIVE), a phase 2/3 trial of investigational rVSVG-ZEBOV-GP vaccine, was conducted during an unprecedented Ebola epidemic. More than 8600 eligible healthcare and frontline response workers were individually randomized to immediate (within 7 days) or deferred (within 18-24 weeks) vaccination and followed for 6 months after vaccination for serious adverse events and Ebola virus infection. Key challenges included limited infrastructure to support trial activities, unreliable electricity, and staff with limited clinical trial experience. Study staff made substantial infrastructure investments, including renovation of enrollment sites, laboratories, and government cold chain facilities, and imported equipment to store and transport vaccine at </=-60oC. STRIVE built capacity by providing didactic and practical research training to >350 staff, which was reinforced with daily review and feedback meetings. The operational challenges of safety follow-up were addressed by issuing mobile telephones to participants, making home visits, and establishing a nurse triage hotline. Before the Ebola outbreak, Sierra Leone had limited infrastructure and staff to conduct clinical trials. Without interfering with the outbreak response, STRIVE responded to an urgent need and helped build this capacity. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov [NCT02378753] and Pan African Clinical Trials Registry [PACTR201502001037220]. |
Immunogenicity of type 2 monovalent oral and inactivated poliovirus vaccines for type 2 poliovirus outbreak response: an open-label, randomised controlled trial
Zaman K , Estivariz CF , Morales M , Yunus M , Snider CJ , Gary HEJr , Weldon WC , Oberste MS , Wassilak SG , Pallansch MA , Anand A . Lancet Infect Dis 2018 18 (6) 657-665 BACKGROUND: Monovalent type 2 oral poliovirus vaccine (mOPV2) and inactivated poliovirus vaccine (IPV) are used to respond to type 2 poliovirus outbreaks. We aimed to assess the effect of two mOPV2 doses on the type 2 immune response by varying the time interval between mOPV2 doses and IPV co-administration with mOPV2. METHODS: We did a randomised, controlled, parallel, open-label, non-inferiority, inequality trial at two study clinics in Dhaka, Bangladesh. Healthy infants aged 6 weeks (42-48 days) at enrolment were randomly assigned (1:1:1:1) to receive two mOPV2 doses (each dose consisting of two drops [0.1 mL in total] of about 10(5) 50% cell culture infectious dose of type 2 Sabin strain) at intervals of 1 week, 2 weeks, 4 weeks (standard or control group), or 4 weeks with IPV (0.5 mL of type 1 [Mahoney, 40 D-antigen units], type 2 [MEF-1, 8 D-antigen units], and type 3 [Saukett, 32 D-antigen units]) administered intramuscularly with the first mOPV2 dose. We used block randomisation, randomly selecting blocks of sizes four, eight, 12, or 16 stratified by study sites. We concealed randomisation assignment from staff managing participants in opaque, sequentially numbered, sealed envelopes. Parents and clinic staff were unmasked to assignment after the randomisation envelope was opened. Laboratory staff analysing sera were masked to assignment, but investigators analysing data and assessing outcomes were not. The primary outcome was type 2 immune response measured 4 weeks after mOPV2 administration. The primary modified intention-to-treat analysis included participants with testable serum samples before and after vaccination. A non-inferiority margin of 10% and p=0.05 (one-tailed) was used. This trial is registered at ClinicalTrials.gov, number NCT02643368, and is closed to accrual. FINDINGS: Between Dec 7, 2015, and Jan 5, 2016, we randomly assigned 760 infants to receive two mOPV2 doses at intervals of 1 week (n=191), 2 weeks (n=191), 4 weeks (n=188), or 4 weeks plus IPV (n=190). Immune responses after two mOPV2 doses were observed in 161 (93%) of 173 infants with testable serum samples in the 1 week group, 169 (96%) of 177 in the 2 week group, and 176 (97%) of 181 in the 4 week group. 1 week and 2 week intervals between two mOPV2 doses were non-inferior to 4 week intervals because the lower bound of the absolute differences in the percentage of immune responses were greater than -10% (-4.2% [90% CI -7.9 to -0.4] in the 1 week group and -1.8% [-5.0 to 1.5] in the 2 week group vs the 4 week group). The immune response elicited by two mOPV2 doses 4 weeks apart was not different when IPV was added to the first dose (176 [97%] of 182 infants with IPV vs 176 [97%] of 181 without IPV; p=1.0). During the trial, two serious adverse events (pneumonia; one [1%] of 186 patients in the 1 week group and one [1%] of 182 in the 4 week group) and no deaths were reported; the adverse events were not attributed to the vaccines. INTERPRETATION: Administration of mOPV2 at short intervals does not interfere with its immunogenicity. The addition of IPV to the first mOPV2 dose did not improve poliovirus type 2 immune response. FUNDING: US Centers for Disease Control and Prevention. |
Pathogen-specific burden of outpatient diarrhea in infants in Nepal: A multisite prospective case-control study
Cardemil CV , Sherchand JB , Shrestha L , Sharma A , Gary HE , Estivariz CF , Diez-Valcarce M , Ward ML , Bowen MD , Vinje J , Parashar U , Chu SY . J Pediatric Infect Dis Soc 2017 6 (3) e75-e85 Background: Nonsevere diarrheal disease in Nepal represents a large burden of illness. Identification of the specific disease-causing pathogens will help target the appropriate control measures. Methods: Infants aged 6 weeks to 12 months were recruited from 5 health facilities in eastern, central, and western Nepal between August 2012 and August 2013. The diarrhea arm included infants with mild or moderate diarrhea treatable in an outpatient setting; the nondiarrhea arm included healthy infants who presented for immunization visits or had a mild nondiarrheal illness. Stool samples were tested for 15 pathogens with a multiplex polymerase chain reaction (PCR) assay and real-time reverse-transcription (RT)-PCR assays for rotavirus and norovirus. Rotavirus- and norovirus-positive specimens were genotyped. We calculated attributable fractions (AFs) to estimate the pathogen-specific burden of diarrhea and adjusted for facility, age, stunting, wasting, and presence of other pathogens. Results: We tested 307 diarrheal and 358 nondiarrheal specimens. Pathogens were detected more commonly in diarrheal specimens (164 of 307 [53.4%]) than in nondiarrheal specimens (113 of 358 [31.6%]) (P < .001). Rotavirus (AF, 23.9% [95% confidence interval (CI), 14.9%-32.8%]), Salmonella (AF, 12.4% [95% CI, 6.6%-17.8%]), and Campylobacter (AF, 5.6% [95% CI, 1.3%-9.8%]) contributed most to the burden of disease. In these diarrheal specimens, the most common genotypes for rotavirus were G12P[6] (27 of 82 [32.9%]) and G1P[8] (16 of 82 [19.5%]) and for norovirus were GII.4 Sydney (9 of 26 [34.6%]) and GII.7 (5 of 26 [19.2%]). Conclusions: The results of this study indicate that the introduction of a rotavirus vaccine in Nepal will likely decrease outpatient diarrheal disease burden in infants younger than 1 year, but interventions to detect and target other pathogens, such as Salmonella and Campylobacter spp, should also be considered. |
Cold-chain adaptability during introduction of inactivated polio vaccine in Bangladesh, 2015
Billah MM , Zaman K , Estivariz CF , Snider CJ , Anand A , Hampton LM , Bari TIA , Russell KL , Chai SJ . J Infect Dis 2017 216 S114-S121 Background. Introduction of inactivated polio vaccine creates challenges in maintaining the cold chain for vaccine storage and distribution. Methods. We evaluated the cold chain in 23 health facilities and 36 outreach vaccination sessions in 8 districts and cities of Bangladesh, using purposive sampling during August-October 2015. We interviewed immunization and cold-chain staff, assessed equipment, and recorded temperatures during vaccine storage and transportation. Results. All health facilities had functioning refrigerators, and 96% had freezers. Temperature monitors were observed in all refrigerators and freezers but in only 14 of 66 vaccine transporters (21%). Recorders detected temperatures >8degreeC for >60 minutes in 5 of 23 refrigerators (22%), 3 of 6 cold boxes (50%) transporting vaccines from national to subnational depots, and 8 of 48 vaccine carriers (17%) used in outreach vaccination sites. Temperatures <2degreeC were detected in 4 of 19 cold boxes (21%) transporting vaccine from subnational depots to health facilities and 14 of 48 vaccine carriers (29%). Conclusions. Bangladesh has substantial cold-chain storage and transportation capacity after inactivated polio vaccine introduction, but temperature fluctuations during vaccine transport could cause vaccine potency loss that could go undetected. Bangladesh and other countries should strive to ensure consistent and sufficient cold-chain storage and monitor the cold chain during vaccine transportation at all levels. |
Lessons learned from the introduction of inactivated poliovirus vaccine in Bangladesh
Estivariz CF , Snider CJ , Anand A , Hampton LM , Bari TI , Billah MM , Chai SJ , Wassilak SG , Heffelfinger JD , Zaman K . J Infect Dis 2017 216 S122-S129 Background We assessed programmatic adaptations and infants' uptake of inactivated poliovirus vaccine (IPV) after its introduction into the routine immunization schedule in Bangladesh. Methods Using convenience and probability sampling, we selected 23 health facilities, 36 vaccinators, and 336 caregivers, within 5 districts and 3 city corporations. We collected data during August-October 2015 by conducting interviews, reviewing vaccination records, and observing activities. Results Knowledge about IPV was high among vaccinators (94%). No problems with IPV storage, transport, or waste disposal were detected, but shortages were reported in 20 health facilities (87%). Wastage per 5-dose vaccine vial was above the recommended 30% in 20 health facilities (87%); all were related to providing <5 doses per open vial. Among eligible infants, 87% and 86% received the third dose of pentavalent and oral poliovirus vaccine, respectively, but only 65% received IPV at the same visit. Among 73 infants not vaccinated with IPV, 58% of caregivers reported that vaccine was unavailable. Conclusions Bangladesh successfully introduced IPV, but shortages related to insufficient global supply and high vaccine wastage in small outreach immunization sessions might reduce its impact on population immunity. Minimizing wastage and use of a 2-dose fractional-IPV schedule could extend IPV immunization to more children. |
Risk factors for Middle East respiratory syndrome coronavirus infection among healthcare personnel
Alraddadi BM , Al-Salmi HS , Jacobs-Slifka K , Slayton RB , Estivariz CF , Geller AI , Al-Turkistani HH , Al-Rehily SS , Alserehi HA , Wali GY , Alshukairi AN , Azhar EI , Haynes L , Swerdlow DL , Jernigan JA , Madani TA . Emerg Infect Dis 2016 22 (11) 1915-1920 Healthcare settings can amplify transmission of Middle East respiratory syndrome coronavirus (MERS-CoV), but knowledge gaps about the epidemiology of transmission remain. We conducted a retrospective cohort study among healthcare personnel in hospital units that treated MERS-CoV patients. Participants were interviewed about exposures to MERS-CoV patients, use of personal protective equipment, and signs and symptoms of illness after exposure. Infection status was determined by the presence of antibodies against MERS-CoV. To assess risk factors, we compared infected and uninfected participants. Healthcare personnel caring for MERS-CoV patients were at high risk for infection, but infection most often resulted in a relatively mild illness that might be unrecognized. In the healthcare personnel cohort reported here, infections occurred exclusively among those who had close contact with MERS-CoV patients. |
Fractional-dose inactivated poliovirus vaccine immunization campaign - Telangana state, India, June 2016
Bahl S , Verma H , Bhatnagar P , Haldar P , Satapathy A , Kumar KN , Horton J , Estivariz CF , Anand A , Sutter R . MMWR Morb Mortal Wkly Rep 2016 65 (33) 859-863 Wild poliovirus type 2 was declared eradicated in September 2015 (1). In April 2016, India, switched from use of trivalent oral poliovirus vaccine (tOPV; containing types 1, 2, and 3 polio vaccine viruses), to bivalent OPV (bOPV; containing types 1 and 3), as part of a globally synchronized initiative to withdraw Sabin poliovirus type 2 vaccine. Concurrently, inactivated poliovirus vaccine (IPV) was introduced into India's routine immunization program to maintain an immunity base that would mitigate the number of paralytic cases in the event of epidemic transmission of poliovirus type 2 (2,3). After cessation of use of type 2 Sabin vaccine, any reported isolation of vaccine-derived poliovirus type 2 (VDPV2) would be treated as a public health emergency and might need outbreak response with monovalent type 2 oral vaccine, IPV, or both (4). In response to identification of a VDPV2 isolate from a sewage sample collected in the southern state of Telangana in May 2016, India conducted a mass vaccination campaign in June 2016 using an intradermal fractional dose (0.1 ml) of IPV (fIPV). Because of a global IPV supply shortage, fIPV, which uses one fifth of regular intramuscular (IM) dose administered intradermally, has been recommended as a response strategy for VDPV2 (5). Clinical trials have demonstrated that fIPV is highly immunogenic (6,7). During the 6-day campaign, 311,064 children aged 6 weeks-3 years were vaccinated, achieving an estimated coverage of 94%. With appropriate preparation, an emergency fIPV response can be promptly and successfully implemented. Lessons learned from this campaign can be applied to successful implementation of future outbreak responses using fIPV. |
Interference of monovalent, bivalent, and trivalent oral poliovirus vaccines on monovalent rotavirus vaccine immunogenicity in rural Bangladesh
Emperador DM , Velasquez DE , Estivariz CF , Lopman B , Jiang B , Parashar U , Anand A , Zaman K . Clin Infect Dis 2016 62 (2) 150-6 BACKGROUND: Trivalent oral poliovirus vaccine (OPV) is known to interfere with monovalent rotavirus vaccine (RV1) immunogenicity. The interference caused by bivalent and monovalent OPV formulations, which will be increasingly used globally in coming years, has not been examined. We conducted a post hoc analysis to assess the effect of coadministration of different OPV formulations on RV1 immunogenicity. METHODS: Healthy infants in Matlab, Bangladesh, were randomized to receive 3 doses of monovalent OPV type 1 or bivalent OPV types 1 and 3 at either 6, 8, and 10 or 6, 10, and 14 weeks of age or trivalent OPV at 6, 10, and 14 weeks of age. All infants received 2 doses of RV1 at about 6 and 10 weeks of age. Concomitant administration was defined as RV1 and OPV given on the same day; staggered administration as RV1 and OPV given ≥1 day apart. Rotavirus seroconversion was defined as a 4-fold rise in immunoglobulin A titer from before the first RV1 dose to ≥3 weeks after the second RV1 dose. RESULTS: There were no significant differences in baseline RV1 immunogenicity among the 409 infants included in the final analysis. Infants who received RV1 and OPV concomitantly, regardless of OPV formulation, were less likely to seroconvert (47%; 95% confidence interval, 39%-54%) than those who received both vaccines staggered ≥1 day (63%; 57%-70%; P < .001). For staggered administration, we found no evidence that the interval between RV1 and OPV administration affected RV1 immunogenicity. CONCLUSIONS: Coadministration of monovalent, bivalent, or trivalent OPV seems to lower RV1 immunogenicity. CLINICAL TRIALS REGISTRATION: NCT01633216. |
Early priming with inactivated poliovirus vaccine (IPV) and intradermal fractional dose IPV administered by a microneedle device: a randomized controlled trial
Anand A , Zaman K , Estivariz CF , Yunus M , Gary HE , Weldon WC , Bari TI , Oberste MS , Wassilak SG , Luby SP , Heffelfinger JD , Pallansch MA . Vaccine 2015 33 (48) 6816-22 INTRODUCTION: Inactivated poliovirus vaccine (IPV) introduction and phased oral poliovirus vaccine (OPV) cessation are essential for eradication of polio. METHODS: Healthy 6-week old infants in Bangladesh were randomized to one of five study arms: receipt of trivalent OPV (tOPV) or bivalent OPV (bOPV) at ages 6, 10 and 14 weeks, intramuscular IPV or intradermal one-fifth fractional dose IPV (f-IPV) at ages 6 and 14 weeks, or f-IPV at ages 6 and 14 weeks with bOPV at age 10 weeks (f-IPV/bOPV). All participants received tOPV at age 18 weeks. RESULTS: Of 975 infants randomized, 95% (922) completed follow-up. Type 1 seroconversion after 3 doses at 6, 10 and 14 weeks was higher with bOPV compared with tOPV (99% vs 94%, p=0.019). Seroconversions to types 1 and 3 after 2 IPV doses at ages 6 and 14 weeks were no different than after 3 doses of tOPV or bOPV at ages 6, 10 and 14 weeks. A priming response, seroconversion 1 week after IPV at 14 weeks among those who did not seroconvert after IPV at 6 weeks, was observed against poliovirus types 1, 2 and 3 in 91%, 84% and 97%, respectively. Compared with IPV, f-IPV failed non-inferiority tests for seroconversion with 1 or 2 doses and priming after 1 dose. DISCUSSION: The findings demonstrate considerable priming with IPV at age 6 weeks, comparable immunogenicity of tOPV and bOPV, and inferior immunogenicity of one-fifth f-IPV compared with IPV. If IPV induced priming at age 6 weeks is similar to that at age 14 weeks, IPV could be administered at a younger age and possibly with a higher coverage. |
Immunogenicity of three doses of bivalent, trivalent, or type 1 monovalent oral poliovirus vaccines with a 2 week interval between doses in Bangladesh: an open-label, non-inferiority, randomised, controlled trial
Estivariz CF , Anand A , Gary HE Jr , Rahman M , Islam J , Bari TI , Wassilak SG , Chu SY , Weldon WC , Pallansch MA , Heffelfinger JD , Luby SP , Zaman K . Lancet Infect Dis 2015 15 (8) 898-904 BACKGROUND: The provision of several doses of monovalent type 1 oral poliovirus vaccine (mOPV1) and bivalent OPV1 and 3 (bOPV) vaccines through campaigns is essential to stop the circulation of remaining wild polioviruses. Our study aimed to assess the shortening of intervals between campaigns with bOPV and mOPV1 and to assess the immunogenicity of bOPV in routine immunisation schedules. METHODS: We did an open-label, non-inferiority, five-arm, randomised controlled trial in Bangladesh. We recruited healthy infants aged 6 weeks at 42 immunisation clinics and randomly assigned them (with blocks of 15, three per group) to receive a short three-dose schedule of bOPV (bOPV short) or mOPV1 (mOPV1 short) with the first dose given at age 6 weeks, the second at age 8 weeks, and the third at age 10 weeks; or to a standard three-dose schedule of bOPV (bOPV standard) or mOPV1 (mOPV1 standard) or trivalent OPV (tOPV standard) with the first dose given at age 6 weeks, the second at 10 weeks, and the third at age 14 weeks. The primary outcome was the proportion of infants with antibody seroconversion for type 1, type 2, and type 3 polioviruses. The primary, modified intention-to-treat analysis included all patients who had testable serum samples before and after receiving at least one OPV dose. We used a 10% margin to establish non-inferiority for bOPV groups versus mOPV1 groups in seroconversion for type 1 poliovirus, and for bOPV1 short versus bOPV1 standard for types 1 and 3. This trial is registered at ClinicalTrials.gov, number NCT01633216, and is closed to new participants. FINDINGS: Between May 13, 2012, and Jan 21, 2013, we randomly assigned 1000 infants to our study groups. 927 completed all study visits and were included in the primary analysis. Seroconversion for type-1 poliovirus was recorded in 183 (98%, 95% CI 95-100) of 186 infants given bOPV short, 179 (97%, 94-99) of 184 given bOPV standard, 180 (96%, 92-98) of 188 given mOPV short, 178 (99%, 97-100) of 179 given mOPV1 standard, and 175 (92%, 87-96) of 190 given tOPV standard. Seroconversion for type 2 was noted in 16 infants (9%, 5-14) on bOPV short, 29 (16%, 11-22) on bOPV standard, 19 (10%, 7-15) on mOPV short, 33 (18%, 13-25) on mOPV1 standard, and 182 (96%, 92-98) on tOPV standard. Seroconversion for type 3 was noted in 175 infants (94%, 90-97) on bOPV short, 176 (96%, 92-98) on bOPV standard, 18 (10%, 6-15) on mOPV short, 25 (14%, 10-20) on mOPV1 standard, and 167 (88%, 83-92) on tOPV standard. The short schedules for mOPV1 and bOPV elicited a non-inferior antibody response compared with the bOPV standard schedule. 104 adverse events were reported in 100 infants during follow up. 36 of these events needed admission to hospital (32 were pneumonia, two were vomiting or feeding disorders, one was septicaemia, and one was diarrhoea with severe malnutrition). One of the infants admitted to hospital for pneumonia died 5 days after admission. No adverse event was attributed to the vaccines. INTERPRETATION: Our trial showed that three doses of mOPV1 or bOPV with a short schedule of 2 week intervals between doses induces an immune response similar to that obtained with the standard schedule of giving doses at 4 week intervals. These findings support the use of these vaccines in campaigns done at short intervals to rapidly increase population immunity against polioviruses to control outbreaks or prevent transmission in high-risk areas. FUNDING: Centers for Disease Control and Prevention and UNICEF. |
Vaccine-associated paralytic poliomyelitis: a review of the epidemiology and estimation of the global burden
Platt LR , Estivariz CF , Sutter RW . J Infect Dis 2014 210 Suppl 1 S380-9 BACKGROUND: Vaccine-associated paralytic poliomyelitis (VAPP) is a rare adverse event associated with oral poliovirus vaccine (OPV). This review summarizes the epidemiology and provides a global burden estimate. METHODS: A literature review was conducted to abstract the epidemiology and calculate the risk of VAPP. A bootstrap method was applied to calculate global VAPP burden estimates. RESULTS: Trends in VAPP epidemiology varied by country income level. In the low-income country, the majority of cases occurred in individuals who had received >3 doses of OPV (63%), whereas in middle and high-income countries, most cases occurred in recipients after their first OPV dose or unvaccinated contacts (81%). Using all risk estimates, VAPP risk was 4.7 cases per million births (range, 2.4-9.7), leading to a global annual burden estimate of 498 cases (range, 255-1018). If the analysis is limited to estimates from countries that currently use OPV, the VAPP risk is 3.8 cases per million births (range, 2.9-4.7) and a burden of 399 cases (range, 306-490). CONCLUSIONS: Because many high-income countries have replaced OPV with inactivated poliovirus vaccine, the VAPP burden is concentrated in lower-income countries. The planned universal introduction of inactivated poliovirus vaccine is likely to substantially decrease the global VAPP burden by 80%-90%. |
Estimating the likely coverage of inactivated poliovirus vaccine in routine immunization: evidence from demographic and health surveys
Anand A , Pallansch MA , Estivariz CF , Gary H , Wassilak SG . J Infect Dis 2014 210 Suppl 1 S465-74 BACKGROUND: The Strategic Advisory Group of Experts on Immunization (SAGE) has recommended introduction of at least 1 dose of inactivated poliovirus vaccine (IPV) at ≥14 weeks of age through the routine immunization program in countries currently not using IPV. METHODS: We analyzed all available unrestricted data obtained from the Demographic and Health Surveys since 2005 in sub-Saharan Africa (31 countries) and in South and Southeast Asia (9 countries) to determine coverage of the following injectable vaccines delivered through the routine immunization schedule: diphtheria-tetanus-pertussis vaccine dose 1 (DTP1), DTP2, DTP3, and measles vaccine. Coverage with these vaccines was used as a proxy measure of likely 1- and 2-dose IPV coverage. RESULTS: Coverage with 1 dose of IPV is expected to be lowest when offered with DTP3 (median coverage, 73%) and highest when offered with DTP1 (median coverage, 90%). The median DTP1-DTP3 drop-out rate was 14%, which equates to an additional 12 million children not receiving IPV if IPV is offered with DTP3, rather than with DTP1. An increased geographical clustering of children who have not received IPV is expected in sub-Saharan Africa and Asia if IPV is offered with DTP3, rather than with DTP1. Coverage with 2 doses of IPV is expected to be lowest if IPV is administered with DTP3 and measles vaccine (69%) and highest if administered with DTP1 and DTP2 (84%). CONCLUSIONS: Coverage with 1 dose of IPV is expected to be lowest if it is administered at the DTP3 visit. At present, there is insufficient evidence to determine whether the SAGE-recommended IPV schedule for the polio endgame would maximize population immunity to type 2 poliovirus. |
Assessing population immunity in a persistently high-risk area for wild poliovirus transmission in India: a serological study in Moradabad, Western Uttar Pradesh
Deshpande JM , Bahl S , Sarkar BK , Estivariz CF , Sharma S , Wolff C , Sethi R , Pathyarch SK , Jain V , Gary HE Jr , Pallansch MA , Jafari H . J Infect Dis 2014 210 Suppl 1 S225-33 BACKGROUND: Moradabad district in Uttar Pradesh reported the highest number of paralytic polio cases in India during 2001-2007. We conducted a study in Moradabad in 2007 to assess seroprevalence against poliovirus types 1, 2, and 3 in children 6-12 and 36-59 months of age to guide future strategies to interrupt wild poliovirus transmission in high-risk areas. METHODS: Children attending 10 health facilities for minor illnesses who met criteria for study inclusion were eligible for enrollment. We recorded vaccination history, weight, and length and tested sera for neutralizing antibodies to poliovirus types 1, 2, and 3. RESULTS: Poliovirus type 1, 2, and 3 seroprevalences were 88% (95% confidence interval [CI], 84%-91%), 70% (95% CI, 66%-75%), and 75% (95% CI, 71%-79%), respectively, among 467 in the younger age group (n = 467), compared with 100% (95% CI, 99%-100%), 97% (95% CI, 95%-98%), and 93% (91%-95%), respectively, among 447 children in the older age group (P < .001 for all serotypes). CONCLUSIONS: This seroprevalence study provided extremely useful information that was used by the program in India to guide immunization policies, such as optimizing the use of different OPV formulations in vaccination campaigns and strengthening routine immunization services. Similar surveys in populations at risk should be performed at regular intervals in countries where the risk of persistence or spread of indigenous or imported wild poliovirus is high. |
Cross-sectional serologic assessment of immunity to poliovirus infection in high-risk areas of northern India
Bahl S , Estivariz CF , Sutter RW , Sarkar BK , Verma H , Jain V , Agrawal A , Rathee M , Shukla H , Pathyarch SK , Sethi R , Wannemuehler KA , Jafari H , Deshpande JM . J Infect Dis 2014 210 Suppl 1 S243-51 INTRODUCTION: The objectives of this survey were to assess the seroprevalence of antibodies to poliovirus types 1 and 3 and the impact of bivalent (types 1 and 3) oral poliovirus vaccine (bOPV) use in immunization campaigns in northern India. METHODS: In August 2010, a 2-stage stratified cluster sampling method identified infants aged 6-7 months in high-risk blocks for wild poliovirus infection. Vaccination history, weight and length, and serum were collected to test for neutralizing antibodies to poliovirus types 1, 2, and 3. RESULTS: Seroprevalences of antibodies to poliovirus types 1, 2, and 3 were 98% (95% confidence interval [CI], 97%-99%), 66% (95% CI, 62%-69%), and 77% (95% CI, 75%-79%), respectively, among 664 infants from Bihar and 616 infants from Uttar Pradesh. Infants had received a median of 3 bOPV doses and 2 monovalent type 1 OPV (mOPV1) doses through campaigns and 3 trivalent OPV (tOPV) doses through routine immunization. Among subjects with 0 tOPV doses, the seroprevalences of antibodies to type 3 were 50%, 77%, and 82% after 2, 3, and 4 bOPV doses, respectively. In multivariable analysis, malnutrition was associated with a lower seroprevalence of type 3 antibodies. CONCLUSIONS: This study confirmed that replacing mOPV1 with bOPV in campaigns was successful in maintaining very high population immunity to type 1 poliovirus and substantially decreasing the immunity gap to type 3 poliovirus. |
Detection of vaccine-derived polioviruses in Mexico using environmental surveillance.
Esteves-Jaramillo A , Estivariz CF , Penaranda S , Richardson VL , Reyna J , Coronel DL , Carrion V , Landaverde JM , Wassilak SG , Perez-Sanchez EE , Lopez-Martinez I , Burns CC , Pallansch MA . J Infect Dis 2014 210 Suppl 1 S315-23 ![]() BACKGROUND: Early detection and control of vaccine-derived poliovirus (VDPV) emergences are essential to secure the gains of polio eradication. METHODS: Serial sewage samples were collected in 4 towns of Mexico before, throughout, and after the May 2010 oral poliovirus vaccine (OPV) mass immunization campaign. Isolation and molecular analysis of polioviruses from sewage specimens monitored the duration of vaccine-related strains in the environment and emergence of vaccine-derived polioviruses in a population partially immunized with inactivated poliovirus vaccine (IPV). RESULTS: Sabin strains were identified up to 5-8 weeks after the campaign in all towns; in Aguascalientes, 1 Sabin 3 was isolated 16 weeks after the campaign, following 7 weeks with no Sabin strains detected. In Tuxtla Gutierrez, type 2 VDPV was isolated from 4 samples collected before and during the campaign, and type 1 VDPV from 1 sample collected 19 weeks afterward. During 2009-2010, coverage in 4 OPV campaigns conducted averaged only 57% and surveillance for acute flaccid paralysis (AFP) was suboptimal (AFP rate <1 per 100 000 population <15 years of age) in Tuxtla Gutierrez. CONCLUSIONS: VDPVs may emerge and spread in settings with inadequate coverage with IPV/OPV vaccination. Environmental surveillance can facilitate early detection in these settings. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure