Last data update: Oct 07, 2024. (Total: 47845 publications since 2009)
Records 1-5 (of 5 Records) |
Query Trace: Epstein Lauren[original query] |
---|
Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak - United States, December 31, 2019-February 4, 2020.
Patel A , Jernigan DB , 2019-nCOV CDC Response Team , Abdirizak Fatuma , Abedi Glen , Aggarwal Sharad , Albina Denise , Allen Elizabeth , Andersen Lauren , Anderson Jade , Anderson Megan , Anderson Tara , Anderson Kayla , Bardossy Ana Cecilia , Barry Vaughn , Beer Karlyn , Bell Michael , Berger Sherri , Bertulfo Joseph , Biggs Holly , Bornemann Jennifer , Bornstein Josh , Bower Willie , Bresee Joseph , Brown Clive , Budd Alicia , Buigut Jennifer , Burke Stephen , Burke Rachel , Burns Erin , Butler Jay , Cantrell Russell , Cardemil Cristina , Cates Jordan , Cetron Marty , Chatham-Stephens Kevin , Chatham-Stevens Kevin , Chea Nora , Christensen Bryan , Chu Victoria , Clarke Kevin , Cleveland Angela , Cohen Nicole , Cohen Max , Cohn Amanda , Collins Jennifer , Conners Erin , Curns Aaron , Dahl Rebecca , Daley Walter , Dasari Vishal , Davlantes Elizabeth , Dawson Patrick , Delaney Lisa , Donahue Matthew , Dowell Chad , Dyal Jonathan , Edens William , Eidex Rachel , Epstein Lauren , Evans Mary , Fagan Ryan , Farris Kevin , Feldstein Leora , Fox LeAnne , Frank Mark , Freeman Brandi , Fry Alicia , Fuller James , Galang Romeo , Gerber Sue , Gokhale Runa , Goldstein Sue , Gorman Sue , Gregg William , Greim William , Grube Steven , Hall Aron , Haynes Amber , Hill Sherrasa , Hornsby-Myers Jennifer , Hunter Jennifer , Ionta Christopher , Isenhour Cheryl , Jacobs Max , Jacobs Slifka Kara , Jernigan Daniel , Jhung Michael , Jones-Wormley Jamie , Kambhampati Anita , Kamili Shifaq , Kennedy Pamela , Kent Charlotte , Killerby Marie , Kim Lindsay , Kirking Hannah , Koonin Lisa , Koppaka Ram , Kosmos Christine , Kuhar David , Kuhnert-Tallman Wendi , Kujawski Stephanie , Kumar Archana , Landon Alexander , Lee Leslie , Leung Jessica , Lindstrom Stephen , Link-Gelles Ruth , Lively Joana , Lu Xiaoyan , Lynch Brian , Malapati Lakshmi , Mandel Samantha , Manns Brian , Marano Nina , Marlow Mariel , Marston Barbara , McClung Nancy , McClure Liz , McDonald Emily , McGovern Oliva , Messonnier Nancy , Midgley Claire , Moulia Danielle , Murray Janna , Noelte Kate , Noonan-Smith Michelle , Nordlund Kristen , Norton Emily , Oliver Sara , Pallansch Mark , Parashar Umesh , Patel Anita , Patel Manisha , Pettrone Kristen , Pierce Taran , Pietz Harald , Pillai Satish , Radonovich Lewis , Reagan-Steiner Sarah , Reel Amy , Reese Heather , Rha Brian , Ricks Philip , Rolfes Melissa , Roohi Shahrokh , Roper Lauren , Rotz Lisa , Routh Janell , Sakthivel Senthil Kumar Sarmiento Luisa , Schindelar Jessica , Schneider Eileen , Schuchat Anne , Scott Sarah , Shetty Varun , Shockey Caitlin , Shugart Jill , Stenger Mark , Stuckey Matthew , Sunshine Brittany , Sykes Tamara , Trapp Jonathan , Uyeki Timothy , Vahey Grace , Valderrama Amy , Villanueva Julie , Walker Tunicia , Wallace Megan , Wang Lijuan , Watson John , Weber Angie , Weinbaum Cindy , Weldon William , Westnedge Caroline , Whitaker Brett , Whitaker Michael , Williams Alcia , Williams Holly , Willams Ian , Wong Karen , Xie Amy , Yousef Anna . Am J Transplant 2020 20 (3) 889-895 This article summarizes what is currently known about the 2019 novel coronavirus and offers interim guidance. |
A Comprehensive Approach to Ending an Outbreak of Rare bla OXA-72 gene-positive Carbapenem-resistant Acinetobacter baumannii at a Community Hospital, Kansas City, MO, 2018
McKinsey DS , Gasser C , McKinsey JP , Ditto G , Agard A , Zellmer B , Poteete C , Vagnone PS , Dale JL , Bos J , Hahn R , Turabelidze G , Poiry M , Franklin P , Vlachos N , McAllister GA , Halpin AL , Glowicz J , Ham DC , Epstein L . Am J Infect Control 2021 49 (9) 1183-1185 We identified a cluster of extensively drug-resistant, carbapenemase gene-positive, carbapenem-resistant Acinetobacter baumannii (CP-CRAB) at a teaching hospital in Kansas City. Extensively drug-resistant CRAB was identified from eight patients and 3% of environmental cultures. We used patient cohorting and targeted environmental disinfection to stop transmission. After implementation of these measures, no additional cases were identified. |
Notes from the Field: Universal Statewide Laboratory Testing for SARS-CoV-2 in Nursing Homes - West Virginia, April 21-May 8, 2020.
McBee SM , Thomasson ED , Scott MA , Reed CL , Epstein L , Atkins A , Slemp CC . MMWR Morb Mortal Wkly Rep 2020 69 (34) 1177-1179 Outbreaks of coronavirus disease 2019 (COVID-19) in nursing homes can severely affect older adults. During March 17–April 16, 2020, seven nursing homes in West Virginia reported 307 COVID-19 cases among both residents and staff members; four of the nursing homes reported outbreaks involving 20–40 residents. On April 17, the governor of West Virginia issued Executive Order 27–20* directing the West Virginia Bureau for Public Health (WVBPH) to coordinate universal testing for SARS-CoV-2, the virus that causes COVID-19, among residents and staff members of all 123 West Virginia nursing homes, irrespective of symptoms. During April 21–May 8, universal testing was conducted in all 123 West Virginia nursing homes, with 42 COVID-19 cases identified in 28 (23%) nursing homes; the 42 cases occurred in 11 residents (0.1% of residents tested) and 31 staff members (0.2%). |
Facility-Wide Testing for SARS-CoV-2 in Nursing Homes - Seven U.S. Jurisdictions, March-June 2020.
Hatfield KM , Reddy SC , Forsberg K , Korhonen L , Garner K , Gulley T , James A , Patil N , Bezold C , Rehman N , Sievers M , Schram B , Miller TK , Howell M , Youngblood C , Ruegner H , Radcliffe R , Nakashima A , Torre M , Donohue K , Meddaugh P , Staskus M , Attell B , Biedron C , Boersma P , Epstein L , Hughes D , Lyman M , Preston LE , Sanchez GV , Tanwar S , Thompson ND , Vallabhaneni S , Vasquez A , Jernigan JA . MMWR Morb Mortal Wkly Rep 2020 69 (32) 1095-1099 Undetected infection with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) contributes to transmission in nursing homes, settings where large outbreaks with high resident mortality have occurred (1,2). Facility-wide testing of residents and health care personnel (HCP) can identify asymptomatic and presymptomatic infections and facilitate infection prevention and control interventions (3-5). Seven state or local health departments conducted initial facility-wide testing of residents and staff members in 288 nursing homes during March 24-June 14, 2020. Two of the seven health departments conducted testing in 195 nursing homes as part of facility-wide testing all nursing homes in their state, which were in low-incidence areas (i.e., the median preceding 14-day cumulative incidence in the surrounding county for each jurisdiction was 19 and 38 cases per 100,000 persons); 125 of the 195 nursing homes had not reported any COVID-19 cases before the testing. Ninety-five of 22,977 (0.4%) persons tested in 29 (23%) of these 125 facilities had positive SARS-CoV-2 test results. The other five health departments targeted facility-wide testing to 93 nursing homes, where 13,443 persons were tested, and 1,619 (12%) had positive SARS-CoV-2 test results. In regression analyses among 88 of these nursing homes with a documented case before facility-wide testing occurred, each additional day between identification of the first case and completion of facility-wide testing was associated with identification of 1.3 additional cases. Among 62 facilities that could differentiate results by resident and HCP status, an estimated 1.3 HCP cases were identified for every three resident cases. Performing facility-wide testing immediately after identification of a case commonly identifies additional unrecognized cases and, therefore, might maximize the benefits of infection prevention and control interventions. In contrast, facility-wide testing in low-incidence areas without a case has a lower proportion of test positivity; strategies are needed to further optimize testing in these settings. |
Epidemiologic Investigation of a Cluster of Neuroinvasive Bacillus cereus Infections in 5 Patients With Acute Myelogenous Leukemia.
Rhee C , Klompas M , Tamburini FB , Fremin BJ , Chea N , Epstein L , Halpin AL , Guh A , Gallen R , Coulliette A , Gee J , Hsieh C , Desjardins CA , Pedamullu CS , DeAngelo DJ , Manzo VE , Folkerth RD , Milner DA Jr , Pecora N , Osborne M , Chalifoux-Judge D , Bhatt AS , Yokoe DS . Open Forum Infect Dis 2015 2 (3) ofv096 BACKGROUND: Five neuroinvasive Bacillus cereus infections (4 fatal) occurred in hospitalized patients with acute myelogenous leukemia (AML) during a 9-month period, prompting an investigation by infection control and public health officials. METHODS: Medical records of case-patients were reviewed and a matched case-control study was performed. Infection control practices were observed. Multiple environmental, food, and medication samples common to AML patients were cultured. Multilocus sequence typing was performed for case and environmental B cereus isolates. RESULTS: All 5 case-patients received chemotherapy and had early-onset neutropenic fevers that resolved with empiric antibiotics. Fever recurred at a median of 17 days (range, 9-20) with headaches and abrupt neurological deterioration. Case-patients had B cereus identified in central nervous system (CNS) samples by (1) polymerase chain reaction or culture or (2) bacilli seen on CNS pathology stains with high-grade B cereus bacteremia. Two case-patients also had colonic ulcers with abundant bacilli on autopsy. No infection control breaches were observed. On case-control analysis, bananas were the only significant exposure shared by all 5 case-patients (odds ratio, 9.3; P = .04). Five environmental or food isolates tested positive for B cereus, including a homogenized banana peel isolate and the shelf of a kitchen cart where bananas were stored. Multilocus sequence typing confirmed that all case and environmental strains were genetically distinct. Multilocus sequence typing-based phylogenetic analysis revealed that the organisms clustered in 2 separate clades. CONCLUSIONS: The investigation of this neuroinvasive B cereus cluster did not identify a single point source but was suggestive of a possible dietary exposure. Our experience underscores the potential virulence of B cereus in immunocompromised hosts. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 07, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure