Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-30 (of 31 Records) |
Query Trace: Ellison JA[original query] |
---|
Rabies experts on demand: A cross-sectional study describing the use of a rabies telehealth service
Baker SE , Ross YB , Ellison JA , Monroe BP , Orciari LA , Petersen BW , Rao AK , Wallace RM . Public Health Chall 2023 2 (3) BACKGROUND: Rabies expert on demand (REOD) telehealth service is provided by the U.S. Centers for Disease Control and Prevention (CDC) to assist public health practitioners, health providers, and the public to interpret national and international rabies prevention guidelines. REOD is staffed by subject matter experts of the CDC Poxvirus and Rabies Branch to assess each unique situation and provide evidence-based guidance to stakeholders. This study aims to describe the utilization of a rabies telehealth system and provide insight into common consultations. METHODS: A cross-sectional study of the nature of inquiries to REOD was done using the data collected from September 1, 2017 to September 30, 2021. An inquiry tracking form and Microsoft Access database were developed to document all inquiries received. Inquired ones were summarized to determine the frequency of inquiries by month, category, and location. RESULTS: Over a 49-month period, REOD received 5228 inquiries. Peak inquiries (n = 108) occurred during August 2019. The most frequent inquiries received pertained to risk assessment and management of rabies exposures (n = 1109), requests for testing assistance (n = 912), consultation for suspected human rabies (n = 746), rabies exposures and post-bite treatment occurring internationally (n = 310), and consultation for deviations in the recommended pre- and postexposure prophylaxis regimen (n = 300). CONCLUSION: REOD is a global resource for consultation related to managing rabies exposures, diagnostic issues, and rabies control strategies. REOD is a regularly utilized CDC service, as the demand for up-to-date rabies guidance remains high. REOD fulfills a critical role for the interpretation and consultation on rabies prevention guidelines to stakeholder. |
Fatal Human Rabies Infection with Suspected Host-mediated Failure of Post-Exposure Prophylaxis Following a Recognized Zoonotic Exposure-Minnesota, 2021.
Holzbauer SM , Schrodt CA , Prabhu RM , Asch-Kendrick RJ , Ireland M , Klumb C , Firestone MJ , Liu G , Harry K , Ritter JM , Levine MZ , Orciari LA , Wilkins K , Yager P , Gigante CM , Ellison JA , Zhao H , Niezgoda M , Li Y , Levis R , Scott D , Satheshkumar PS , Petersen BW , Rao AK , Bell WR , Bjerk SM , Forrest S , Gao W , Dasheiff R , Russell K , Pappas M , Kiefer J , Bickler W , Wiseman A , Jurantee J , Reichard RR , Smith KE , Lynfield R , Scheftel J , Wallace RM , Bonwitt J . Clin Infect Dis 2023 77 (8) 1201-1208 ![]() ![]() BACKGROUND: No rabies post-exposure prophylaxis (PEP) failure has been documented in humans in the United States using modern cell-culture vaccines. In January 2021, an 84-year-old male died from rabies six months after being bitten by a rabid bat despite receiving timely rabies post-exposure prophylaxis (PEP). We investigated the cause of breakthrough infection. METHODS: We reviewed medical records, laboratory results, and autopsy findings, and performed whole genome sequencing (WGS) to compare patient and bat virus sequences. Storage, administration, and integrity of PEP biologics administered to the patient were assessed; samples from leftover rabies immunoglobulin were evaluated for potency. We conducted risk assessments for persons potentially exposed to the bat and for close contacts of the patient. RESULTS: Rabies virus antibodies present in serum and cerebrospinal fluid were non-neutralizing. Antemortem blood testing revealed the patient had unrecognized monoclonal gammopathy of unknown significance. Autopsy findings showed rabies meningoencephalitis and metastatic prostatic adenocarcinoma. Rabies virus sequences from the patient and the offending bat were identical by WGS. No deviations were identified in potency, quality control, administration, or storage of administered PEP. Of 332 persons assessed for potential rabies exposure to the case patient, three (0.9%) warranted PEP. CONCLUSION: This is the first reported failure of rabies PEP in the Western Hemisphere using a cell culture vaccine. Host-mediated primary vaccine failure attributed to previously unrecognized impaired immunity is the most likely explanation for this breakthrough infection. Clinicians should consider measuring rabies neutralizing antibody titers after completion of PEP if there is any suspicion for immunocompromise. |
A recombinant rabies vaccine that prevents viral shedding in rabid common vampire bats (Desmodus rotundus).
Cárdenas-Canales EM , Velasco-Villa A , Ellison JA , Satheshkumar PS , Osorio JE , Rocke TE . PLoS Negl Trop Dis 2022 16 (8) e0010699 ![]() ![]() Vampire bat transmitted rabies (VBR) is a continuing burden to public health and agricultural sectors in Latin America, despite decades-long efforts to control the disease by culling bat populations. Culling has been shown to disperse bats, leading to an increased spread of rabies. Thus, non-lethal strategies to control VBR, such as vaccination, are desired. Here, we evaluated the safety and efficacy of a viral-vectored recombinant mosaic glycoprotein rabies vaccine candidate (RCN-MoG) in vampire bats (Desmodus rotundus) of unknown history of rabies exposure captured in México and transported to the United States. Vaccination with RCN-MoG was demonstrated to be safe, even in pregnant females, as no evidence of lesions or adverse effects were observed. We detected rabies neutralizing antibodies in 28% (8/29) of seronegative bats post-vaccination. Survival proportions of adult bats after rabies virus (RABV) challenge ranged from 55-100% and were not significantly different among treatments, pre- or post-vaccination serostatus, and route of vaccination, while eight pups (1-2.5 months of age) used as naïve controls all succumbed to challenge (P<0.0001). Importantly, we found that vaccination with RCN-MoG appeared to block viral shedding, even when infection proved lethal. Using real-time PCR, we did not detect RABV nucleic acid in the saliva samples of 9/10 vaccinated bats that succumbed to rabies after challenge (one was inconclusive). In contrast, RABV nucleic acid was detected in saliva samples from 71% of unvaccinated bats (10/14 sampled, plus one inconclusive) that died of the disease, including pups. Low seroconversion rates post-vaccination and high survival of non-vaccinated bats, perhaps due to earlier natural exposure, limited our conclusions regarding vaccine efficacy. However, our findings suggest a potential transmission-blocking effect of vaccination with RCN-MoG that could provide a promising strategy for controlling VBR in Latin America beyond longstanding culling programs. |
A cocktail of human monoclonal antibodies broadly neutralizes North American rabies virus variants as a promising candidate for rabies post-exposure prophylaxis.
Ejemel M , Smith TG , Greenberg L , Carson WC , Lowe D , Yang Y , Jackson FR , Morgan CN , Martin BE , Kling C , Hutson CL , Gallardo-Romero N , Ellison JA , Moore S , Buzby A , Sullivan-Bolyai J , Klempner M , Wang Y . Sci Rep 2022 12 (1) 9403 ![]() Human rabies remains a globally significant public health problem. Replacement of polyclonal anti-rabies immunoglobulin (RIG), a passive component of rabies post-exposure prophylaxis (PEP), with a monoclonal antibody (MAb), would eliminate the cost and availability constraints associated with RIG. Our team has developed and licensed a human monoclonal antibody RAB1 (Rabishield()), as the replacement for RIG where canine rabies is enzootic. However, for the highly diverse rabies viruses of North America, a cocktail containing two or more MAbs targeting different antigenic sites of the rabies glycoprotein should be included to ensure neutralization of all variants of the virus. In this study, two MAb cocktails, R172 (RAB1-RAB2) and R173 (RAB1-CR57), were identified and evaluated against a broad range of rabies variants from North America. R173 was found to be the most potent cocktail, as it neutralized all the tested North American RABV isolates and demonstrated broad coverage of isolates from both terrestrial and bat species. R173 could be a promising candidate as an alternative or replacement for RIG PEP in North America. |
Determination of freedom-from-rabies for small Indian mongoose populations in the United States Virgin Islands, 2019-2020
Browne AS , Cranford HM , Morgan CN , Ellison JA , Berentsen A , Wiese N , Medley A , Rossow J , Jankelunas L , McKinley AS , Lombard CD , Angeli NF , Kelley T , Valiulus J , Bradford B , Burke-France VJ , Harrison CJ , Guendel I , Taylor M , Blanchard GL , Doty JB , Worthington DJ , Horner D , Garcia KR , Roth J , Ellis BR , Bisgard KM , Wallace R , Ellis EM . PLoS Negl Trop Dis 2021 15 (7) e0009536 Mongooses, a nonnative species, are a known reservoir of rabies virus in the Caribbean region. A cross-sectional study of mongooses at 41 field sites on the US Virgin Islands of St. Croix, St. John, and St. Thomas captured 312 mongooses (32% capture rate). We determined the absence of rabies virus by antigen testing and rabies virus exposure by antibody testing in mongoose populations on all three islands. USVI is the first Caribbean state to determine freedom-from-rabies for its mongoose populations with a scientifically-led robust cross-sectional study. Ongoing surveillance activities will determine if other domestic and wildlife populations in USVI are rabies-free. |
Pharmacokinetics and efficacy of a potential smallpox therapeutic, brincidofovir, in a lethal monkeypox virus animal model
Hutson CL , Kondas AV , Mauldin MR , Doty JB , Grossi IM , Morgan CN , Ostergaard SD , Hughes CM , Nakazawa Y , Kling C , Martin BE , Ellison JA , Carroll DD , Gallardo-Romero NF , Olson VA . mSphere 2021 6 (1) Smallpox, caused by Variola virus (VARV), was eradicated in 1980; however, VARV bioterrorist threats still exist, necessitating readily available therapeutics. Current preparedness activities recognize the importance of oral antivirals and recommend therapeutics with different mechanisms of action. Monkeypox virus (MPXV) is closely related to VARV, causing a highly similar clinical human disease, and can be used as a surrogate for smallpox antiviral testing. The prairie dog MPXV model has been characterized and used to study the efficacy of antipoxvirus therapeutics, including recently approved TPOXX (tecovirimat). Brincidofovir (BCV; CMX001) has shown antiviral activity against double-stranded DNA viruses, including poxviruses. To determine the exposure of BCV following oral administration to prairie dogs, a pharmacokinetics (PK) study was performed. Analysis of BCV plasma concentrations indicated variability, conceivably due to the outbred nature of the animals. To determine BCV efficacy in the MPXV prairie dog model, groups of animals were intranasally challenged with 9 × 10(5) plaque-forming units (PFU; 90% lethal dose [LD(90)]) of MPXV on inoculation day 0 (ID0). Animals were divided into groups based on the first day of BCV treatment relative to inoculation day (ID-1, ID0, or ID1). A trend in efficacy was noted dependent upon treatment initiation (57% on ID-1, 43% on ID0, and 29% on ID1) but was lower than demonstrated in other animal models. Analysis of the PK data indicated that BCV plasma exposure (maximum concentration [C (max)]) and the time of the last quantifiable concentration (AUC(last)) were lower than in other animal models administered the same doses, indicating that suboptimal BCV exposure may explain the lower protective effect on survival.IMPORTANCE Preparedness activities against highly transmissible viruses with high mortality rates have been highlighted during the ongoing coronavirus disease 2019 (COVID-19) pandemic. Smallpox, caused by variola virus (VARV) infection, is highly transmissible, with an estimated 30% mortality. Through an intensive vaccination campaign, smallpox was declared eradicated in 1980, and routine smallpox vaccination of individuals ceased. Today's current population has little/no immunity against VARV. If smallpox were to reemerge, the worldwide results would be devastating. Recent FDA approval of one smallpox antiviral (tecovirimat) was a successful step in biothreat preparedness; however, orthopoxviruses can become resistant to treatment, suggesting the need for multiple therapeutics. Our paper details the efficacy of the investigational smallpox drug brincidofovir in a monkeypox virus (MPXV) animal model. Since brincidofovir has not been tested in vivo against smallpox, studies with the related virus MPXV are critical in understanding whether it would be protective in the event of a smallpox outbreak. |
Bat and Lyssavirus exposure among humans in area that celebrates bat festival, Nigeria, 2010 and 2013
Vora NM , Osinubi MOV , Davis L , Abdurrahman M , Adedire EB , Akpan H , Aman-Oloniyo AF , Audu SW , Blau D , Dankoli RS , Ehimiyein AM , Ellison JA , Gbadegesin YH , Greenberg L , Haberling D , Hutson C , Idris JM , Kia GSN , Lawal M , Matthias SY , Mshelbwala PP , Niezgoda M , Ogunkoya AB , Ogunniyi AO , Okara GC , Olugasa BO , Ossai OP , Oyemakinde A , Person MK , Rupprecht CE , Saliman OA , Sani M , Sanni-Adeniyi OA , Satheshkumar PS , Smith TG , Soleye MO , Wallace RM , Yennan SK , Recuenco S . Emerg Infect Dis 2020 26 (7) 1399-1408 Using questionnaires and serologic testing, we evaluated bat and lyssavirus exposure among persons in an area of Nigeria that celebrates a bat festival. Bats from festival caves underwent serologic testing for phylogroup II lyssaviruses (Lagos bat virus, Shimoni bat virus, Mokola virus). The enrolled households consisted of 2,112 persons, among whom 213 (10%) were reported to have ever had bat contact (having touched a bat, having been bitten by a bat, or having been scratched by a bat) and 52 (2%) to have ever been bitten by a bat. Of 203 participants with bat contact, 3 (1%) had received rabies vaccination. No participant had neutralizing antibodies to phylogroup II lyssaviruses, but >50% of bats had neutralizing antibodies to these lyssaviruses. Even though we found no evidence of phylogroup II lyssavirus exposure among humans, persons interacting with bats in the area could benefit from practicing bat-related health precautions. |
Clinical presentation and serologic response during a rabies epizootic in captive common vampire bats (Desmodus rotundus)
Cardenas-Canales EM , Gigante CM , Greenberg L , Velasco-Villa A , Ellison JA , Satheshkumar PS , Medina-Magues LG , Griesser R , Falendysz E , Amezcua I , Osorio JE , Rocke TE . Trop Med Infect Dis 2020 5 (1) We report mortality events in a group of 123 common vampire bats (Desmodus rotundus) captured in Mexico and housed for a rabies vaccine efficacy study in Madison, Wisconsin. Bat mortalities occurred in Mexico and Wisconsin, but rabies cases reported herein are only those that occurred after arrival in Madison (n = 15). Bats were confirmed positive for rabies virus (RABV) by the direct fluorescent antibody test. In accordance with previous reports, we observed long incubation periods (more than 100 days), variability in clinical signs prior to death, excretion of virus in saliva, and changes in rabies neutralizing antibody (rVNA) titers post-infection. We observed that the furious form of rabies (aggression, hyper-salivation, and hyper-excitability) manifested in three bats, which has not been reported in vampire bat studies since 1936. RABV was detected in saliva of 5/9 bats, 2-5 days prior to death, but was not detected in four of those bats that had been vaccinated shortly after exposure. Bats from different capture sites were involved in two separate outbreaks, and phylogenetic analysis revealed differences in the glycoprotein gene sequences of RABV isolated from each event, indicating that two different lineages were circulating separately during capture at each site. |
Human rabies - Utah, 2018
Peterson D , Barbeau B , McCaffrey K , Gruninger R , Eason J , Burnett C , Dunn A , Dimond M , Harbour J , Rossi A , Lopansri B , Dascomb K , Scribellito T , Moosman T , Saw L , Jones C , Belenky M , Marsden L , Niezgoda M , Gigante CM , Condori RE , Ellison JA , Orciari LA , Yager P , Bonwitt J , Whitehouse ER , Wallace RM . MMWR Morb Mortal Wkly Rep 2020 69 (5) 121-124 On November 3, 2018, the Utah Department of Health (UDOH) was notified of a suspected human rabies case in a man aged 55 years. The patient's symptoms had begun 18 days earlier, and he was hospitalized for 15 days before rabies was suspected. As his symptoms worsened, he received supportive care, but he died on November 4. On November 7, a diagnosis of rabies was confirmed by CDC. This was the first documented rabies death in a Utah resident since 1944. This report summarizes the patient's clinical course and the subsequent public health investigation, which determined that the patient had handled several bats in the weeks preceding symptom onset. Public health agencies, in partnership with affected health care facilities, identified and assessed the risk to potentially exposed persons, facilitated receipt of postexposure prophylaxis (PEP), and provided education to health care providers and the community about the risk for rabies associated with bats. Human rabies is rare and almost always fatal. The findings from this investigation highlight the importance of early recognition of rabies, improved public awareness of rabies in bats, and the use of innovative tools after mass rabies exposure events to ensure rapid and recommended risk assessment and provision of PEP. |
Antiviral ranpirnase TMR-001 inhibits rabies virus release and cell-to-cell infection in vitro
Smith TG , Jackson FR , Morgan CN , Carson WC , Martin BE , Gallardo-Romero N , Ellison JA , Greenberg L , Hodge T , Squiquera L , Sulley J , Olson VA , Hutson CL . Viruses 2020 12 (2) Currently, no rabies virus-specific antiviral drugs are available. Ranpirnase has strong antitumor and antiviral properties associated with its ribonuclease activity. TMR-001, a proprietary bulk drug substance solution of ranpirnase, was evaluated against rabies virus in three cell types: mouse neuroblastoma, BSR (baby hamster kidney cells), and bat primary fibroblast cells. When TMR-001 was added to cell monolayers 24 h preinfection, rabies virus release was inhibited for all cell types at three time points postinfection. TMR-001 treatment simultaneous with infection and 24 h postinfection effectively inhibited rabies virus release in the supernatant and cell-to-cell spread with 50% inhibitory concentrations of 0.2-2 nM and 20-600 nM, respectively. TMR-001 was administered at 0.1 mg/kg via intraperitoneal, intramuscular, or intravenous routes to Syrian hamsters beginning 24 h before a lethal rabies virus challenge and continuing once per day for up to 10 days. TMR-001 at this dose, formulation, and route of delivery did not prevent rabies virus transit from the periphery to the central nervous system in this model (n = 32). Further aspects of local controlled delivery of other active formulations or dose concentrations of TMR-001 or ribonuclease analogues should be investigated for this class of drugs as a rabies antiviral therapeutic. |
Characterization of Monkeypox virus dissemination in the black-tailed prairie dog (Cynomys ludovicianus) through in vivo bioluminescent imaging
Weiner ZP , Salzer JS , LeMasters E , Ellison JA , Kondas AV , Morgan CN , Doty JB , Martin BE , Satheshkumar PS , Olson VA , Hutson CL . PLoS One 2019 14 (9) e0222612 Monkeypox virus (MPXV) is a member of the genus Orthopoxvirus, endemic in Central and West Africa. This viral zoonosis was introduced into the United States in 2003 via African rodents imported for the pet trade and caused 37 human cases, all linked to exposure to MPXV-infected black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs have since become a useful model of MPXV disease, utilized for testing of potential medical countermeasures. In this study, we used recombinant MPXV containing the firefly luciferase gene (luc) and in vivo imaging technology to characterize MPXV pathogenesis in the black-tailed prairie dog in real time. West African (WA) MPXV could be visualized using in vivo imaging in the nose, lymph nodes, intestines, heart, lung, kidneys, and liver as early as day 6 post infection (p.i.). By day 9 p.i., lesions became visible on the skin and in some cases in the spleen. After day 9 p.i., luminescent signal representing MPXV replication either increased, indicating a progression to what would be a fatal infection, or decreased as infection was resolved. Use of recombinant luc+ MPXV allowed for a greater understanding of how MPXV disseminates throughout the body in prairie dogs during the course of infection. This technology will be used to reduce the number of animals required in future pathogenesis studies as well as aid in determining the effectiveness of potential medical countermeasures. |
Potential confounding of diagnosis of rabies in patients with recent receipt of intravenous immune globulin
Vora NM , Orciari LA , Bertumen JB , Damon I , Ellison JA , Fowler VG Jr , Franka R , Petersen BW , Satheshkumar PS , Schexnayder SM , Smith TG , Wallace RM , Weinstein S , Williams C , Yager P , Niezgoda M . MMWR Morb Mortal Wkly Rep 2018 67 (5) 161-165 Rabies is an acute encephalitis that is nearly always fatal. It is caused by infection with viruses of the genus Lyssavirus, the most common of which is Rabies lyssavirus. The Council of State and Territorial Epidemiologists (CSTE) defines a confirmed human rabies case as an illness compatible with rabies that meets at least one of five different laboratory criteria.* Four of these criteria do not depend on the patient's rabies vaccination status; however, the remaining criterion, "identification of Lyssavirus-specific antibody (i.e. by indirect fluorescent antibody...test or complete [Rabies lyssavirus] neutralization at 1:5 dilution) in the serum," is only considered diagnostic in unvaccinated patients. Lyssavirus-specific antibodies include Rabies lyssavirus-specific binding immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies and Rabies lyssavirus neutralizing antibodies (RLNAs). This report describes six patients who were tested for rabies by CDC and who met CSTE criteria for confirmed human rabies because they had illnesses compatible with rabies, had not been vaccinated for rabies, and were found to have serum RLNAs (with complete Rabies lyssavirus neutralization at a serum dilution of 1:5). An additional four patients are described who were tested for rabies by CDC who were found to have serum RLNAs (with incomplete Rabies lyssavirus neutralization at a serum dilution of 1:5) despite having not been vaccinated for rabies. None of these 10 patients received a rabies diagnosis; rather, they were considered to have been passively immunized against rabies through recent receipt of intravenous immune globulin (IVIG). Serum RLNA test results should be interpreted with caution in patients who have not been vaccinated against rabies but who have recently received IVIG. |
In Vivo Efficacy of a Cocktail of Human Monoclonal Antibodies (CL184) Against Diverse North American Bat Rabies Virus Variants
Franka R , Carson WC , Ellison JA , Taylor ST , Smith TG , Kuzmina NA , Kuzmin IV , Marissen WE , Rupprecht CE . Trop Med Infect Dis 2017 2 (3) Following rabies virus (RABV) exposure, a combination of thorough wound washing, multiple-dose vaccine administration and the local infiltration of rabies immune globulin (RIG) are essential components of modern post-exposure prophylaxis (PEP). Although modern cell-culture-based rabies vaccines are increasingly used in many countries, RIG is much less available. The prohibitive cost of polyclonal serum RIG products has prompted a search for alternatives and design of anti-RABV monoclonal antibodies (MAbs) that can be manufactured on a large scale with a consistent potency and lower production costs. Robust in vitro neutralization activity has been demonstrated for the CL184 MAb cocktail, a 1:1 protein mixture of two human anti-RABV MAbs (CR57/CR4098), against a large panel of RABV isolates. In this study, we used a hamster model to evaluate the efficacy of experimental PEP against a lethal challenge. Various doses of CL184 and commercial rabies vaccine were assessed for the ability to protect against lethal infection with representatives of four distinct bat RABV lineages of public health relevance: silver-haired bat (Ln RABV); western canyon bat (Ph RABV); big brown bat (Ef-w1 RABV) and Mexican free-tailed bat RABV (Tb RABV). 42⁻100% of animals survived bat RABV infection when CL184 (in combination with the vaccine) was administered. A dose-response relationship was observed with decreasing doses of CL184 resulting in increasing mortality. Importantly, CL184 was highly effective in neutralizing and clearing Ph RABV in vivo, even though CR4098 does not neutralize this virus in vitro. By comparison, 19⁻95% survivorship was observed if human RIG (20 IU/kg) and vaccine were used following challenge with different bat viruses. Based on our results, CL184 represents an efficacious alternative for RIG. Both large-scale and lower cost production could ensure better availability and affordability of this critical life-saving biologic in rabies enzootic countries and as such, significantly contribute to the reduction of human rabies deaths globally. |
Protection of bats (Eptesicus fuscus) against rabies following topical or oronasal exposure to a recombinant raccoon poxvirus vaccine
Stading B , Ellison JA , Carson WC , Satheshkumar PS , Rocke TE , Osorio JE . PLoS Negl Trop Dis 2017 11 (10) e0005958 Rabies is an ancient neglected tropical disease that causes tens of thousands of human deaths and millions of cattle deaths annually. In order to develop a new vaccine for potential use in bats, a reservoir of rabies infection for humans and animals alike, an in silico antigen designer tool was used to create a mosaic glycoprotein (MoG) gene using available sequences from the rabies Phylogroup I glycoprotein. This sequence, which represents strains more likely to occur in bats, was cloned into raccoonpox virus (RCN) and the efficacy of this novel RCN-MoG vaccine was compared to RCN-G that expresses the glycoprotein gene from CVS-11 rabies or luciferase (RCN-luc, negative control) in mice and big brown bats (Eptesicus fuscus). Mice vaccinated and boosted intradermally with 1 x 107 plaque forming units (PFU) of each RCN-rabies vaccine construct developed neutralizing antibodies and survived at significantly higher rates than controls. No significant difference in antibody titers or survival was noted between rabies-vaccinated groups. Bats were vaccinated either oronasally (RCN-G, RCN-MoG) with 5x107 PFU or by topical application in glycerin jelly (RCN-MoG, dose 2x108 PFU), boosted (same dose and route) at 46 days post vaccination (dpv), and then challenged with wild-type big brown variant RABV at 65 dpv. Prior to challenge, 90% of RCN-G and 75% of RCN-MoG oronasally vaccinated bats had detectable levels of serum rabies neutralizing antibodies. Bats from the RCN-luc and topically vaccinated RCN-MoG groups did not have measurable antibody responses. The RCN-rabies constructs were highly protective and not significantly different from each other. RCN-MoG provided 100% protection (n = 9) when delivered oronasally and 83% protection (n = 6) when delivered topically; protection provided by the RCN-G construct was 70% (n = 10). All rabies-vaccinated bats survived at a significantly (P ≤ 0.02) higher rate than control bats (12%; n = 8). We have demonstrated the efficacy of a novel, in silico designed rabies MoG antigen that conferred protection from rabies challenge in mice and big brown bats in laboratory studies. With further development, topical or oronasal administration of the RCN-MoG vaccine could potentially mitigate rabies in wild bat populations, reducing spillover of this deadly disease into humans, domestic mammals, and other wildlife. |
Assessment of the immunogenicity of rabies vaccine preserved by vaporization and delivered to the duodenal mucosa of gray foxes (Urocyon cinereoargenteus)
Smith TG , Wu X , Ellison JA , Wadhwa A , Franka R , Langham GL , Skinner BL , Hanlon CA , Bronshtein VL . Am J Vet Res 2017 78 (6) 752-756 OBJECTIVE To assess the immunogenicity of thermostable live-attenuated rabies virus (RABV) preserved by vaporization (PBV) and delivered to the duodenal mucosa of a wildlife species targeted for an oral vaccination program. ANIMALS 8 gray foxes (Urocyon cinereoargenteus). PROCEDURES Endoscopy was used to place RABV PBV (n = 3 foxes), alginate-encapsulated RABV PBV (3 foxes), or nonpreserved RABV (2 foxes) vaccine into the duodenum of foxes. Blood samples were collected weekly to monitor the immune response. Saliva samples were collected weekly and tested for virus shedding by use of a conventional reverse-transcriptase PCR assay. Foxes were euthanized 28 days after vaccine administration, and relevant tissues were collected and tested for presence of RABV. RESULTS 2 of 3 foxes that received RABV PBV and 1 of 2 foxes that received nonpreserved RABV seroconverted by day 28. None of the 3 foxes receiving alginate-encapsulated RABV PBV seroconverted. No RABV RNA was detected in saliva at any of the time points, and RABV antigen or RNA was not detected in any of the tissues obtained on day 28. None of the foxes displayed any clinical signs of rabies. CONCLUSIONS AND CLINICAL RELEVANCE Results for this study indicated that a live-attenuated RABV vaccine delivered to the duodenal mucosa can induce an immune response in gray foxes. A safe, potent, thermostable RABV vaccine that could be delivered orally to wildlife or domestic animals would enhance current rabies control and prevention efforts. |
A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses.
Wadhwa A , Wilkins K , Gao J , Condori Condori RE , Gigante CM , Zhao H , Ma X , Ellison JA , Greenberg L , Velasco-Villa A , Orciari L , Li Y . PLoS Negl Trop Dis 2017 11 (1) e0005258 ![]() Rabies, resulting from infection by Rabies virus (RABV) and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA) test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR) based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N) coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses, its high throughput capability and its simplicity of use, which can be quickly adapted in a laboratory to enhance the capacity of rabies molecular diagnostics. The LN34 assay provides an alternative approach for rabies diagnostics, especially in rural areas and rabies endemic regions that lack the conditions and broad experience required to run the standard DFA assay. |
Human Rabies - Missouri, 2014.
Pratt PD , Henschel K , Turabelidze G , Grim A , Ellison JA , Orciari L , Yager P , Franka R , Wu X , Ma X , Wadhwa A , Smith TG , Petersen B , Shiferaw M . MMWR Morb Mortal Wkly Rep 2016 65 (10) 253-256 ![]() On September 18, 2014, the Missouri Department of Health and Senior Services (MDHSS) was notified of a suspected rabies case in a Missouri resident. The patient, a man aged 52 years, lived in a rural, deeply wooded area, and bat sightings in and around his home were anecdotally reported. Exposure to bats poses a risk for rabies. After two emergency department visits for severe neck pain, paresthesia in the left arm, upper body tremors, and anxiety, he was hospitalized on September 13 for encephalitis of unknown etiology. On September 24, he received a diagnosis of rabies and on September 26, he died. Genetic sequencing tests confirmed infection with a rabies virus variant associated with tricolored bats. Health care providers need to maintain a high index of clinical suspicion for rabies in patients who have unexplained, rapidly progressive encephalitis, and adhere to recommended infection control practices when examining and treating patients with suspected infectious diseases. |
Knowledge, attitudes and practices regarding rabies and exposure to bats in two rural communities in Guatemala
Moran D , Juliao P , Alvarez D , Lindblade KA , Ellison JA , Gilbert AT , Petersen B , Rupprecht C , Recuenco S . BMC Res Notes 2015 8 955 BACKGROUND: Rabies is a fatal encephalitis caused by rabies virus, of the genus Lyssavirus. The principal reservoir for rabies in Latin America is the common vampire bat (Desmodus rotundus), which feeds routinely on the blood of cattle, and when livestock are scarce, may prey on other mammals, including humans. Although rabies is endemic in common vampire bat populations in Guatemala, there is limited research on the extent of exposure to bats among human populations living near bat refuges. RESULTS: A random sample of 270 of 473 households (57%) in two communities located within 2 Km of a known bat roost was selected and one adult from each household was interviewed. Exposure to bats (bites, scratches or bare skin contact) was reported by 96 (6%) of the 1,721 residents among the selected households. Of those exposed, 40% received rabies post-exposure prophylaxis. Four percent of household respondents reported that they would seek rabies post exposure prophylaxis if they were bitten by a bat. CONCLUSIONS: These findings demonstrate that exposure to bats in communities near bat roosts is common but recognition of the potential for rabies transmission from bats is low. There is a need for educational outreach to raise awareness of bat-associated rabies, prevent exposures to bats and ensure appropriate health-seeking behaviours for bat-inflicted wounds, particularly among communities living near bat roosts in Guatemala. |
Bat rabies in Guatemala
Ellison JA , Gilbert AT , Recuenco S , Moran D , Alvarez DA , Kuzmina N , Garcia DL , Peruski LF , Mendonca MT , Lindblade KA , Rupprecht CE . PLoS Negl Trop Dis 2014 8 (7) e3070 ![]() Rabies in bats is considered enzootic throughout the New World, but few comparative data are available for most countries in the region. As part of a larger pathogen detection program, enhanced bat rabies surveillance was conducted in Guatemala, between 2009 and 2011. A total of 672 bats of 31 species were sampled and tested for rabies. The prevalence of rabies virus (RABV) detection among all collected bats was low (0.3%). Viral antigens were detected and infectious virus was isolated from the brains of two common vampire bats (Desmodus rotundus). RABV was also isolated from oral swabs, lungs and kidneys of both bats, whereas viral RNA was detected in all of the tissues examined by hemi-nested RT-PCR except for the liver of one bat. Sequencing of the nucleoprotein gene showed that both viruses were 100% identical, whereas sequencing of the glycoprotein gene revealed one non-synonymous substitution (302T,S). The two vampire bat RABV isolates in this study were phylogenetically related to viruses associated with vampire bats in the eastern states of Mexico and El Salvador. Additionally, 7% of sera collected from 398 bats demonstrated RABV neutralizing antibody. The proportion of seropositive bats varied significantly across trophic guilds, suggestive of complex intraspecific compartmentalization of RABV perpetuation. |
Oral vaccination and protection of striped skunks (Mephitis mephitis) against rabies using ONRAB
Brown LJ , Rosatte RC , Fehlner-Gardiner C , Ellison JA , Jackson FR , Bachmann P , Taylor JS , Franka R , Donovan D . Vaccine 2014 32 (29) 3675-9 Skunks are one of the most important rabies vector species in North America due to their wide geographic distribution, high susceptibility to the rabies virus, and tendency to inhabit areas around human dwellings and domestic animals. Oral vaccination is a cost-effective, socially acceptable technique often used to control rabies in terrestrial wildlife; however, control of rabies in skunks has proven especially challenging due to the lack of a vaccine effective by the oral route in this species. In this study, we examined the antibody response of captive striped skunks (Mephitis mephitis) to ONRAB(R) and tested the protection afforded by the vaccine against rabies virus. Thirty-one skunks were each offered one ONRAB(R) vaccine bait, 25 skunks were administered ONRAB(R) via direct instillation into the oral cavity (DIOC) and ten controls received no vaccine. A blood sample was collected from controls and vaccinates 6 weeks prior to treatment, and then 5 and 7 weeks post-vaccination (PV). A competitive ELISA was used to detect rabies antibody (RAb). Pre-vaccination sera for all skunks, and sera for all controls throughout the serology study, were negative for RAb. Fifty-eight percent (18/31) of skunks in the bait group and 100% (25/25) of skunks that received ONRAB(R) DIOC had detectable RAb by 7 week PV. All 10 controls succumbed to experimental rabies infection. In the group of skunks administered ONRAB(R) DIOC, 100% (23/23) survived challenge 247 days PV. Survival of skunks presented ONRAB(R) baits was 81% (25/31). In the bait group, all 18 skunks that had detectable RAb by 7 week PV survived challenge. Seven additional skunks without detectable RAb prior to week 7 PV also survived. Lack of any remarkable pathology in study animals, together with positive serology and challenge results, supports that ONRAB(R) is a safe and effective oral rabies vaccine for use in skunks. |
Oral vaccination and protection of red foxes (Vulpes vulpes) against rabies using ONRAB, an adenovirus-rabies recombinant vaccine
Brown LJ , Rosatte RC , Fehlner-Gardiner C , Bachmann P , Ellison JA , Jackson FR , Taylor JS , Davies C , Donovan D . Vaccine 2013 32 (8) 984-9 Twenty-seven red foxes (Vulpes vulpes) were each offered a bait containing ONRAB(R), a recombinant oral rabies vaccine that uses a human adenovirus vector to express the immunogenic rabies virus glycoprotein; 10 controls received no vaccine baits. Serum samples collected from all foxes before treatment, and each week post-treatment for 16 weeks, were tested for the presence of rabies virus neutralizing antibody (RVNA). In the bait group, a fox was considered a responder to vaccination if serum samples from 3 or more consecutive weeks had RVNA ≥0.5IU/ml. Using this criterion, 79% of adult foxes (11/14) and 46% of juveniles (6/13) responded to vaccination with ONRAB(R). Serum RVNA of adults first tested positive (≥0.5IU/ml) between weeks 1 and 3, about 4 weeks earlier than in juveniles. Adults also responded with higher levels of RVNA and these levels were maintained longer. Serum samples from juveniles tested positive for 1-4 consecutive weeks; in adults the range was 2-15 weeks, with almost half of adults maintaining titres above 0.5IU/ml for 9 or more consecutive weeks. Based on the kinetics of the antibody response to ONRAB(R), the best time to sample sera of wild adult foxes for evidence of vaccination is 7-11 weeks following bait distribution. Thirty-four foxes (25 ONRAB(R), 9 controls) were challenged with vulpine street virus 547 days post-vaccination. All controls developed rabies whereas eight of 13 adult vaccinates (62%) and four of 12 juvenile vaccinates (33%) survived. All foxes classed as non-responders to vaccination developed rabies. Of foxes considered responders to vaccination, 80% of adults (8/10) and 67% of juveniles (4/6) survived challenge. The duration of immunity conferred to foxes would appear adequate for bi-annual and annual bait distribution schedules as vaccinates were challenged 1.5 years post-vaccination. |
The phylogeography and spatiotemporal spread of south-central skunk rabies virus
Kuzmina NA , Lemey P , Kuzmin IV , Mayes BC , Ellison JA , Orciari LA , Hightower D , Taylor ST , Rupprecht CE . PLoS One 2013 8 (12) e82348 ![]() ![]() The south-central skunk rabies virus (SCSK) is the most broadly distributed terrestrial viral lineage in North America. Skunk rabies has not been efficiently targeted by oral vaccination campaigns and represents a natural system of pathogen invasion, yielding insights to rabies emergence. In the present study we reconstructed spatiotemporal spread of SCSK in the whole territory of its circulation using a combination of Bayesian methods. The analysis based on 241 glycoprotein gene sequences demonstrated that SCSK is much more divergent phylogenetically than was appreciated previously. According to our analyses the SCSK originated in the territory of Texas ~170 years ago, and spread geographically during the following decades. The wavefront velocity in the northward direction was significantly greater than in the eastward and westward directions. Rivers (except the Mississippi River and Rio Grande River) did not constitute significant barriers for epizootic spread, in contrast to deserts and mountains. The mean dispersal rate of skunk rabies was lower than that of the raccoon and fox rabies. Viral lineages circulate in their areas with limited evidence of geographic spread during decades. However, spatiotemporal reconstruction shows that after a long period of stability the dispersal rate and wavefront velocity of SCSK are increasing. Our results indicate that there is a need to develop control measures for SCSK, and suggest how such measure can be implemented most efficiently. Our approach can be extrapolated to other rabies reservoirs and used as a tool for investigation of epizootic patterns and planning interventions towards disease elimination. |
A reassessment of the evolutionary timescale of bat rabies viruses based upon glycoprotein gene sequences.
Kuzmina NA , Kuzmin IV , Ellison JA , Taylor ST , Bergman DL , Dew B , Rupprecht CE . Virus Genes 2013 47 (2) 305-10 ![]() Rabies, an acute progressive encephalomyelitis caused by viruses in the genus Lyssavirus, is one of the oldest known infectious diseases. Although dogs and other carnivores represent the greatest threat to public health as rabies reservoirs, it is commonly accepted that bats are the primary evolutionary hosts of lyssaviruses. Despite early historical documentation of rabies, molecular clock analyses indicate a quite young age of lyssaviruses, which is confusing. For example, the results obtained for partial and complete nucleoprotein gene sequences of rabies viruses (RABV), or for a limited number of glycoprotein gene sequences, indicated that the time of the most recent common ancestor (TMRCA) for current bat RABV diversity in the Americas lies in the seventeenth to eighteenth centuries and might be directly or indirectly associated with the European colonization. Conversely, several other reports demonstrated high genetic similarity between lyssavirus isolates, including RABV, obtained within a time interval of 25-50 years. In the present study, we attempted to re-estimate the age of several North American bat RABV lineages based on the largest set of complete and partial glycoprotein gene sequences compiled to date (n = 201) employing a codon substitution model. Although our results overlap with previous estimates in marginal areas of the 95 % high probability density (HPD), they suggest a longer evolutionary history of American bat RABV lineages (TMRCA at least 732 years, with a 95 % HPD 436-1107 years). |
An electrochemiluminescence assay for analysis of rabies virus glycoprotein content in rabies vaccines
Smith TG , Ellison JA , Ma X , Kuzmina N , Carson W , Rupprecht CE . Vaccine 2013 31 (33) 3333-8 Vaccine potency testing is necessary to evaluate the immunogenicity of inactivated rabies virus (RABV) vaccine preparations before human or veterinary application. Currently, the NIH test is recommended by the WHO expert committee to evaluate RABV vaccine potency. However, numerous disadvantages are inherent concerning cost, number of animals and biosafety requirements. As such, several in vitro methods have been proposed for the evaluation of vaccines based on RABV glycoprotein (G) quality and quantity, which is expected to correlate with vaccine potency. In this study an antigen-capture electrochemiluminescent (ECL) assay was developed utilizing anti-RABV G monoclonal antibodies (MAb) to quantify RABV G. One MAb 2-21-14 was specific for a conformational epitope so that only immunogenic, natively folded G was captured in the assay. A second MAb (62-80-6) that binds a linear epitope or MAb 2-21-14 was used for detection of RABV G. Vaccine efficacy was also assessed in vivo using pre-exposure vaccination of mice. Purified native RABV G induced a RABV neutralizing antibody (rVNA) response with a geometric mean titer of 4.2IU/ml and protected 100% of immunized mice against RABV challenge, while an experimental vaccine with a lower quality and quantity of G induced a rVNA titer<0.05IU/ml and protected <50% of immunized mice. These preliminary results support the hypothesis that in vivo immunogenicity may be predicted from the in vitro measurement of RABV G using an ECL assay. Based upon these results, the ECL assay may have utility in replacement of the NIH test. |
Bats are a major natural reservoir for hepaciviruses and pegiviruses
Quan PL , Firth C , Conte JM , Williams SH , Zambrana-Torrelio CM , Anthony SJ , Ellison JA , Gilbert AT , Kuzmin IV , Niezgoda M , Osinubi MO , Recuenco S , Markotter W , Breiman RF , Kalemba L , Malekani J , Lindblade KA , Rostal MK , Ojeda-Flores R , Suzan G , Davis LB , Blau DM , Ogunkoya AB , Alvarez Castillo DA , Moran D , Ngam S , Akaibe D , Agwanda B , Briese T , Epstein JH , Daszak P , Rupprecht CE , Holmes EC , Lipkin WI . Proc Natl Acad Sci U S A 2013 110 (20) 8194-9 ![]() Although there are over 1,150 bat species worldwide, the diversity of viruses harbored by bats has only recently come into focus as a result of expanded wildlife surveillance. Such surveys are of importance in determining the potential for novel viruses to emerge in humans, and for optimal management of bats and their habitats. To enhance our knowledge of the viral diversity present in bats, we initially surveyed 415 sera from African and Central American bats. Unbiased high-throughput sequencing revealed the presence of a highly diverse group of bat-derived viruses related to hepaciviruses and pegiviruses within the family Flaviridae. Subsequent PCR screening of 1,258 bat specimens collected worldwide indicated the presence of these viruses also in North America and Asia. A total of 83 bat-derived viruses were identified, representing an infection rate of nearly 5%. Evolutionary analyses revealed that all known hepaciviruses and pegiviruses, including those previously documented in humans and other primates, fall within the phylogenetic diversity of the bat-derived viruses described here. The prevalence, unprecedented viral biodiversity, phylogenetic divergence, and worldwide distribution of the bat-derived viruses suggest that bats are a major and ancient natural reservoir for both hepaciviruses and pegiviruses and provide insights into the evolutionary history of hepatitis C virus and the human GB viruses. |
Conservation of binding epitopes for monoclonal antibodies on the rabies virus glycoprotein
Kuzmina NA , Kuzmin IV , Ellison JA , Rupprecht CE . J Antivir Antiretrovir 2013 5 (2) 037-043 The global need for rabies immune globulin (RIG) for post-exposure prophylaxis (PEP) is significant. The cost of RIG, either of equine or human origin, is prohibitive for most patients in developing countries. Limitations of supply may occur worldwide. Several virus-neutralizing monoclonal antibodies (MAbs), binding to the rabies virus glycoprotein have been proposed as a replacement of conventional RIG in human PEP due to the ability of largescale production at a reduced cost. In the present study we analyzed 1,042 rabies virus glycoprotein sequences, generated de novo and retrieved from GenBank, to determine the conservation of binding epitopes for several well characterized rabies virus-neutralizing MAbs. Our analysis demonstrated that the use of a single MAb for rabies PEPis inappropriate, because certain viral sequences had critical amino acid substitutions in binding epitopes for each MAb. Rather, a cocktail of MAbs, targeting non-overlapping epitopes, offers a reliable alternative, as no sequences from our study harbored critical substitutions in binding sites for two or more MAbs simultaneously. (2013 Kuzmina NA, et al.) |
Discovery of diverse polyomaviruses in bats and the evolutionary history of the Polyomaviridae
Tao Y , Shi M , Conrardy C , Kuzmin IV , Recuenco S , Agwanda B , Alvarez DA , Ellison JA , Gilbert AT , Moran D , Niezgoda M , Lindblade KA , Holmes EC , Breiman RF , Rupprecht CE , Tong S . J Gen Virol 2013 94 738-48 ![]() Polyomaviruses (PyVs) have been identified in a wide range of avian and mammalian species. However, little is known about their occurrence, genetic diversity and evolutionary history in bats, even though bats are important reservoirs for many emerging viral pathogens. This study screened 380 specimens from 35 bat species from Kenya and Guatemala for the presence of PyVs by semi-nested pan-PyV PCR assays. PyV DNA was detected in 24 of the 380 bat specimens. Phylogenetic analysis revealed that the bat PyV sequences formed 12 distinct lineages. Full-genome sequences were obtained for seven representative lineages and possessed similar genomic features to known PyVs. Strikingly, this evolutionary analysis revealed that the bat PyVs were paraphyletic, suggestive of multiple species jumps between bats and other mammalian species, such that the theory of virus-host co-divergence for mammalian PyVs as a whole could be rejected. In addition, evidence was found for strong heterogeneity in evolutionary rate and potential recombination in a number of PyV complete genomes, which complicates both phylogenetic analysis and virus classification. In summary, this study revealed that bats are important reservoirs of PyVs and that these viruses have a complex evolutionary history. |
Evaluation of an indirect rapid immunohistochemistry test for the differentiation of rabies virus variants
Dyer JL , Niezgoda M , Orciari LA , Yager PA , Ellison JA , Rupprecht CE . J Virol Methods 2013 190 29-33 ![]() Cost effective diagnostic tests are needed in rabies virus (RABV) enzootic areas to study the prevalence, distribution, and transmission of rabies virus among reservoir hosts. To reduce the associated costs of acquiring and maintaining specialized laboratory equipment, an indirect rapid immunohistochemistry test (IRIT), for the detection and differentiation of RABV variants, was evaluated by traditional light microscopy. The IRIT utilizes fresh frozen brain touch impressions or cell culture monolayers fixed in buffered formalin, a panel of murine anti-nucleoprotein monoclonal antibodies (mAb-N) and commercially available biotin- labeled goat anti-mouse antibody. In this study, 96 RABV isolates, representing 20 RABV variants previously determined by antigenic typing using a panel of mAb-N and the indirect fluorescent antibody test (IFA), and genetic sequence analysis were characterized by IRIT and the results compared. The IRIT results revealed distinct reactivity patterns associated with current and historical RABV reservoir hosts similar to IFA test and genetic sequence analysis. Evaluation of suspected RABV samples through IRIT does not require specialized equipment and is possible to perform in a field setting. Additionally, commercially available labeled secondary antibodies permit the use of a standard panel of unlabeled primary mAbs, without the need for fluorescence microscopy, and should augment existing attempts at antigenic characterization during canine rabies elimination campaigns in developed and developing countries. These results are useful in studying the epizootiology of rabies and inferring the source of infection when unknown. |
Host-rabies virus protein-protein interactions as druggable antiviral targets
Lingappa UF , Wu X , Macieik A , Yu SF , Atuegbu A , Corpuz M , Francis J , Nichols C , Calayag A , Shi H , Ellison JA , Harrell EK , Asundi V , Lingappa JR , Prasad MD , Lipkin WI , Dey D , Hurt CR , Lingappa VR , Hansen WJ , Rupprecht CE . Proc Natl Acad Sci U S A 2013 110 (10) E861-8 ![]() We present an unconventional approach to antiviral drug discovery, which is used to identify potent small molecules against rabies virus. First, we conceptualized viral capsid assembly as occurring via a host-catalyzed biochemical pathway, in contrast to the classical view of capsid formation by self-assembly. This suggested opportunities for antiviral intervention by targeting previously unappreciated catalytic host proteins, which were pursued. Second, we hypothesized these host proteins to be components of heterogeneous, labile, and dynamic multi-subunit assembly machines, not easily isolated by specific target protein-focused methods. This suggested the need to identify active compounds before knowing the precise protein target. A cell-free translation-based small molecule screen was established to recreate the hypothesized interactions involving newly synthesized capsid proteins as host assembly machine substrates. Hits from the screen were validated by efficacy against infectious rabies virus in mammalian cell culture. Used as affinity ligands, advanced analogs were shown to bind a set of proteins that effectively reconstituted drug sensitivity in the cell-free screen and included a small but discrete subfraction of cellular ATP-binding cassette family E1 (ABCE1), a host protein previously found essential for HIV capsid formation. Taken together, these studies advance an alternate view of capsid formation (as a host-catalyzed biochemical pathway), a different paradigm for drug discovery (whole pathway screening without knowledge of the target), and suggest the existence of labile assembly machines that can be rendered accessible as next-generation drug targets by the means described. |
Multidisciplinary approach to epizootiology and pathogenesis of bat rabies viruses in the United States
Ellison JA , Johnson SR , Kuzmina N , Gilbert A , Carson WC , Vercauteren KC , Rupprecht CE . Zoonoses Public Health 2012 60 (1) 46-57 ![]() Zoonotic disease surveillance is typically initiated after an animal pathogen has caused disease in humans. Early detection of potentially high-risk pathogens within animal hosts may facilitate medical interventions to cope with an emerging disease. To effectively spillover to a novel host, a pathogen may undergo genetic changes resulting in varying transmission potential in the new host and potentially to humans. Rabies virus (RABV) is one model pathogen to consider for studying the dynamics of emerging infectious diseases under both laboratory and field conditions. The evolutionary history of RABV is characterized by regularly documented spillover infections and a series of notable host shifts. Within this context, enhanced field surveillance to improve detection of spillover infections will require validated techniques to non-invasively differentiate infected from non-infected individuals. In this study, we evaluate the use of infrared thermography to detect thermal changes associated with experimental RABV infection in big brown bats (Eptesicus fuscus) in a captive colony. Our results indicated that 62% of rabid bats had detectable facial temperature decreases (-4.6 degrees C, SD +/- 2.5) compared with pre-inoculation baseline values. These data suggest potential utility for discriminating rabid bats in natural field settings. In addition, focusing upon RABV circulating in the United States between 2008 and 2011, we confirmed spillover events of bat RABV among carnivores and identified cross-species transmission events caused by four lineages of RABV associated with insectivorous bats. Additionally, our analysis of RABV glycoprotein sequences identified substitutions in antigenic sites that may affect neutralizing activity associated with monoclonal antibodies proposed for use in human post-exposure prophylaxis. This study provides a glimpse into RABV pathobiology and spillover dynamics among and between bats and a variety of mesocarnivores. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure