Last data update: Jul 11, 2025. (Total: 49561 publications since 2009)
Records 1-9 (of 9 Records) |
Query Trace: Duca Lindsey M[original query] |
---|
Effectiveness of 2023 Southern Hemisphere influenza vaccines against severe influenza-associated illness: pooled estimates from eight countries using the test-negative design
Radhika Radhika , Gharpure Allen C , Regan Annette K , Nogareda Francisco , Cheng Christopher C , George Siobhan St , Huang QSue , Wood Tim , Anglemyer Andrew , Prasert Kriengkrai , Praphasiri Prabda , Davis William W , Pittayawonganon Chakrarat , Ercole Regina , Iturra Analia , de Almeida Walquiria Aparecida Ferreira , de Paula Junior Francisco Jose , Avendano Vigueras Marcela , Olivares Barraza Maria Fernanda , Dominguez Chavely , Penayo Elena , Goni Natalia , Tritten Daiana , Couto Paula , Salas Daniel , Fowlkes Ashley L , Duca Lindsey M , Azziz-Baumgartner Eduardo , Sullivan Sheena G . Lancet Glob Health 2025 13 (2) e203-e211 ![]() ![]() Background: Annual estimates of seasonal influenza vaccine effectiveness can guide global risk communication and vaccination strategies to mitigate influenza-associated illness. We aimed to evaluate vaccine effectiveness in countries using the 2023 southern hemisphere influenza vaccine formulation. |
COVID-19 Case Surveillance: Trends in Person-Level Case Data Completeness, United States, April 5-September 30, 2020.
Gold JAW , DeCuir J , Coyle JP , Duca LM , Adjemian J , Anderson KN , Baack BN , Bhattarai A , Dee D , Durant TM , Ewetola R , Finlayson T , Roush SW , Yin S , Jackson BR , Fullerton KE . Public Health Rep 2021 136 (4) 466-474 OBJECTIVES: To obtain timely and detailed data on COVID-19 cases in the United States, the Centers for Disease Control and Prevention (CDC) uses 2 data sources: (1) aggregate counts for daily situational awareness and (2) person-level data for each case (case surveillance). The objective of this study was to describe the sensitivity of case ascertainment and the completeness of person-level data received by CDC through national COVID-19 case surveillance. METHODS: We compared case and death counts from case surveillance data with aggregate counts received by CDC during April 5-September 30, 2020. We analyzed case surveillance data to describe geographic and temporal trends in data completeness for selected variables, including demographic characteristics, underlying medical conditions, and outcomes. RESULTS: As of November 18, 2020, national COVID-19 case surveillance data received by CDC during April 5-September 30, 2020, included 4 990 629 cases and 141 935 deaths, representing 72.7% of the volume of cases (n = 6 863 251) and 71.8% of the volume of deaths (n = 197 756) in aggregate counts. Nationally, completeness in case surveillance records was highest for age (99.9%) and sex (98.8%). Data on race/ethnicity were complete for 56.9% of cases; completeness varied by region. Data completeness for each underlying medical condition assessed was <25% and generally declined during the study period. About half of case records had complete data on hospitalization and death status. CONCLUSIONS: Incompleteness in national COVID-19 case surveillance data might limit their usefulness. Streamlining and automating surveillance processes would decrease reporting burdens on jurisdictions and likely improve completeness of national COVID-19 case surveillance data. |
Modeling effectiveness of testing strategies to prevent COVID-19 in nursing homes -United States, 2020.
See I , Paul P , Slayton RB , Steele MK , Stuckey MJ , Duca L , Srinivasan A , Stone N , Jernigan JA , Reddy SC . Clin Infect Dis 2021 73 (3) e792-e798 BACKGROUND: SARS-CoV-2 outbreaks in nursing homes can be large with high case fatality. Identifying asymptomatic individuals early through serial testing is recommended to control COVID-19 in nursing homes, both in response to an outbreak ("outbreak testing" of residents and healthcare personnel) and in facilities without outbreaks ("non-outbreak testing" of healthcare personnel). The effectiveness of outbreak testing and isolation with or without non-outbreak testing was evaluated. METHODS: Using published SARS-CoV-2 transmission parameters, the fraction of SARS-CoV-2 transmissions prevented through serial testing (weekly, every three days, or daily) and isolation of asymptomatic persons compared to symptom-based testing and isolation was evaluated through mathematical modeling using a Reed-Frost model to estimate the percentage of cases prevented (i.e., "effectiveness") through either outbreak testing alone or outbreak plus non-outbreak testing. The potential effect of simultaneous decreases (by 10%) in the effectiveness of isolating infected individuals when instituting testing strategies was also evaluated. RESULTS: Modeling suggests that outbreak testing could prevent 54% (weekly testing with 48-hour test turnaround) to 92% (daily testing with immediate results and 50% relative sensitivity) of SARS-CoV-2 infections. Adding non-outbreak testing could prevent up to an additional 8% of SARS-CoV-2 infections (depending on test frequency and turnaround time). However, added benefits of non-outbreak testing were mostly negated if accompanied by decreases in infection control practice. CONCLUSIONS: When combined with high-quality infection control practices, outbreak testing could be an effective approach to preventing COVID-19 in nursing homes, particularly if optimized through increased test frequency and use of tests with rapid turnaround. |
Characteristics and Timing of Initial Virus Shedding in Severe Acute Respiratory Syndrome Coronavirus 2, Utah, USA.
Lewis NM , Duca LM , Marcenac P , Dietrich EA , Gregory CJ , Fields VL , Banks MM , Rispens JR , Hall A , Harcourt JL , Tamin A , Willardson S , Kiphibane T , Christensen K , Dunn AC , Tate JE , Nabity S , Matanock AM , Kirking HL . Emerg Infect Dis 2021 27 (2) 352-359 Virus shedding in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur before onset of symptoms; less is known about symptom progression or infectiousness associated with initiation of viral shedding. We investigated household transmission in 5 households with daily specimen collection for 5 consecutive days starting a median of 4 days after symptom onset in index patients. Seven contacts across 2 households implementing no precautionary measures were infected. Of these 7, 2 tested positive for SARS-CoV-2 by reverse transcription PCR on day 3 of 5. Both had mild, nonspecific symptoms for 1-3 days preceding the first positive test. SARS-CoV-2 was cultured from the fourth-day specimen in 1 patient and from the fourth- and fifth-day specimens in the other. We also describe infection control measures taken in the households that had no transmission. Persons exposed to SARS-CoV-2 should self-isolate, including from household contacts, wear a mask, practice hand hygiene, and seek testing promptly. |
COVID-19 Trends Among Persons Aged 0-24 Years - United States, March 1-December 12, 2020.
Leidman E , Duca LM , Omura JD , Proia K , Stephens JW , Sauber-Schatz EK . MMWR Morb Mortal Wkly Rep 2021 70 (3) 88-94 Coronavirus disease 2019 (COVID-19) case and electronic laboratory data reported to CDC were analyzed to describe demographic characteristics, underlying health conditions, and clinical outcomes, as well as trends in laboratory-confirmed COVID-19 incidence and testing volume among U.S. children, adolescents, and young adults (persons aged 0-24 years). This analysis provides a critical update and expansion of previously published data, to include trends after fall school reopenings, and adds preschool-aged children (0-4 years) and college-aged young adults (18-24 years) (1). Among children, adolescents, and young adults, weekly incidence (cases per 100,000 persons) increased with age and was highest during the final week of the review period (the week of December 6) among all age groups. Time trends in weekly reported incidence for children and adolescents aged 0-17 years tracked consistently with trends observed among adults since June, with both incidence and positive test results tending to increase since September after summer declines. Reported incidence and positive test results among children aged 0-10 years were consistently lower than those in older age groups. To reduce community transmission, which will support schools in operating more safely for in-person learning, communities and schools should fully implement and strictly adhere to recommended mitigation strategies, especially universal and proper masking, to reduce COVID-19 incidence. |
Household Transmission of SARS-CoV-2 in the United States.
Lewis NM , Chu VT , Ye D , Conners EE , Gharpure R , Laws RL , Reses HE , Freeman BD , Fajans M , Rabold EM , Dawson P , Buono S , Yin S , Owusu D , Wadhwa A , Pomeroy M , Yousaf A , Pevzner E , Njuguna H , Battey KA , Tran CH , Fields VL , Salvatore P , O'Hegarty M , Vuong J , Chancey R , Gregory C , Banks M , Rispens JR , Dietrich E , Marcenac P , Matanock AM , Duca L , Binder A , Fox G , Lester S , Mills L , Gerber SI , Watson J , Schumacher A , Pawloski L , Thornburg NJ , Hall AJ , Kiphibane T , Willardson S , Christensen K , Page L , Bhattacharyya S , Dasu T , Christiansen A , Pray IW , Westergaard RP , Dunn AC , Tate JE , Nabity SA , Kirking HL . Clin Infect Dis 2020 73 (7) 1805-1813 BACKGROUND: Although many viral respiratory illnesses are transmitted within households, the evidence base for SARS-CoV-2 is nascent. We sought to characterize SARS-CoV-2 transmission within US households and estimate the household secondary infection rate (SIR) to inform strategies to reduce transmission. METHODS: We recruited laboratory-confirmed COVID-19 patients and their household contacts in Utah and Wisconsin during March 22-April 25, 2020. We interviewed patients and all household contacts to obtain demographics and medical histories. At the initial household visit, 14 days later, and when a household contact became newly symptomatic, we collected respiratory swabs from patients and household contacts for testing by SARS-CoV-2 rRT-PCR and sera for SARS-CoV-2 antibodies testing by enzyme-linked immunosorbent assay (ELISA). We estimated SIR and odds ratios (OR) to assess risk factors for secondary infection, defined by a positive rRT-PCR or ELISA test. RESULTS: Thirty-two (55%) of 58 households had evidence of secondary infection among household contacts. The SIR was 29% (n = 55/188; 95% confidence interval [CI]: 23-36%) overall, 42% among children (<18 years) of the COVID-19 patient and 33% among spouses/partners. Household contacts to COVID-19 patients with immunocompromised conditions had increased odds of infection (OR: 15.9, 95% CI: 2.4-106.9). Household contacts who themselves had diabetes mellitus had increased odds of infection (OR: 7.1, 95% CI: 1.2-42.5). CONCLUSIONS: We found substantial evidence of secondary infections among household contacts. People with COVID-19, particularly those with immunocompromising conditions or those with household contacts with diabetes, should take care to promptly self-isolate to prevent household transmission. |
Symptoms and Transmission of SARS-CoV-2 Among Children - Utah and Wisconsin, March-May 2020.
Laws RL , Chancey RJ , Rabold EM , Chu VT , Lewis NM , Fajans M , Reses HE , Duca LM , Dawson P , Conners EE , Gharpure R , Yin S , Buono S , Pomeroy M , Yousaf AR , Owusu D , Wadhwa A , Pevzner E , Battey KA , Njuguna H , Fields VL , Salvatore P , O'Hegarty M , Vuong J , Gregory CJ , Banks M , Rispens J , Dietrich E , Marcenac P , Matanock A , Pray I , Westergaard R , Dasu T , Bhattacharyya S , Christiansen A , Page L , Dunn A , Atkinson-Dunn R , Christensen K , Kiphibane T , Willardson S , Fox G , Ye D , Nabity SA , Binder A , Freeman BD , Lester S , Mills L , Thornburg N , Hall AJ , Fry AM , Tate JE , Tran CH , Kirking HL . Pediatrics 2020 147 (1) BACKGROUND AND OBJECTIVES: Limited data exist on severe acute respiratory syndrome coronavirus 2 in children. We described infection rates and symptom profiles among pediatric household contacts of individuals with coronavirus disease 2019. METHODS: We enrolled individuals with coronavirus disease 2019 and their household contacts, assessed daily symptoms prospectively for 14 days, and obtained specimens for severe acute respiratory syndrome coronavirus 2 real-time reverse transcription polymerase chain reaction and serology testing. Among pediatric contacts (<18 years), we described transmission, assessed the risk factors for infection, and calculated symptom positive and negative predictive values. We compared secondary infection rates and symptoms between pediatric and adult contacts using generalized estimating equations. RESULTS: Among 58 households, 188 contacts were enrolled (120 adults; 68 children). Secondary infection rates for adults (30%) and children (28%) were similar. Among households with potential for transmission from children, child-to-adult transmission may have occurred in 2 of 10 (20%), and child-to-child transmission may have occurred in 1 of 6 (17%). Pediatric case patients most commonly reported headache (79%), sore throat (68%), and rhinorrhea (68%); symptoms had low positive predictive values, except measured fever (100%; 95% confidence interval [CI]: 44% to 100%). Compared with symptomatic adults, children were less likely to report cough (odds ratio [OR]: 0.15; 95% CI: 0.04 to 0.57), loss of taste (OR: 0.21; 95% CI: 0.06 to 0.74), and loss of smell (OR: 0.29; 95% CI: 0.09 to 0.96) and more likely to report sore throat (OR: 3.4; 95% CI: 1.04 to 11.18). CONCLUSIONS: Children and adults had similar secondary infection rates, but children generally had less frequent and severe symptoms. In two states early in the pandemic, we observed possible transmission from children in approximately one-fifth of households with potential to observe such transmission patterns. |
Enhanced contact investigations for nine early travel-related cases of SARS-CoV-2 in the United States.
Burke RM , Balter S , Barnes E , Barry V , Bartlett K , Beer KD , Benowitz I , Biggs HM , Bruce H , Bryant-Genevier J , Cates J , Chatham-Stephens K , Chea N , Chiou H , Christiansen D , Chu VT , Clark S , Cody SH , Cohen M , Conners EE , Dasari V , Dawson P , DeSalvo T , Donahue M , Dratch A , Duca L , Duchin J , Dyal JW , Feldstein LR , Fenstersheib M , Fischer M , Fisher R , Foo C , Freeman-Ponder B , Fry AM , Gant J , Gautom R , Ghinai I , Gounder P , Grigg CT , Gunzenhauser J , Hall AJ , Han GS , Haupt T , Holshue M , Hunter J , Ibrahim MB , Jacobs MW , Jarashow MC , Joshi K , Kamali T , Kawakami V , Kim M , Kirking HL , Kita-Yarbro A , Klos R , Kobayashi M , Kocharian A , Lang M , Layden J , Leidman E , Lindquist S , Lindstrom S , Link-Gelles R , Marlow M , Mattison CP , McClung N , McPherson TD , Mello L , Midgley CM , Novosad S , Patel MT , Pettrone K , Pillai SK , Pray IW , Reese HE , Rhodes H , Robinson S , Rolfes M , Routh J , Rubin R , Rudman SL , Russell D , Scott S , Shetty V , Smith-Jeffcoat SE , Soda EA , Spitters C , Stierman B , Sunenshine R , Terashita D , Traub E , Vahey GM , Verani JR , Wallace M , Westercamp M , Wortham J , Xie A , Yousaf A , Zahn M . PLoS One 2020 15 (9) e0238342 Coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. In response to the first cases identified in the United States, close contacts of confirmed COVID-19 cases were investigated to enable early identification and isolation of additional cases and to learn more about risk factors for transmission. Close contacts of nine early travel-related cases in the United States were identified and monitored daily for development of symptoms (active monitoring). Selected close contacts (including those with exposures categorized as higher risk) were targeted for collection of additional exposure information and respiratory samples. Respiratory samples were tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction at the Centers for Disease Control and Prevention. Four hundred four close contacts were actively monitored in the jurisdictions that managed the travel-related cases. Three hundred thirty-eight of the 404 close contacts provided at least basic exposure information, of whom 159 close contacts had ≥1 set of respiratory samples collected and tested. Across all actively monitored close contacts, two additional symptomatic COVID-19 cases (i.e., secondary cases) were identified; both secondary cases were in spouses of travel-associated case patients. When considering only household members, all of whom had ≥1 respiratory sample tested for SARS-CoV-2, the secondary attack rate (i.e., the number of secondary cases as a proportion of total close contacts) was 13% (95% CI: 4-38%). The results from these contact tracing investigations suggest that household members, especially significant others, of COVID-19 cases are at highest risk of becoming infected. The importance of personal protective equipment for healthcare workers is also underlined. Isolation of persons with COVID-19, in combination with quarantine of exposed close contacts and practice of everyday preventive behaviors, is important to mitigate spread of COVID-19. |
A prospective cohort study in non-hospitalized household contacts with SARS-CoV-2 infection: symptom profiles and symptom change over time.
Yousaf AR , Duca LM , Chu V , Reses HE , Fajans M , Rabold EM , Laws RL , Gharpure R , Matanock A , Wadhwa A , Pomeroy M , Njuguna H , Fox G , Binder AM , Christiansen A , Freeman B , Gregory C , Tran CH , Owusu D , Ye D , Dietrich E , Pevzner E , Conners EE , Pray I , Rispens J , Vuong J , Christensen K , Banks M , O'Hegarty M , Mills L , Lester S , Thornburg NJ , Lewis N , Dawson P , Marcenac P , Salvatore P , Chancey RJ , Fields V , Buono S , Yin S , Gerber S , Kiphibane T , Dasu T , Bhattacharyya S , Westergaard R , Dunn A , Hall AJ , Fry AM , Tate JE , Kirking HL , Nabity S . Clin Infect Dis 2020 73 (7) e1841-e1849 BACKGROUND: Improved understanding of SARS-CoV-2 spectrum of disease is essential for clinical and public health interventions. There are limited data on mild or asymptomatic infections, but recognition of these individuals is key as they contribute to viral transmission. We describe the symptom profiles from individuals with mild or asymptomatic SARS-CoV-2 infection. METHODS: From March 22 to April 22, 2020 in Wisconsin and Utah, we enrolled and prospectively observed 198 household contacts exposed to SARS-CoV-2. We collected and tested nasopharyngeal (NP) specimens by RT-PCR two or more times during a 14-day period. Contacts completed daily symptom diaries. We characterized symptom profiles on the date of first positive RT-PCR test and described progression of symptoms over time. RESULTS: We identified 47 contacts, median age 24 (3-75) years, with detectable SARS-CoV-2 by RT-PCR. The most commonly reported symptoms on the day of first positive RT-PCR test were upper respiratory (n=32, 68%) and neurologic (n=30, 64%); fever was not commonly reported (n=9, 19%). Eight (17%) individuals were asymptomatic at the date of first positive RT-PCR collection; two (4%) had preceding symptoms that resolved and six (13%) subsequently developed symptoms. Children less frequently reported lower respiratory symptoms (age <18: 21%, age 18-49: 60%, age 50+ years: 69%; p=0.03). CONCLUSIONS: Household contacts with lab-confirmed SARS-CoV-2 infection reported mild symptoms. When assessed at a single time-point, several contacts appeared to have asymptomatic infection; however, over time all developed symptoms. These findings are important to inform infection control, contact tracing, and community mitigation strategies. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jul 11, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure