Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-5 (of 5 Records) |
Query Trace: Drew NM[original query] |
---|
Stability of lipids in plasma and serum: Effects of temperature-related storage conditions on the human lipidome
Reis GB , Rees JC , Ivanova AA , Kuklenyik Z , Drew NM , Pirkle JL , Barr JR . J Mass Spectrom Adv Clin Lab 2021 22 34-42 Large epidemiological studies often require sample transportation and storage, presenting unique considerations when applying advanced lipidomics techniques. The goal of this study was to acquire lipidomics data on plasma and serum samples stored at potential preanalytical conditions (e.g., thawing, extracting, evaporating), systematically monitoring lipid species for a period of one month. Split aliquots of 10 plasma samples and 10 serum samples from healthy individuals were kept in three temperature-related environments: refrigerator, laboratory benchtop, or heated incubator. Samples were analyzed at six different time points over 28 days using a Bligh & Dyer lipid extraction protocol followed by direct infusion into a lipidomics platform using differential mobility with tandem mass spectrometry. The observed concentration changes over time were evaluated relative to method and inter-individual biological variability. In addition, to evaluate the effect of lipase enzyme levels on concentration changes during storage, we compared corresponding fasting and post-prandial plasma samples collected from 5 individuals. Based on our data, a series of low abundance free fatty acid (FFA), diacylglycerol (DAG), and cholesteryl ester (CE) species were identified as potential analytical markers for degradation. These FFA and DAG species are typically produced by endogenous lipases from numerous triacylglycerols (TAGs), and certain high abundance phosphatidylcholines (PCs). The low concentration CEs, which appeared to increase several fold, were likely mass-isobars from oxidation of other high concentration CEs. Although the concentration changes of the high abundant TAG, PC, and CE precursors remained within method variability, the concentration trends of FFA, DAG, and oxidized CE products should be systematically monitored over time to inform analysts about possible pre-analytical biases due to degradation in the study sample sets. |
Utilizing literature-based rodent toxicology data to derive potency estimates for quantitative risk assessment
Boots TE , Kogel AM , Drew NM , Kuempel ED . Nanotoxicology 2021 15 (6) 1-21 Evaluating the potential occupational health risk of engineered nanomaterials is an ongoing need. The objective of this meta-analysis, which consisted of 36 studies containing 86 materials, was to assess the availability of published in vivo rodent pulmonary toxicity data for a variety of nanoscale and microscale materials and to derive potency estimates via benchmark dose modeling. Additionally, the potency estimates based on particle mass lung dose associated with acute pulmonary inflammation were used to group materials based on toxicity. The commonalities among the physicochemical properties of the materials in each group were also explored. This exploration found that a material's potency tended to be associated primarily with the material class based on chemical composition and form (e.g. carbon nanotubes, TiO(2), ZnO) rather than with particular physicochemical properties. Limitations in the data available precluded a more extensive analysis of these associations. Issues such as data reporting and appropriate experimental design for use in quantitative risk assessment are the main reasons publications were excluded from these analyses and are discussed. |
Characterizing risk assessments for the development of occupational exposure limits for engineered nanomaterials
Schulte PA , Kuempel ED , Drew NM . Regul Toxicol Pharmacol 2018 95 207-219 The commercialization of engineered nanomaterials (ENMs) began in the early 2000's. Since then the number of commercial products and the number of workers potentially exposed to ENMs is growing, as is the need to evaluate and manage the potential health risks. Occupational exposure limits (OELs) have been developed for some of the first generation of ENMs. These OELs have been based on risk assessments that progressed from qualitative to quantitative as nanotoxicology data became available. In this paper, that progression is characterized. It traces OEL development through the qualitative approach of general groups of ENMs based primarily on read-across with other materials to quantitative risk assessments for nanoscale particles including titanium dioxide, carbon nanotubes and nanofibers, silver nanoparticles, and cellulose nanocrystals. These represent prototypic approaches to risk assessment and OEL development for ENMs. Such substance-by-substance efforts are not practical given the insufficient data for many ENMs that are currently being used or potentially entering commerce. Consequently, categorical approaches are emerging to group and rank ENMs by hazard and potential health risk. The strengths and limitations of these approaches are described, and future derivations and research needs are discussed. Critical needs in moving forward with understanding the health effects of the numerous EMNs include more standardized and accessible quantitative data on the toxicity and physicochemical properties of ENMs. |
A quantitative framework to group nanoscale and microscale particles by hazard potency to derive occupational exposure limits: Proof of concept evaluation.
Drew NM , Kuempel ED , Pei Y , Yang F . Regul Toxicol Pharmacol 2017 89 253-267 The large and rapidly growing number of engineered nanomaterials (ENMs) presents a challenge to assessing the potential occupational health risks. An initial database of 25 rodent studies including 1929 animals across various experimental designs and material types was constructed to identify materials that are similar with respect to their potency in eliciting neutrophilic pulmonary inflammation, a response relevant to workers. Doses were normalized across rodent species, strain, and sex as the estimated deposited particle mass dose per gram of lung. Doses associated with specific measures of pulmonary inflammation were estimated by modeling the continuous dose-response relationships using benchmark dose modeling. Hierarchical clustering was used to identify similar materials. The 18 nanoscale and microscale particles were classified into four potency groups, which varied by factors of approximately two to 100. Benchmark particles microscale TiO2 and crystalline silica were in the lowest and highest potency groups, respectively. Random forest methods were used to identify the important physicochemical predictors of pulmonary toxicity, and group assignments were correctly predicted for five of six new ENMs. Proof-of-concept was demonstrated for this framework. More comprehensive data are needed for further development and validation for use in deriving categorical occupational exposure limits. |
Approximate model spaces for model-robust experiment design
Smucker BJ , Drew NM . Technometrics 2015 57 (1) 54-63 Optimal designs depend upon a prespecified model form. A popular and effective model-robust alternative is to design with respect to a set of models instead of just one. However, model spaces associated with experiments of interest are often prohibitively large and so algorithmically generated designs are infeasible. Here, we present a simple method that largely eliminates this problem by choosing a small set of models that approximates the full set and finding designs that are explicitly robust for this small set. We build our procedure on a restricted columnwise-pairwise algorithm, and explore its effectiveness for two model spaces in the literature. For smaller full model spaces, we find that the designs constructed with the new method compare favorably with robust designs that use the full model space, with construction times reduced by orders of magnitude. We also construct designs that heretofore have been unobtainable due to the size of their model spaces. Supplementary material (available online) includes code, designs, and additional results. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure