Last data update: May 12, 2025. (Total: 49248 publications since 2009)
Records 1-2 (of 2 Records) |
Query Trace: Dolan Thomas J[original query] |
---|
Genomic basis of a polyagglutinating isolate of Neisseria meningitidis.
Rishishwar L , Katz LS , Sharma NV , Rowe L , Frace M , Thomas JD , Harcourt BH , Mayer LW , Jordan IK . J Bacteriol 2012 194 (20) 5649-56 ![]() Containment strategies for outbreaks of invasive Neisseria meningitidis disease are informed by serogroup assays that characterize the polysaccharide capsule. We sought to uncover the genomic basis of conflicting serogroup assay results for an isolate (M16917) from a patient with acute meningococcal disease. To this end, we characterized the complete genome sequence of the M16917 isolate and performed a variety of comparative sequence analyses against N. meningitidis reference genome sequences of known serogroups. Multilocus sequence typing and whole-genome sequence comparison revealed that M16917 is a member of the ST-11 sequence group, which is most often associated with serogroup C. However, sequence similarity comparisons and phylogenetic analysis showed that the serogroup diagnostic capsule polymerase gene (synD) of M16917 belongs to serogroup B. These results suggest that a capsule-switching event occurred based on homologous recombination at or around the capsule locus of M16917. Detailed analysis of this locus uncovered the locations of recombination breakpoints in the M16917 genome sequence, which led to the introduction of an approximately 2-kb serogroup B sequence cassette into the serogroup C genomic background. Since there is no currently available vaccine for serogroup B strains of N. meningitidis, this kind capsule-switching event could have public health relevance as a vaccine escape mutant. |
sodC-based real-time PCR for detection of Neisseria meningitidis.
Dolan Thomas J , Hatcher CP , Satterfield DA , Theodore MJ , Bach MC , Linscott KB , Zhao X , Wang X , Mair R , Schmink S , Arnold KE , Stephens DS , Harrison LH , Hollick RA , Andrade AL , Lamaro-Cardoso J , de Lemos AP , Gritzfeld J , Gordon S , Soysal A , Bakir M , Sharma D , Jain S , Satola SW , Messonnier NE , Mayer LW . PLoS One 2011 6 (5) e19361 ![]() Real-time PCR (rt-PCR) is a widely used molecular method for detection of Neisseria meningitidis (Nm). Several rt-PCR assays for Nm target the capsule transport gene, ctrA. However, over 16% of meningococcal carriage isolates lack ctrA, rendering this target gene ineffective at identification of this sub-population of meningococcal isolates. The Cu-Zn superoxide dismutase gene, sodC, is found in Nm but not in other Neisseria species. To better identify Nm, regardless of capsule genotype or expression status, a sodC-based TaqMan rt-PCR assay was developed and validated. Standard curves revealed an average lower limit of detection of 73 genomes per reaction at cycle threshold (C(t)) value of 35, with 100% average reaction efficiency and an average R(2) of 0.9925. 99.7% (624/626) of Nm isolates tested were sodC-positive, with a range of average C(t) values from 13.0 to 29.5. The mean sodC C(t) value of these Nm isolates was 17.6+/-2.2 (+/-SD). Of the 626 Nm tested, 178 were nongroupable (NG) ctrA-negative Nm isolates, and 98.9% (176/178) of these were detected by sodC rt-PCR. The assay was 100% specific, with all 244 non-Nm isolates testing negative. Of 157 clinical specimens tested, sodC detected 25/157 Nm or 4 additional specimens compared to ctrA and 24 more than culture. Among 582 carriage specimens, sodC detected Nm in 1 more than ctrA and in 4 more than culture. This sodC rt-PCR assay is a highly sensitive and specific method for detection of Nm, especially in carriage studies where many meningococcal isolates lack capsule genes. |
- Page last reviewed:Feb 1, 2024
- Page last updated:May 12, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure