Last data update: Jan 27, 2025. (Total: 48650 publications since 2009)
Records 1-3 (of 3 Records) |
Query Trace: Deldari M[original query] |
---|
Human Orthohantavirus disease prevalence and genotype distribution in the U.S., 2008–2020: a retrospective observational study
Whitmer SLM , Whitesell A , Mobley M , Talundzic E , Shedroff E , Cossaboom CM , Messenger S , Deldari M , Bhatnagar J , Estetter L , Zufan S , Cannon D , Chiang CF , Gibbons A , Krapiunaya I , Morales-Betoulle M , Choi M , Knust B , Amman B , Montgomery JM , Shoemaker T , Klena JD . Lancet Reg Health - Am 2024 37 ![]() ![]() Background: In the United States (U.S.), hantavirus pulmonary syndrome (HPS) and non-HPS hantavirus infection are nationally notifiable diseases. Criteria for identifying human cases are based on clinical symptoms (HPS or non-HPS) and acute diagnostic results (IgM+, rising IgG+ titers, RT-PCR+, or immunohistochemistry (IHC)+). Here we provide an overview of diagnostic testing and summarize human Hantavirus disease occurrence and genotype distribution in the U.S. from 2008 to 2020. Methods: Epidemiological data from the national hantavirus registry was merged with laboratory diagnostic testing results performed at the CDC. Residual hantavirus-positive specimens were sequenced, and the available epidemiological and genetic data sets were linked to conduct a genomic epidemiological study of hantavirus disease in the U.S. Findings: From 1993 to 2020, 833 human hantavirus cases have been identified, and from 2008 to 2020, 335 human cases have occurred. Among New World (NW) hantavirus cases detected at the CDC diagnostic laboratory (representing 29.2% of total cases), most (85.0%) were detected during acute disease, however, some convalescent cases were detected in states not traditionally associated with hantavirus infections (Connecticut, Missouri, New Jersey, Pennsylvania, Tennessee, and Vermont). From 1993 to 2020, 94.9% (745/785) of U.S. hantaviruses cases were detected west of the Mississippi with 45.7% (359/785) in the Four Corners region of the U.S. From 2008 to 2020, 67.7% of NW hantavirus cases were detected between the months of March and August. Sequencing of RT-PCR-positive cases demonstrates a geographic separation of Orthohantavirus sinnombreense species [Sin Nombre virus (SNV), New York virus, and Monongahela virus]; however, there is a large gap in viral sequence data from the Northwestern and Central U.S. Finally, these data indicate that commercial IgM assays are not concordant with CDC-developed assays, and that “concordant positive” (i.e., commercial IgM+ and CDC IgM+ results) specimens exhibit clinical characteristics of hantavirus disease. Interpretation: Hantaviral disease is broadly distributed in the contiguous U.S, viral variants are localised to specific geographic regions, and hantaviral disease infrequently detected in most Southeastern states. Discordant results between two diagnostic detection methods highlight the need for an improved standardised testing plan in the U.S. Hantavirus surveillance and detection will continue to improve with clearly defined, systematic reporting methods, as well as explicit guidelines for clinical characterization and diagnostic criteria. Funding: This work was funded by core funds provided to the Viral Special Pathogens Branch at CDC. © 2024 |
Outbreak of COVID-19 among vaccinated and unvaccinated homeless shelter residents - Sonoma County, California, July 2021 (preprint)
Bukatko A , Lobato MN , Mosites E , Stainken C , Reihl K , Deldari M , Bell JM , Morris MK , Wadford DA , Harriman K , Mase S . medRxiv 2021 08 In July 2021, the Sonoma County Health Department was alerted to three cases of COVID-19 among residents of a homeless shelter in Santa Rosa, California. Among 153 shelter residents, 83 (54%) were fully vaccinated; 71 (86%) vaccinated residents had received the Janssen COVID-19 vaccine and 12 (14%) received an mRNA (Pfizer BioNTech or Moderna) COVID-19 vaccine. Within 1 month, 116 shelter residents (76%) received positive SARS-CoV-2 test results, including 66 fully vaccinated residents and 50 not fully vaccinated. 9 fully vaccinated and 1 unvaccinated were hospitalized for COVID-19. All hospitalized cases had at least one underlying medical condition. Two deaths occurred, one in a vaccinated resident and one in a non-vaccinated resident. Specimens from 52 residents underwent whole genome sequencing; all were identified as SARS-CoV-2, Delta Variant AY.13 lineage. Additional mitigation measures are needed in medically vulnerable congregate setting where limited resources make individual quarantine and isolation not feasible. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Multi-site evaluation of the LN34 pan-lyssavirus real-time RT-PCR assay for post-mortem rabies diagnostics.
Gigante CM , Dettinger L , Powell JW , Seiders M , Condori REC , Griesser R , Okogi K , Carlos M , Pesko K , Breckenridge M , Simon EMM , Chu Myjv , Davis AD , Brunt SJ , Orciari L , Yager P , Carson WC , Hartloge C , Saliki JT , Sanchez S , Deldari M , Hsieh K , Wadhwa A , Wilkins K , Peredo VY , Rabideau P , Gruhn N , Cadet R , Isloor S , Nath SS , Joseph T , Gao J , Wallace R , Reynolds M , Olson VA , Li Y . PLoS One 2018 13 (5) e0197074 ![]() ![]() Rabies is a fatal zoonotic disease that requires fast, accurate diagnosis to prevent disease in an exposed individual. The current gold standard for post-mortem diagnosis of human and animal rabies is the direct fluorescent antibody (DFA) test. While the DFA test has proven sensitive and reliable, it requires high quality antibody conjugates, a skilled technician, a fluorescence microscope and diagnostic specimen of sufficient quality. The LN34 pan-lyssavirus real-time RT-PCR assay represents a strong candidate for rabies post-mortem diagnostics due to its ability to detect RNA across the diverse Lyssavirus genus, its high sensitivity, its potential for use with deteriorated tissues, and its simple, easy to implement design. Here, we present data from a multi-site evaluation of the LN34 assay in 14 laboratories. A total of 2,978 samples (1,049 DFA positive) from Africa, the Americas, Asia, Europe, and the Middle East were tested. The LN34 assay exhibited low variability in repeatability and reproducibility studies and was capable of detecting viral RNA in fresh, frozen, archived, deteriorated and formalin-fixed brain tissue. The LN34 assay displayed high diagnostic specificity (99.68%) and sensitivity (99.90%) when compared to the DFA test, and no DFA positive samples were negative by the LN34 assay. The LN34 assay produced definitive findings for 80 samples that were inconclusive or untestable by DFA; 29 were positive. Five samples were inconclusive by the LN34 assay, and only one sample was inconclusive by both tests. Furthermore, use of the LN34 assay led to the identification of one false negative and 11 false positive DFA results. Together, these results demonstrate the reliability and robustness of the LN34 assay and support a role for the LN34 assay in improving rabies diagnostics and surveillance. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 27, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure