Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-7 (of 7 Records) |
Query Trace: Dahl Benjamin A[original query] |
---|
Ebola Virus Disease Outbreak - Democratic Republic of the Congo, August 2018-November 2019.
Aruna A , Mbala P , Minikulu L , Mukadi D , Bulemfu D , Edidi F , Bulabula J , Tshapenda G , Nsio J , Kitenge R , Mbuyi G , Mwanzembe C , Kombe J , Lubula L , Shako JC , Mossoko M , Mulangu F , Mutombo A , Sana E , Tutu Y , Kabange L , Makengo J , Tshibinkufua F , Ahuka-Mundeke S , Muyembe JJ , Ebola Response CDC , Alarcon Walter , Bonwitt Jesse , Bugli Dante , Bustamante Nirma D , Choi Mary , Dahl Benjamin A , DeCock Kevin , Dismer Amber , Doshi Reena , Dubray Christine , Fitter David , Ghiselli Margherita , Hall Noemi , Hamida Amen Ben , McCollum Andrea M , Neatherlin John , Raghunathan Pratima L , Ravat Fatima , Reynolds Mary G , Rico Adriana , Smith Nailah , Soke Gnakub Norbert , Trudeau Aimee T , Victory Kerton R , Worrell Mary Claire . MMWR Morb Mortal Wkly Rep 2019 68 (50) 1162-1165 On August 1, 2018, the Democratic Republic of the Congo Ministry of Health (DRC MoH) declared the tenth outbreak of Ebola virus disease (Ebola) in DRC, in the North Kivu province in eastern DRC on the border with Uganda, 8 days after another Ebola outbreak was declared over in northwest Équateur province. During mid- to late-July 2018, a cluster of 26 cases of acute hemorrhagic fever, including 20 deaths, was reported in North Kivu province.* Blood specimens from six patients hospitalized in the Mabalako health zone and sent to the Institut National de Recherche Biomédicale (National Biomedical Research Institute) in Kinshasa tested positive for Ebola virus. Genetic sequencing confirmed that the outbreaks in North Kivu and Équateur provinces were unrelated. From North Kivu province, the outbreak spread north to Ituri province, and south to South Kivu province (1). On July 17, 2019, the World Health Organization designated the North Kivu and Ituri outbreak a public health emergency of international concern, based on the geographic spread of the disease to Goma, the capital of North Kivu province, and to Uganda and the challenges to implementing prevention and control measures specific to this region (2). This report describes the outbreak in the North Kivu and Ituri provinces. As of November 17, 2019, a total of 3,296 Ebola cases and 2,196 (67%) deaths were reported, making this the second largest documented outbreak after the 2014-2016 epidemic in West Africa, which resulted in 28,600 cases and 11,325 deaths.(†) Since August 2018, DRC MoH has been collaborating with partners, including the World Health Organization, the United Nations Children's Fund, the United Nations Office for the Coordination of Humanitarian Affairs, the International Organization of Migration, The Alliance for International Medical Action (ALIMA), Médecins Sans Frontières, DRC Red Cross National Society, and CDC, to control the outbreak. Enhanced communication and effective community engagement, timing of interventions during periods of relative stability, and intensive training of local residents to manage response activities with periodic supervision by national and international personnel are needed to end the outbreak. |
Mitigation Policies and COVID-19-Associated Mortality - 37 European Countries, January 23-June 30, 2020.
Fuller JA , Hakim A , Victory KR , Date K , Lynch M , Dahl B , Henao O . MMWR Morb Mortal Wkly Rep 2021 70 (2) 58-62 As cases and deaths from coronavirus disease 2019 (COVID-19) in Europe rose sharply in late March, most European countries implemented strict mitigation policies, including closure of nonessential businesses and mandatory stay-at-home orders. These policies were largely successful at curbing transmission of SARS-CoV-2, the virus that causes COVID-19 (1), but they came with social and economic costs, including increases in unemployment, interrupted education, social isolation, and related psychosocial outcomes (2,3). A better understanding of when and how these policies were effective is needed. Using data from 37 European countries, the impact of the timing of these mitigation policies on mortality from COVID-19 was evaluated. Linear regression was used to assess the association between policy stringency at an early time point and cumulative mortality per 100,000 persons on June 30. Implementation of policies earlier in the course of the outbreak was associated with lower COVID-19-associated mortality during the subsequent months. An increase by one standard deviation in policy stringency at an early timepoint was associated with 12.5 cumulative fewer deaths per 100,000 on June 30. Countries that implemented stringent policies earlier might have saved several thousand lives relative to those countries that implemented similar policies, but later. Earlier implementation of mitigation policies, even by just a few weeks, might be an important strategy to reduce the number of deaths from COVID-19. |
Ebola virus persistence in breast milk after no reported illness: a likely source of virus transmission from mother to child.
Sissoko D , Keita M , Diallo B , Aliabadi N , Fitter DL , Dahl BA , Bore JA , Koundouno FR , Singethan K , Meisel S , Enkirch T , Mazzarelli A , Amburgey V , Faye O , Sall AA , Magassouba N , Carroll MW , Anglaret X , Malvy D , Formenty P , Aylward RB , Keita S , Djingarey MH , Loman NJ , Gunther S , Duraffour S . Clin Infect Dis 2016 64 (4) 513-516 A nine-month-old infant died from Ebola virus (EBOV) disease with unknown epidemiological link. While her parents did not report previous illness, laboratory investigations revealed persisting EBOV RNA in the mother's breast milk and the father's seminal fluid. Genomic analysis strongly suggests EBOV transmission to the child through breastfeeding. |
Genotypes of rubella virus and the epidemiology of rubella infections in the Democratic Republic of the Congo, 2004-2013.
Pukuta E , Waku-Kouomou D , Abernathy E , Illunga BK , Obama R , Mondonge V , Dahl BA , Maresha BG , Icenogle J , Muyembe JJ . J Med Virol 2016 88 (10) 1677-84 Rubella is a viral infection that may cause fetal death or congenital defects, known as congenital rubella syndrome (CRS), during early pregnancy. The World Health Organization (WHO) recommends that countries assess the burden of rubella and CRS, including the determination of genotypes of circulating viruses. The goal of this study was to identify the genotypes of rubella viruses in the Democratic Republic of the Congo (DRC). Serum or throat swab samples were collected through the measles surveillance system. Sera that tested negative for measles IgM antibody were tested for rubella IgM antibody. Serum collected within 4 days of rash onset and throat swabs were screened by real-time RT-PCR for rubella virus RNA. For positive samples, an amplicon of the E1 glycoprotein gene was amplified by RT-PCR and sequenced. 11733 sera were tested for rubella IgM and 2816 (24%) were positive; 145 (5%) were tested for the presence of rubella RNA by real-time RT-PCR and 10 (7%) were positive. Seventeen throat swabs were analyzed by RT-PCR and three were positive. Sequences were obtained from eight of the positive samples. Phylogenetic analysis showed that the DRC rubella viruses belonged to genotypes 1B, 1E, 1G, and 2B. This report provides the first information on the genotypes of rubella virus circulating in the DRC. These data contribute to a better understanding of rubella burden and the dynamics of rubella virus circulation in Africa. Efforts to establish rubella surveillance in the DRC are needed to support rubella elimination in Africa. J. Med. Virol. © 2016 Wiley Periodicals, Inc. |
Molecular surveillance of rotavirus strains circulating in Yaoundé, Cameroon, September 2007-December 2012.
Boula A , Waku-Kouomou D , Kinkela MN , Esona MD , Kemajou G , Mekontso D , Seheri M , Ndze VN , Emah I , Ela S , Dahl BA , Kobela M , Cavallaro KF , Mballa GA , Genstch JR , Bowen MD , Ndombo PK . Infect Genet Evol 2014 28 470-5 Rotavirus is the most common cause of severe diarrheal disease in children under 5 years of age worldwide. The World Health Organization (WHO) estimated that 453,000 rotavirus-attributable deaths occur annually. Through the WHO, the Rotavirus Sentinel Surveillance Program was established in Cameroon in September 2007 with the Mother and Child Center (MCC) in Yaounde playing the role of sentinel site and national laboratory for this program. The objectives of this surveillance were to assess the rotavirus disease burden and collect baseline information on rotavirus strains circulating in Cameroon. Diarrheal stool samples were collected in a pediatric hospital from children under 5, using the WHO case definition for rotavirus diarrhea. Antigen detection of rotavirus was performed by using an enzyme immunoassay (EIA). The genotypic characterization was performed using multiplexed semi-nested reverse transcription-polymerase chain reaction (RT-PCR) assays. Between September 2007 and December 2012, 2444 stool samples were received at the MCC laboratory for rotavirus antigen detection, of which 999 (41%) were EIA positive. Among EIA positive samples 898 were genotyped. Genotype prevalence varied each year. Genotype G9P[8] was the dominant type during 2007 (32%) and 2008 (24%), genotype G3P[6] predominated in 2010 (36%) and 2011 (25%), and G1P[8] was predominant in 2012 (44%). The findings showed that the rotavirus disease burden is high and there is a broad range of rotavirus strains circulating in Yaounde. These data will help measure the impact of vaccination in the future. |
Molecular surveillance of rotavirus infection in Bangui, Central African Republic, October 2011-September 2013.
Banga-Mingo V , Waku-Kouomou D , Gody JC , Esona MD , Yetimbi JF , Mbary-Daba R , Dahl BA , Dimanche L , Koyazegbe TD , Tricou V , Cavallaro KF , Guifara G , Bowen MD , Gouandjika-Vasilache I . Infect Genet Evol 2014 28 476-9 BACKGROUND: The World Health Organization (WHO) recommends the introduction of rotavirus vaccine in the immunization program of all countries. In the Central African Republic (CAR), sentinel surveillance for rotavirus gastroenteritis was established in 2011 by the Ministry of Health, with the support of the Surveillance en Afrique Centrale Project (SURVAC). The purpose of this study was to assess the burden of rotavirus gastroenteritis and to identify rotavirus strains circulating in CAR before the introduction of rotavirus vaccine planned for this year, 2014. METHODS: One sentinel site and one laboratory at the national level were designated by the CAR Ministry of Health to participate in this surveillance system. Stool samples were collected from children who met the WHO rotavirus gastroenteritis case definition (WHO, 2006). The samples were first screened for group A rotavirus antigen by enzyme immunoassay (EIA), and genotyping assays performed using a multiplex reverse transcriptase PCR (RT-PCR) technique. RESULTS: Between October 2011 and September 2013, 438 stool samples were collected and analyzed for detection of rotavirus antigen; 206 (47%) were positive. Among the 160 (78%) that could be genotyped, G2P[6] was the predominant strain (47%) followed by G1P[8] (25%) and G2P[4] (13%). CONCLUSIONS: Almost half of stool samples obtained from children hospitalized with gastroenteritis were positive for rotavirus. These baseline rotavirus surveillance data will be useful to health authorities considering rotavirus vaccine introduction and for evaluating the efficacy of rotavirus vaccine once it is introduced into the routine immunization system. |
Molecular surveillance of rotavirus infection in the Democratic Republic of the Congo August 2009 to June 2012.
Pukuta ES , Esona MD , Nkongolo A , Seheri M , Makasi M , Nyembwe M , Mondonge V , Dahl BA , Mphahlele MJ , Cavallaro K , Gentsch J , Bowen MD , Waku-Kouomou D , Muyembe JJ . Pediatr Infect Dis J 2014 33 (4) 355-9 BACKGROUND: Rotavirus is a major cause of severe diarrhea worldwide. It causes 453,000 deaths in children annually. In the Democratic Republic of the Congo, sentinel site surveillance of rotavirus gastroenteritis started in 2009 and aimed to document burden of rotavirus diarrhea and identify circulating rotavirus genotypes. METHODS: Between August 2009 to June 2012, stool samples were collected in Kinshasa and Lubumbashi, from children <5 years of age who met the WHO case definition for rotavirus gastroenteritis. Rotavirus antigen detection was performed using an enzyme immunoassay technique and rotavirus strains were characterized using a multiplex reverse transcription polymerase chain reaction assay. RESULTS: During the study period, 1614 stool samples were screened for rotavirus by enzyme immunoassay and 990 (61%) were positive. Of these, the genotype was determined in 330 (33%) samples. The most common genotypes found in the samples analyzed were G1P[8] in 2009 (28%) and 2012 (33%), G2P[4] (33%) in 2010 and G2P[6] (28%) in 2011. Uncommon strains like G8P[6] (5%), G6P[6] (5%), G12P[6] (3%), G12P[8] (3%) and G8P[8] (2%) were also detected. CONCLUSIONS: In Democratic Republic of the Congo, 61% of the diarrhea in children in <5 years of age was caused by rotavirus infection and a variety of rotavirus genotypes were detected. Implementation of rotavirus genotyping at the national level has improved the timely identification of rotavirus strains. These results will help decision makers in Democratic Republic of the Congo plan the implementation of a rotavirus vaccination program. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure