Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-30 (of 36 Records) |
Query Trace: Cumpston A[original query] |
---|
Biological effects of diesel exhaust inhalation. III cardiovascular function
Krajnak K , Kan H , Thompson JA , McKinney W , Waugh S , South T , Burns D , Lebouf R , Cumpston J , Boots T , Fedan JS . Inhal Toxicol 2024 1-16 OBJECTIVE: Inhalation of diesel exhaust (DE) has been shown to be an occupational hazard in the transportation, mining, and gas and oil industries. DE also contributes to air pollution, and therefore, is a health hazard to the general public. Because of its effects on human health, changes have been made to diesel engines to reduce both the amounts of particulate matter and volatile fumes they generate. The goal of the current study was to examine the effects of inhalation of diesel exhaust. MATERIALS AND METHODS: The study presented here specifically examines the effects of exposure to 0.2 and 1.0 mg/m(3) DE or filtered air (6h/d for 4 d) on measures of peripheral and cardio-vascular function, and biomarkers of heart and kidney dysfunction in male rats. A Tier 2 engine used in oil and gas fracking operations was used to generate the diesel exhaust. RESULTS: Exposure to 0.2 mg/m(3) DE resulted in an increase in blood pressure 1d following the last exposure, and increases in dobutamine-induced cardiac output and stroke volume 1 and 27d after exposure. Changes in peripheral vascular responses to norepinephrine and acetylcholine were minimal as were changes in transcript expression in the heart and kidney. Exposure to 1.0 mg/m(3) DE did not result in major changes in blood pressure, measures of cardiac function, peripheral vascular function or transcript expression. DISCUSSION AND CONCLUSIONS: Based on the results of this study, we suggest that exposure to DE generated by a Tier 2 compliant diesel engine generates acute effects on biomarkers indicative of cardiovascular dysfunction. Recovery occurs quickly with most measures of vascular/cardiovascular function returning to baseline levels by 7d following exposure. |
Lung toxicity, deposition, and clearance of thermal spray coating particles with different metal profiles after inhalation in rats
Antonini JM , Kodali V , Meighan TG , McKinney W , Cumpston JL , Leonard HD , Cumpston JB , Friend S , Leonard SS , Andrews R , Zeidler-Erdely PC , Erdely A , Lee EG , Afshari AA . Nanotoxicology 2023 1-18 Thermal spray coating is a process in which molten metal is sprayed onto a surface. Little is known about the health effects associated with these aerosols. Sprague-Dawley rats were exposed to aerosols (25 mg/m(3) × 4 hr/d × 4 d) generated during thermal spray coating using different consumables [i.e. stainless-steel wire (PMET731), Ni-based wire (PMET885), Zn-based wire (PMET540)]. Control animals received air. Bronchoalveolar lavage was performed at 4 and 30 d post-exposure to assess lung toxicity. The particles were chain-like agglomerates and similar in size (310-378 nm). Inhalation of PMET885 aerosol caused a significant increase in lung injury and inflammation at both time points. Inhalation of PMET540 aerosol caused a slight but significant increase in lung toxicity at 4 but not 30 d. Exposure to PMET731 aerosol had no effect on lung toxicity. Overall, the lung responses were in the order: PMET885≫PMET540 >PMT731. Following a shorter exposure (25 mg/m(3) × 4 h/d × 1d), lung burdens of metals from the different aerosols were determined by ICP-AES at 0, 1, 4 and 30 d post-exposure. Zn was cleared from the lungs at the fastest rate with complete clearance by 4 d post-exposure. Ni, Cr, and Mn had similar rates of clearance as nearly half of the deposited metal was cleared by 4 d. A small but significant percentage of each of these metals persisted in the lungs at 30 d. The pulmonary clearance of Fe was difficult to assess because of inherently high levels of Fe in control lungs. |
Multi-instrument assessment of fine and ultrafine titanium dioxide aerosols
Ranpara A , LeBouf RF , Nurkiewicz TR , Yi J , Cumpston JL , Stefaniak AB . J Toxicol Environ Health A 2022 86 (1) 1-22 The measurement of fine (diameter: 100 nanometers-2.5 micrometers) and ultrafine (UF: < 100 nanometers) titanium dioxide (TiO(2)) particles is instrument dependent. Differences in measurements exist between toxicological and field investigations for the same exposure metric such as mass, number, or surface area because of variations in instruments used, operating parameters, or particle-size measurement ranges. Without appropriate comparison, instrument measurements create a disconnect between toxicological and field investigations for a given exposure metric. Our objective was to compare a variety of instruments including multiple metrics including mass, number, and surface area (SA) concentrations for assessing different concentrations of separately aerosolized fine and UF TiO(2) particles. The instruments studied were (1) DustTrak™ DRX, (2) personal DataRAMs™ (PDR), (3) GRIMM(TM), and (4) diffusion charger (DC). Two devices of each field-study instrument (DRX, PDR, GRIMM, and DC) were used to measure various metrics while adjusting for gravimetric mass concentrations of fine and UF TiO(2) particles in controlled chamber tests. An analysis of variance (ANOVA) was used to apportion the variance to inter-instrument (between different instrument-types), inter-device (within instrument), and intra-device components. Performance of each instrument-device was calculated using root mean squared error compared to reference methods: close-faced cassette and gravimetric analysis for mass and scanning mobility particle sizer (SMPS) real-time monitoring for number and SA concentrations. Generally, inter-instrument variability accounted for the greatest (62.6% or more) source of variance for mass, and SA-based concentrations of fine and UF TiO(2) particles. However, higher intra-device variability (53.7%) was observed for number concentrations measurements with fine particles compared to inter-instrument variability (40.8%). Inter-device variance range(0.5-5.5%) was similar for all exposure metrics. DRX performed better in measuring mass closer to gravimetric than PDRs for fine and UF TiO(2). Number concentrations measured by GRIMMs and SA measurements by DCs were considerably (40.8-86.9%) different from the reference (SMPS) method for comparable size ranges of fine and UF TiO(2). This information may serve to aid in interpreting assessments in risk models, epidemiologic studies, and development of occupational exposure limits, relating to health effect endpoints identified in toxicological studies considering similar instruments evaluated in this study. |
In vivo and in vitro toxicity of a stainless-steel aerosol generated during thermal spray coating
Kodali V , Afshari A , Meighan T , McKinney W , Mazumder MHH , Majumder N , Cumpston JL , Leonard HD , Cumpston JB , Friend S , Leonard SS , Erdely A , Zeidler-Erdely PC , Hussain S , Lee EG , Antonini JM . Arch Toxicol 2022 96 (12) 3201-3217 Thermal spray coating is an industrial process in which molten metal is sprayed at high velocity onto a surface as a protective coating. An automated electric arc wire thermal spray coating aerosol generator and inhalation exposure system was developed to simulate an occupational exposure and, using this system, male Sprague-Dawley rats were exposed to stainless steel PMET720 aerosols at 25 mg/m(3) × 4 h/day × 9 day. Lung injury, inflammation, and cytokine alteration were determined. Resolution was assessed by evaluating these parameters at 1, 7, 14 and 28 d after exposure. The aerosols generated were also collected and characterized. Macrophages were exposed in vitro over a wide dose range (0-200 µg/ml) to determine cytotoxicity and to screen for known mechanisms of toxicity. Welding fumes were used as comparative particulate controls. In vivo lung damage, inflammation and alteration in cytokines were observed 1 day post exposure and this response resolved by day 7. Alveolar macrophages retained the particulates even after 28 day post-exposure. In line with the pulmonary toxicity findings, in vitro cytotoxicity and membrane damage in macrophages were observed only at the higher doses. Electron paramagnetic resonance showed in an acellular environment the particulate generated free radicals and a dose-dependent increase in intracellular oxidative stress and NF-kB/AP-1 activity was observed. PMET720 particles were internalized via clathrin and caveolar mediated endocytosis as well as actin-dependent pinocytosis/phagocytosis. The results suggest that compared to stainless steel welding fumes, the PMET 720 aerosols were not as overtly toxic, and the animals recovered from the acute pulmonary injury by 7 days. |
Biological effects of inhaled crude oil vapor V. Altered biogenic amine neurotransmitters and neural protein expression
Sriram K , Lin GX , Jefferson AM , McKinney W , Jackson MC , Cumpston JL , Cumpston JB , Leonard HD , Kashon ML , Fedan JS . Toxicol Appl Pharmacol 2022 449 116137 Workers in the oil and gas industry are at risk for exposure to a number of physical and chemical hazards at the workplace. Chemical hazard risks include inhalation of crude oil or its volatile components. While several studies have investigated the neurotoxic effects of volatile hydrocarbons, in general, there is a paucity of studies assessing the neurotoxicity of crude oil vapor (COV). Consequent to the 2010 Deepwater Horizon (DWH) oil spill, there is growing concern about the short- and long-term health effects of exposure to COV. NIOSH surveys suggested that the DWH oil spill cleanup workers experienced neurological symptoms, including depression and mood disorders, but the health effects apart from oil dispersants were difficult to discern. To investigate the potential neurological risks of COV, male Sprague-Dawley rats were exposed by whole-body inhalation to COV (300ppm; Macondo surrogate crude oil) following an acute (6h/d1 d) or sub-chronic (6h/d4 d/wk.4 wks) exposure regimen. At 1, 28 or 90 d post-exposure, norepinephrine (NE), epinephrine (EPI), dopamine (DA) and serotonin (5-HT) were evaluated as neurotransmitter imbalances are associated with psychosocial-, motor- and cognitive- disorders. Sub-chronic COV exposure caused significant reductions in NE, EPI and DA in the dopaminergic brain regions, striatum (STR) and midbrain (MB), and a large increase in 5-HT in the STR. Further, sub-chronic exposure to COV caused upregulation of synaptic and Parkinson's disease-related proteins in the STR and MB. Whether such effects will lead to neurodegenerative outcomes remain to be investigated. |
Pulmonary toxicity and gene expression changes in response to whole-body inhalation exposure to multi-walled carbon nanotubes in rats
Sager TM , Umbright CM , Mustafa GM , Roberts JR , Orandle MS , Cumpston JL , McKinney WG , Boots T , Kashon ML , Joseph P . Inhal Toxicol 2022 34 1-19 Purpose: To investigate the molecular mechanisms underlying the pulmonary toxicity induced by exposure to one form of multi-walled carbon nanotubes (MWCNT-7).Materials and methods: Rats were exposed, by whole-body inhalation, to air or an aerosol containing MWCNT-7 particles at target cumulative doses (concentration x time) ranging from 22.5 to 180 (mg/m(3))h over a three-day (6 hours/day) period and toxicity and global gene expression profiles were determined in the lungs.Results: MWCNT-7 particles, associated with alveolar macrophages (AMs), were detected in rat lungs following the exposure. Mild to moderate lung pathological changes consisting of increased cellularity, thickening of the alveolar wall, alveolitis, fibrosis, and granuloma formation were detected. Bronchoalveolar lavage (BAL) toxicity parameters such as lactate dehydrogenase activity, number of AMs and polymorphonuclear leukocytes (PMNs), intracellular oxidant generation by phagocytes, and levels of cytokines were significantly (p < 0.05) increased in response to exposure to MWCNT-7. Global gene expression profiling identified several significantly differentially expressed genes (fold change >1.5 and FDR p value <0.05) in all the MWCNT-7 exposed rats. Bioinformatic analysis of the gene expression data identified significant enrichment of several diseases/biological function categories (for example, cancer, leukocyte migration, inflammatory response, mitosis, and movement of phagocytes) and canonical pathways (for example, kinetochore metaphase signaling pathway, granulocyte and agranulocyte adhesion and diapedesis, acute phase response, and LXR/RXR activation). The alterations in the lung toxicity parameters and gene expression changes exhibited a dose-response to the MWCNT exposure.Conclusions: Taken together, the data provided insights into the molecular mechanisms underlying the pulmonary toxicity induced by inhalation exposure of rats to MWCNT-7. |
Biological effects of crude oil vapor. IV. Cardiovascular effects
Krajnak K , Russ KA , McKinney W , Waugh S , Zheng W , Kan H , Kashon ML , Cumpston J , Fedan JS . Toxicol Appl Pharmacol 2022 447 116071 Workers in the oil and gas extraction industry are at risk of inhaling volatile organic compounds. Epidemiological studies suggest oil vapor inhalation may affect cardiovascular health. Thus, in this hazard identification study we investigated the effects of inhalation of crude oil vapor (COV) on cardiovascular function. Male rats were exposed to air or COV (300ppm) for 6h (acute), or 6h/day 4 d/wk. 4 wk. (sub-chronic). The effects of COV inhalation were assessed 1, 28, and 90 d post-exposure. Acute exposure to COV resulted in a reduction in mean arterial and diastolic blood pressures 1 and 28 d after exposure, changes in nitrate-nitrite and H(2)O(2) levels, and in the expression of transcripts and proteins that regulate inflammation, vascular remodeling, and the synthesis of NO in the heart and kidneys. The sub-chronic exposure resulted in a reduced sensitivity to (1)-adrenoreceptor-mediated vasoconstriction in vitro 28 d post-exposure, and a reduction in oxidative stress in the heart. Sub-chronic COV exposure led to alterations in the expression of NO synthases and anti-oxidant enzymes, which regulate inflammation and oxidative stress in the heart and kidneys. There seems to be a balance between changes in the expression of transcripts associated with the generation of reactive oxygen species (ROS) and antioxidant enzymes. The ability of antioxidant enzymes to reduce or inhibit the effects of ROS may allow the cardiovascular system to adapt to acute COV exposures. However, sub-chronic exposures may result in longer-lasting negative health consequences on the cardiovascular system. |
Development of a thermal spray coating aerosol generator and inhalation exposure system
Afshari AA , McKinney W , Cumpston JL , Leonard HD , Cumpston JB , Meighan TG , Jackson M , Friend S , Kodali V , Lee EG , Antonini JM . Toxicol Rep 2022 9 126-135 Thermal spray coating involves spraying a product (oftentimes metal) that is melted by extremely high temperatures and then applied under pressure onto a surface. Large amounts of a complex metal aerosol (e.g., Fe, Cr, Ni, Zn) are formed during the process, presenting a potentially serious risk to the operator. Information about the health effects associated with exposure to these aerosols is lacking. Even less is known about the chemical and physical properties of these aerosols. The goal was to develop and test an automated thermal spray coating aerosol generator and inhalation exposure system that would simulate workplace exposures. An electric arc wire-thermal spray coating aerosol generator and exposure system was designed and separated into two areas: (1) an enclosed room where the spray coating occurs; (2) an exposure chamber with different measurement devices and controllers. The physicochemical properties of aerosols generated during electric arc wire-thermal spray coating using five different consumable wires were examined. The metal composition of each was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), including two stainless-steel wires [PMET720 (82 % Fe, 13 % Cr); PMET731(66 % Fe, 26 % Cr)], two Ni-based wires [PMET876 (55 % Ni, 17 % Cr); PMET885 (97 % Ni)], and one Zn-based wire [PMET540 (99 % Zn)]. The particles generated regardless of composition were poorly soluble, complex metal oxides and mostly arranged as chain-like agglomerates and similar in size distribution as determined by micro-orifice uniform deposit impactor (MOUDI) and electrical low-pressure impactor (ELPI). To allow for continuous, sequential spray coating during a 4-hr exposure period, a motor rotated the metal pipe to be coated in a circular and up-and-down direction. In a pilot animal study, male Sprague-Dawley rats were exposed to aerosols (25mg/m(3) 4h/d 9 d) generated from electric arc wire- thermal spray coating using the stainless-steel PMET720 consumable wire. The targeted exposure chamber concentration was achieved and maintained during a 4-hr period. At 1 d after exposure, lung injury and inflammation were significantly elevated in the group exposed to the thermal spray coating aerosol compared to the air control group. The system was designed and constructed for future animal exposure studies to generate continuous metal spray coating aerosols at a targeted concentration for extended periods of time without interruption. |
Lung toxicity and gene expression changes in response to whole-body inhalation exposure to cellulose nanocrystal in rats.
Joseph P , Umbright CM , Roberts JR , Cumpston JL , Orandle MS , McKinney WG , Sager TM . Inhal Toxicol 2021 33 (2) 1-15 OBJECTIVE: Human exposure to cellulose nanocrystal (CNC) is possible during the production and/or use of products containing CNC. The objectives of the current study were to determine the lung toxicity of CNC and the underlying molecular mechanisms of the toxicity. METHODS: Rats were exposed to air or CNC (20 mg/m(3), six hours/day, 14 d) by whole-body inhalation and lung toxicity and global gene expression profile were determined. RESULTS: Significant increases in lactate dehydrogenase activity, pro-inflammatory cytokine levels, phagocyte oxidant production, and macrophage and neutrophil counts were detected in the bronchoalveolar lavage cells or fluid from the CNC exposed rats. Mild lung histological changes, such as the accumulation of macrophages and neutrophils, were detected in the CNC exposed rats. Gene expression profiling by next generation sequencing identified 531 genes whose expressions were significantly different in the lungs of the CNC exposed rats, compared with the controls. Bioinformatic analysis of the lung gene expression data identified significant enrichment in several biological functions and canonical pathways including those related to inflammation (cellular movement, immune cell trafficking, inflammatory diseases and response, respiratory disease, complement system, acute phase response, leukocyte extravasation signaling, granulocyte and agranulocyte adhesion and diapedesis, IL-10 signaling, and phagosome formation and maturation) and oxidative stress (NRF2-mediated oxidative stress response, production of nitric oxide and reactive oxygen species in macrophages, and free radical scavenging). CONCLUSION: Our data demonstrated that inhalation exposure of rats to CNC resulted in lung toxicity mediated mainly through the induction of inflammation and oxidative stress. |
Biological effects of inhaled hydraulic fracturing sand dust. IX. Summary and significance
Anderson SE , Barger M , Batchelor TP , Bowers LN , Coyle J , Cumpston A , Cumpston JL , Cumpston JB , Dey RD , Dozier AK , Fedan JS , Friend S , Hubbs AF , Jackson M , Jefferson A , Joseph P , Kan H , Kashon ML , Knepp AK , Kodali V , Krajnak K , Leonard SS , Lin G , Long C , Lukomska E , Marrocco A , Marshall N , Mc Kinney W , Morris AM , Olgun NS , Park JH , Reynolds JS , Roberts JR , Russ KA , Sager TM , Shane H , Snawder JE , Sriram K , Thompson JA , Umbright CM , Waugh S , Zheng W . Toxicol Appl Pharmacol 2020 409 115330 An investigation into the potential toxicological effects of fracking sand dust (FSD), collected from unconventional gas drilling sites, has been undertaken, along with characterization of their chemical and biophysical properties. Using intratracheal instillation of nine FSDs in rats and a whole body 4-d inhalation model for one of the FSDs, i.e., FSD 8, and related in vivo and in vitro experiments, the effects of nine FSDs on the respiratory, cardiovascular and immune systems, brain and blood were reported in the preceding eight tandem papers. Here, a summary is given of the key observations made in the organ systems reported in the individual studies. The major finding that inhaled FSD 8 elicits responses in extra-pulmonary organ systems is unexpected, as is the observation that the pulmonary effects of inhaled FSD 8 are attenuated relative to forms of crystalline silica more frequently used in animal studies, i.e., MIN-U-SIL®. An attempt is made to understand the basis for the extra-pulmonary toxicity and comparatively attenuated pulmonary toxicity of FSD 8. |
Biological effects of inhaled hydraulic fracturing sand dust VII. Neuroinflammation and altered synaptic protein expression
Sriram K , Lin GX , Jefferson AM , McKinney W , Jackson MC , Cumpston A , Cumpston JL , Cumpston JB , Leonard HD , Kashon M , Fedan JS . Toxicol Appl Pharmacol 2020 409 115300 Hydraulic fracturing (fracking) is a process used to recover oil and gas from shale rock formation during unconventional drilling. Pressurized liquids containing water and sand (proppant) are used to fracture the oil- and natural gas-laden rock. The transportation and handling of proppant at well sites generate dust aerosols; thus, there is concern of worker exposure to such fracking sand dusts (FSD) by inhalation. FSD are generally composed of respirable crystalline silica and other minerals native to the geological source of the proppant material. Field investigations by NIOSH suggest that the levels of respirable crystalline silica at well sites can exceed the permissible exposure limits. Thus, from an occupational safety perspective, it is important to evaluate the potential toxicological effects of FSD, including any neurological risks. Here, we report that acute inhalation exposure of rats to one FSD, i.e., FSD 8, elicited neuroinflammation, altered the expression of blood brain barrier-related markers, and caused glial changes in the olfactory bulb, hippocampus and cerebellum. An intriguing observation was the persistent reduction of synaptophysin 1 and synaptotagmin 1 proteins in the cerebellum, indicative of synaptic disruption and/or injury. While our initial hazard identification studies suggest a likely neural risk, more research is necessary to determine if such molecular aberrations will progressively culminate in neuropathology/neurodegeneration leading to behavioral and/or functional deficits. |
Biological effects of inhaled hydraulic fracturing sand dust. IV. Pulmonary effects
Russ KA , Thompson JA , Reynolds JS , Mercer RR , Porter DW , McKinney W , Dey RD , Barger M , Cumpston J , Batchelor TP , Kashon ML , Kodali V , Jackson MC , Sriram K , Fedan JS . Toxicol Appl Pharmacol 2020 409 115284 Hydraulic fracturing creates fissures in subterranean rock to increase the flow and retrieval of natural gas. Sand ("proppant") in fracking fluid injected into the well bore maintains fissure patency. Fracking sand dust (FSD) is generated during manipulation of sand to prepare the fracking fluid. Containing respirable crystalline silica, FSD could pose hazards similar to those found in work sites where silica inhalation induces lung disease such as silicosis. This study was performed to evaluate the possible toxic effects following inhalation of a FSD (FSD 8) in the lung and airways. Rats were exposed (6 h/d × 4 d) to 10 or 30 mg/m(3) of a FSD, i.e., FSD 8, collected at a gas well, and measurements were performed 1, 7, 27 and, in one series of experiments, 90 d post-exposure. The following ventilatory and non-ventilatory parameters were measured in vivo and/or in vitro: 1) lung mechanics (respiratory system resistance and elastance, tissue damping, tissue elastance, Newtonian resistance and hysteresivity); 2) airway reactivity to inhaled methacholine (MCh); airway epithelium integrity (isolated, pefused trachea); airway efferent motor nerve activity (electric field stimulation in vitro); airway smooth muscle contractility; ion transport in intact and cultured epithelium; airway effector and sensory nerves; tracheal particle deposition; and neurogenic inflammation/vascular permeability. FSD 8 was without large effect on most parameters, and was not pro-inflammatory, as judged histologically and in cultured epithelial cells, but increased reactivity to inhaled MCh at some post-exposure time points and affected Na(+) transport in airway epithelial cells. |
Biological effects of inhaled hydraulic fracturing sand dust. VI. Cardiovascular effects
Krajnak K , Kan H , Russ KA , McKinney W , Waugh S , Zheng W , Kashon ML , Johnson C , Cumpston J , Fedan JS . Toxicol Appl Pharmacol 2020 406 115242 Hydraulic fracturing is used to access oil and natural gas reserves. This process involves the high-pressure injection of fluid to fracture shale. Fracking fluid contains approximately 95% water, chemicals and 4.5% fracking sand. Workers may be exposed to fracking sand dust (FSD) during the manipulation of the sand, and negative health consequences could occur if FSD is inhaled. In the absence of any information about its potential toxicity, a comprehensive rat animal model study (see Fedan, J.S., Toxicol Appl Pharmacol. 000, 000-000, 2020) was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems. The goal of this study was to assess the effects of inhalation of one FSD, i.e., FSD 8, on factors and tissues that affect cardiovascular function. Male rats were exposed to 10 or 30 mg/m(3) FSD (6 h/d for 4 d) by whole body inhalation, with measurements made 1, 7 or 27 d post-exposure. One day following exposure to 10 mg/m(3) FSD the sensitivity to phenylephrine-induced vasoconstriction in tail arteries in vitro was increased. FSD exposure at both doses resulted in decreases in heart rate (HR), HR variability, and blood pressure in vivo. FSD induced changes in hydrogen peroxide concentrations and transcript levels for pro-inflammatory factors in heart tissues. In kidney, expression of proteins indicative of injury and remodeling was reduced after FSD exposure. When analyzed using regression analysis, changes in proteins involved in repair and remodeling were correlated. Thus, it appears that inhalation of FSD does have some prolonged effects on cardiovascular, and, possibly, renal function. The findings also provide information regarding potential mechanisms that may lead to these changes, and biomarkers that could be examined to monitor physiological changes that could be indicative of impending cardiovascular dysfunction. |
Flavorings-related lung disease: A brief review and new mechanistic data
Hubbs AF , Kreiss K , Cummings KJ , Fluharty KL , O'Connell R , Cole A , Dodd TM , Clingerman SM , Flesher JR , Lee R , Pagel S , Battelli LA , Cumpston A , Jackson M , Kashon M , Orandle MS , Fedan JS , Sriram K . Toxicol Pathol 2019 47 (8) 192623319879906 Flavorings-related lung disease is a potentially disabling and sometimes fatal lung disease of workers making or using flavorings. First identified almost 20 years ago in microwave popcorn workers exposed to butter-flavoring vapors, flavorings-related lung disease remains a concern today. In some cases, workers develop bronchiolitis obliterans, a severe form of fixed airways disease. Affected workers have been reported in microwave popcorn, flavorings, and coffee production workplaces. Volatile alpha-dicarbonyl compounds, particularly diacetyl (2,3-butanedione) and 2,3-pentanedione, are implicated in the etiology. Published studies on diacetyl and 2,3-pentanedione document their ability to cause airway epithelial necrosis, damage biological molecules, and perturb protein homeostasis. With chronic exposure in rats, they produce airway fibrosis resembling bronchiolitis obliterans. To add to this knowledge, we recently evaluated airway toxicity of the 3-carbon alpha-dicarbonyl compound, methylglyoxal. Methylglyoxal inhalation causes epithelial necrosis at even lower concentrations than diacetyl. In addition, we investigated airway toxicity of mixtures of diacetyl, acetoin, and acetic acid, common volatiles in butter flavoring. At ratios comparable to workplace scenarios, the mixtures or diacetyl alone, but not acetic acid or acetoin, cause airway epithelial necrosis. These new findings add to existing data to implicate alpha-dicarbonyl compounds in airway injury and flavorings-related lung disease. |
Inhalation of iron-abundant gas metal arc welding-mild steel fume promotes lung tumors in mice
Falcone LM , Erdely A , Kodali V , Salmen R , Battelli LA , Dodd T , McKinney W , Stone S , Donlin M , Leonard HD , Cumpston JL , Cumpston JB , Andrews RN , Kashon ML , Antonini JM , Zeidler-Erdely PC . Toxicology 2018 409 24-32 Welding fumes were reclassified as a Group 1 carcinogen by the International Agency for Research on Cancer in 2017. Gas metal arc welding (GMAW) is a process widely used in industry. Fume generated from GMAW-mild steel (MS) is abundant in iron with some manganese, while GMAW-stainless steel (SS) fume also contains significant amounts of chromium and nickel, known carcinogenic metals. It has been shown that exposure to GMAW-SS fume in A/J mice promotes lung tumors. The objective was to determine if GMAW-MS fume, which lacks known carcinogenic metals, also promotes lung tumors in mice. Male A/J mice received a single intraperitoneal injection of corn oil or the initiator 3-methylcholanthrene (MCA; 10 mug/g) and, one week later, were exposed by whole-body inhalation to GMAW-MS aerosols for 4 hours/day x 4 days/week x 8 weeks at a mean concentration of 34.5 mg/m(3). Lung nodules were enumerated by gross examination at 30 weeks post-initiation. GMAW-MS fume significantly increased lung tumor multiplicity in mice initiated with MCA (21.86 +/- 1.50) compared to MCA/air-exposed mice (8.34 +/- 0.59). Histopathological analysis confirmed these findings and also revealed an absence of inflammation. Bronchoalveolar lavage analysis also indicated a lack of lung inflammation and toxicity after short-term inhalation exposure to GMAW-MS fume. In conclusion, this study demonstrates that inhalation of GMAW-MS fume promotes lung tumors in vivo and aligns with epidemiologic evidence that shows MS welders, despite less exposure to carcinogenic metals, are at an increased risk for lung cancer. |
Collaborative public health investigation of clenbuterol-adulterated heroin outbreak - Richmond, Virginia, March-April 2015
Gleason B , West A , Avula D , Utah O , Vogt M , Cumpston K , Kelly M , Brasler P , Wyatt S , Forlano L . J Public Health Manag Pract 2017 23 (2) e8-e11 CONTEXT: In March 2015, the Virginia Department of Health (VDH) was alerted by the Virginia Poison Center of a 6-patient cluster treated for severe clinical presentations after using heroin. Patients' symptoms were atypical for heroin use, and concern existed that patients were exposed to heroin that had been adulterated with or replaced by another substance. OBJECTIVE: To understand the extent and characterization of the outbreak and implement response measures to prevent further cases. The purpose of this report is to highlight the collaborative nature of a public health investigation among a diverse group of stakeholders. DESIGN: Active surveillance and retrospective case finding. SETTING: Richmond metro area community and hospitals. PARTICIPANTS: Regional poison centers, the Division of Consolidated Laboratory Services, the Department of Behavioral Health and Developmental Services, community partners, local law enforcement, and multiple VDH divisions. INTERVENTION: Outbreak investigation, communication to public health professionals, clinicians, and the community, and liaising with the local law enforcement. MAIN OUTCOME MEASURES: Outbreak control. RESULTS: Laboratory confirmation of clenbuterol in clinical specimens implicated it as the heroin adulterant. Thirteen patients met clinical and epidemiologic criteria for exposure to clenbuterol-adulterated heroin. All patients were associated with a localized area within Richmond, and patient interviews elucidated heroin supplier information. VDH collaborated with local law enforcement agents who investigated and arrested the supplier, leading to cessation of the outbreak. CONCLUSION: This outbreak highlights the value of policies and practices that support an integrated outbreak response among public health practitioners, poison center staff, laboratorians, clinicians, law enforcement agents, community groups, and other agencies. Collaboration enabled implementation of effective control measures-including those outside the purview of the health department-and should be standard practice in future outbreaks involving illicit substances. |
Inhalation of gas metal arc-stainless steel welding fume promotes lung tumorigenesis in A/J mice
Falcone LM , Erdely A , Meighan TG , Battelli LA , Salmen R , McKinney W , Stone S , Cumpston A , Cumpston J , Andrews RN , Kashon M , Antonini JM , Zeidler-Erdely PC . Arch Toxicol 2017 91 (8) 2953-2962 Epidemiologic studies suggest an increased risk of lung cancer with exposure to welding fumes, but controlled animal studies are needed to support this association. Oropharyngeal aspiration of collected "aged" gas metal arc-stainless steel (GMA-SS) welding fume has been shown by our laboratory to promote lung tumor formation in vivo using a two-stage initiation-promotion model. Our objective in this study was to determine whether inhalation of freshly generated GMA-SS welding fume also acts as a lung tumor promoter in lung tumor-susceptible mice. Male A/J mice received intraperitoneal (IP) injections of corn oil or the chemical initiator 3-methylcholanthrene (MCA; 10 microg/g) and 1 week later were exposed by whole-body inhalation to air or GMA-SS welding aerosols for 4 h/d x 4 d/w x 9 w at a target concentration of 40 mg/m3. Lung nodules were enumerated at 30 weeks post-initiation. GMA-SS fume significantly promoted lung tumor multiplicity in A/J mice initiated with MCA (16.11 +/- 1.18) compared to MCA/air-exposed mice (7.93 +/- 0.82). Histopathological analysis found that the increased number of lung nodules in the MCA/GMA-SS group were hyperplasias and adenomas, which was consistent with developing lung tumorigenesis. Metal deposition analysis in the lung revealed a lower deposited dose, approximately fivefold compared to our previous aspiration study, still elicited a significant lung tumorigenic response. In conclusion, this study demonstrates that inhaling GMA-SS welding fume promotes lung tumorigenesis in vivo which is consistent with the epidemiologic studies that show welders may be at an increased risk for lung cancer. |
Accumulation of ubiquitin and sequestosome-1 implicate protein damage in diacetyl-induced cytotoxicity
Hubbs AF , Fluharty KL , Edwards RJ , Barnabei JL , Grantham JT , Palmer SM , Kelly F , Sargent LM , Reynolds SH , Mercer RR , Goravanahally MP , Kashon ML , Honaker JC , Jackson MC , Cumpston AM , Goldsmith WT , McKinney W , Fedan JS , Battelli LA , Munro T , Bucklew-Moyers W , McKinstry K , Schwegler-Berry D , Friend S , Knepp AK , Smith SL , Sriram K . Am J Pathol 2016 186 (11) 2887-2908 Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive alpha-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this alpha-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the alpha-dicarbonyl group in the protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal markers lysosomal-associated membrane protein 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease. |
Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray
Chen BT , Schwegler-Berry D , Cumpston A , Cumpston J , Friend S , Stone S , Keane M . J Occup Environ Hyg 2016 13 (7) 0 Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test aerosols might cause artifacts by counting "phantom particles." Overall, the information obtained from this study will help understand the limitations of the SMPS in measuring nanoparticles so that one can adequately interpret the results for risk assessments and exposure prevention in an occupational or ambient environment. |
Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes
Sriram K , Lin GX , Jefferson AM , Stone S , Afshari A , Keane MJ , McKinney W , Jackson M , Chen BT , Schwegler-Berry D , Cumpston A , Cumpston JL , Roberts JR , Frazer DG , Antonini JM . Toxicology 2014 328 168-78 Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40mg/m3; 3h/dayx5 d/weekx2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25V; RVSS) or high voltage (30V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. |
Size distribution and estimated respiratory deposition of total chromium, hexavalent chromium, manganese, and nickel in gas metal arc welding fume aerosols
Cena LG , Chisholm WP , Keane MJ , Cumpston A , Chen BT . Aerosol Sci Technol 2014 48 (12) 1254-1263 A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 ?m. Total Cr and Ni presented an additional fraction <0.03 ?m. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio (p-value = 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ?25%. The sites of principal deposition were the head airways (7?10%) and the alveolar region (11?14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%). |
Neurotoxicity following acute inhalation of aerosols generated during resistance spot weld-bonding of carbon steel
Sriram K , Jefferson AM , Lin GX , Afshari A , Zeidler-Erdely PC , Meighan TG , McKinney W , Jackson M , Cumpston A , Cumpston JL , Leonard HD , Frazer DG , Antonini JM . Inhal Toxicol 2014 26 (12) 720-32 Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinson's disease (PD). Some applications in manufacturing industry employ a variant welding technology known as "weld-bonding" that utilizes resistance spot welding, in combination with adhesives, for metal-to-metal welding. The presence of adhesives raises additional concerns about worker exposure to potentially toxic components like Methyl Methacrylate, Bisphenol A and volatile organic compounds (VOCs). Here, we investigated the potential neurotoxicological effects of exposure to welding aerosols generated during weld-bonding. Male Sprague-Dawley rats were exposed (25 mg/m(3) targeted concentration; 4 h/day x 13 days) by whole-body inhalation to filtered air or aerosols generated by either weld-bonding with sparking (high metal, low VOCs; HM) or without sparking (low metal; high VOCs; LM). Fumes generated under these conditions exhibited complex aerosols that contained both metal oxide particulates and VOCs. LM aerosols contained a greater fraction of VOCs than HM, which comprised largely metal particulates of ultrafine morphology. Short-term exposure to LM aerosols caused distinct changes in the levels of the neurotransmitters, dopamine (DA) and serotonin (5-HT), in various brain areas examined. LM aerosols also specifically decreased the mRNA expression of the olfactory marker protein (Omp) and tyrosine hydroxylase (Th) in the olfactory bulb. Consistent with the decrease in Th, LM also reduced the expression of dopamine transporter (Slc6a3; Dat), as well as, dopamine D2 receptor (Drd2) in the olfactory bulb. In contrast, HM aerosols induced the expression of Th and dopamine D5 receptor (Drd5) mRNAs, elicited neuroinflammation and blood-brain barrier-related changes in the olfactory bulb, but did not alter the expression of Omp. Our findings divulge the differential effects of LM and HM aerosols in the brain and suggest that exposure to weld-bonding aerosols can potentially elicit neurotoxicity following a short-term exposure. However, further investigations are warranted to determine if the aerosols generated by weld-bonding can contribute to persistent long-term neurological deficits and/or neurodegeneration. |
Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system
Afshari A , Zeidler-Erdely PC , McKinney W , Chen BT , Jackson M , Schwegler-Berry D , Friend S , Cumpston A , Cumpston JL , Donny Leonard H , Meighan TG , Frazer DG , Antonini JM . Inhal Toxicol 2014 26 (12) 1-12 Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes. |
The role of nodose ganglia in the regulation of cardiovascular function following pulmonary exposure to ultrafine titanium dioxide
Kan H , Wu Z , Lin YC , Chen TH , Cumpston JL , Kashon ML , Leonard S , Munson AE , Castranova V . Nanotoxicology 2014 8 (4) 447-54 The inhalation of nanosized air pollutant particles is a recognised risk factor for cardiovascular disease; however, the link between occupational exposure to engineered nanoparticles and adverse cardiovascular events remains unclear. In the present study, the authors demonstrated that pulmonary exposure of rats to ultrafine titanium dioxide (UFTiO2) significantly increased heart rate and depressed diastolic function of the heart in response to isoproterenol. Moreover, pulmonary inhalation of UFTiO2 elevated mean and diastolic blood pressure in response to norepinephrine. Pretreatment of the rats ip with the transient receptor potential (TRP) channel blocker ruthenium red inhibited substance P synthesis in nodose ganglia and associated functional and biological changes in the cardiovascular system. In conclusion, the effects of pulmonary inhalation of UFTiO2 on cardiovascular function are most likely triggered by a lung-nodose ganglia-regulated pathway via the activation of TRP channels in the lung. |
Popcorn flavoring effects on reactivity of rat airways in vivo and in vitro
Zaccone EJ , Thompson JA , Ponnoth DS , Cumpston AM , Goldsmith WT , Jackson MC , Kashon ML , Frazer DG , Hubbs AF , Shimko MJ , Fedan JS . J Toxicol Environ Health A 2013 76 (11) 669-89 Popcorn workers' lung is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100-360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism. |
Diacetyl increases sensory innervation and substance P production in rat trachea
Goravanahally MP , Hubbs AF , Fedan JS , Kashon ML , Battelli LA , Mercer RR , Goldsmith WT , Jackson MC , Cumpston A , Frazer DG , Dey RD . Toxicol Pathol 2013 42 (3) 582-90 Inhalation of diacetyl, a butter flavoring, causes airway responses potentially mediated by sensory nerves. This study examines diacetyl-induced changes in sensory nerves of tracheal epithelium. Rats (n = 6/group) inhaled 0-, 25-, 249-, or 346-ppm diacetyl for 6 hr. Tracheas and vagal ganglia were removed 1-day postexposure and labeled for substance P (SP) or protein gene product 9.5 (PGP9.5). Vagal ganglia neurons projecting to airway epithelium were identified by axonal transport of fluorescent microspheres intratracheally instilled 14 days before diacetyl inhalation. End points were SP and PGP9.5 nerve fiber density (NFD) in tracheal epithelium and SP-positive neurons projecting to the trachea. PGP9.5-immunoreactive NFD decreased in foci with denuded epithelium, suggesting loss of airway sensory innervation. However, in the intact epithelium adjacent to denuded foci, SP-immunoreactive NFD increased from 0.01 +/- 0.002 in controls to 0.05 +/- 0.01 after exposure to 346-ppm diacetyl. In vagal ganglia, SP-positive airway neurons increased from 3.3 +/- 3.0% in controls to 25.5 +/- 6.6% after inhaling 346-ppm diacetyl. Thus, diacetyl inhalation increases SP levels in sensory nerves of airway epithelium. Because SP release in airways promotes inflammation and activation of sensory nerves mediates reflexes, neural changes may contribute to flavorings-related lung disease pathogenesis. |
Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study
Stapleton P , Minarchick V , Cumpston A , McKinney W , Chen B , Sager T , Frazer D , Mercer R , Scabilloni J , Andrew M , Castranova V , Nurkiewicz T . Int J Mol Sci 2012 13 (11) 13781-13803 Engineered nanomaterials have been developed for widespread applications due to many highly unique and desirable characteristics. The purpose of this study was to assess pulmonary inflammation and subepicardial arteriolar reactivity in response to multi-walled carbon nanotube (MWCNT) inhalation and evaluate the time course of vascular alterations. Rats were exposed to MWCNT aerosols producing pulmonary deposition. Pulmonary inflammation via bronchoalveolar lavage and MWCNT translocation from the lungs to systemic organs was evident 24 h post-inhalation. Coronary arterioles were evaluated 24-168 h post-exposure to determine microvascular response to changes in transmural pressure, endothelium-dependent and -independent reactivity. Myogenic responsiveness, vascular smooth muscle reactivity to nitric oxide, and a-adrenergic responses all remained intact. However, a severe impact on endothelium-dependent dilation was observed within 24 h after MWCNT inhalation, a condition which improved, but did not fully return to control after 168 h. In conclusion, results indicate that MWCNT inhalation not only leads to pulmonary inflammation and cytotoxicity at low lung burdens, but also a low level of particle translocation to systemic organs. MWCNT inhalation also leads to impairments of endothelium-dependent dilation in the coronary microcirculation within 24 h, a condition which does not fully dissipate within 168 h. The innovations within the field of nanotechnology, while exciting and novel, can only reach their full potential if toxicity is first properly assessed. |
Multi-walled carbon nanotubes: sampling criteria and aerosol characterization
Chen BT , Schwegler-Berry D , McKinney W , Stone S , Cumpston JL , Friend S , Porter DW , Castranova V , Frazer DG . Inhal Toxicol 2012 24 (12) 798-820 This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT's, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008-0.10 particles per microm(2) filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT's, resuspended at a concentration of 10 mg/m(3), contained 2.7 x 10(4) particles/cm(3). Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 x 10(5) nanotubes/cm(3). In addition, fibrous particles within the aerosol had a count median length of 3.04 microm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 microm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 microm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm(3), and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol. |
Selecting processes to minimize hexavalent chromium from stainless steel welding
Keane M , Siert A , Stone S , Chen B , Slaven J , Cumpston A , Antonini J . Weld J 2012 91 (9) 241S-246S Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr6+) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr6+ fractions were measured in the fumes; fume generation rates, Cr6+ generation nates, and Cr6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr6+ ranged from 69 to 7800 mcg/min, and Cr6+ generation rates per unit of wire ranged from 1 to 270 mcg/g. The results of field study were similar to the findings in the laboratory. The Cr6+ (ppm) in the fume did not necessarily correlate with the Cr6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). CONCLUSION: The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use. |
Respiratory and olfactory cytotoxicity of inhaled 2,3-pentanedione in Sprague-Dawley rats
Hubbs AF , Cumpston AM , Goldsmith WT , Battelli LA , Kashon ML , Jackson MC , Frazer DG , Fedan JS , Goravanahally MP , Castranova V , Kreiss K , Willard PA , Friend S , Schwegler-Berry D , Fluharty KL , Sriram K . Am J Pathol 2012 181 (3) 829-44 Flavorings-related lung disease is a potentially disabling disease of food industry workers associated with exposure to the alpha-diketone butter flavoring, diacetyl (2,3-butanedione). To investigate the hypothesis that another alpha-diketone flavoring, 2,3-pentanedione, would cause airway damage, rats that inhaled air, 2,3-pentanedione (112, 241, 318, or 354 ppm), or diacetyl (240 ppm) for 6 hours were sacrificed the following day. Rats inhaling 2,3-pentanedione developed necrotizing rhinitis, tracheitis, and bronchitis comparable to diacetyl-induced injury. To investigate delayed toxicity, additional rats inhaled 318 (range, 317.9-318.9) ppm 2,3-pentanedione for 6 hours and were sacrificed 0 to 2, 12 to 14, or 18 to 20 hours after exposure. Respiratory epithelial injury in the upper nose involved both apoptosis and necrosis, which progressed through 12 to 14 hours after exposure. Olfactory neuroepithelial injury included loss of olfactory neurons that showed reduced expression of the 2,3-pentanedione-metabolizing enzyme, dicarbonyl/L-xylulose reductase, relative to sustentacular cells. Caspase 3 activation occasionally involved olfactory nerve bundles that synapse in the olfactory bulb (OB). An additional group of rats inhaling 270 ppm 2,3-pentanedione for 6 hours 41 minutes showed increased expression of IL-6 and nitric oxide synthase-2 and decreased expression of vascular endothelial growth factor A in the OB, striatum, hippocampus, and cerebellum using real-time PCR. Claudin-1 expression increased in the OB and striatum. We conclude that 2,3-pentanedione is a respiratory hazard that can also alter gene expression in the brain. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure