Last data update: Mar 17, 2025. (Total: 48910 publications since 2009)
Records 1-27 (of 27 Records) |
Query Trace: Christie A[original query] |
---|
The rise of mpox in a post-smallpox world
McQuiston JH , McCollum A , Christie A , Torres F , Mermin J , Jernigan DB , Hutson CL . Emerg Infect Dis 2025 31 (1) 27-31 ![]() Reports of mpox are rising in Africa where the disease is endemic and in new countries where the disease has not been previously seen. The 2022 global outbreak of clade II mpox and an ongoing outbreak of the more lethal clade I mpox highlight the pandemic potential for monkeypox virus. Waning population immunity after the cessation of routine immunization for smallpox plays a key role in the changing epidemiologic patterns of mpox. Sustained human-to-human transmission of mpox is occurring widely in the context of insufficient population immunity, fueling genetic mutations that affect the accuracy of some diagnostic tests and that could lead to changing virulence. Additional research should address complex challenges for control of mpox, including improved diagnostics and medical countermeasures. The availability of vaccines should be expanded not only for outbreak response but also for broader routine use for persons in mpox-endemic countries. |
U.S. preparedness and response to increasing clade I mpox cases in the Democratic Republic of the Congo - United States, 2024
McQuiston JH , Luce R , Kazadi DM , Bwangandu CN , Mbala-Kingebeni P , Anderson M , Prasher JM , Williams IT , Phan A , Shelus V , Bratcher A , Soke GN , Fonjungo PN , Kabamba J , McCollum AM , Perry R , Rao AK , Doty J , Christensen B , Fuller JA , Baird N , Chaitram J , Brown CK , Kirby AE , Fitter D , Folster JM , Dualeh M , Hartman R , Bart SM , Hughes CM , Nakazawa Y , Sims E , Christie A , Hutson CL . MMWR Morb Mortal Wkly Rep 2024 73 (19) 435-440 ![]() ![]() Clade I monkeypox virus (MPXV), which can cause severe illness in more people than clade II MPXVs, is endemic in the Democratic Republic of the Congo (DRC), but the country has experienced an increase in suspected cases during 2023-2024. In light of the 2022 global outbreak of clade II mpox, the increase in suspected clade I cases in DRC raises concerns that the virus could spread to other countries and underscores the importance of coordinated, urgent global action to support DRC's efforts to contain the virus. To date, no cases of clade I mpox have been detected outside of countries in Central Africa where the virus is endemic. CDC and other partners are working to support DRC's response. In addition, CDC is enhancing U.S. preparedness by raising awareness, strengthening surveillance, expanding diagnostic testing capacity for clade I MPXV, ensuring appropriate specimen handling and waste management, emphasizing the importance of appropriate medical treatment, and communicating guidance on the recommended contact tracing, containment, behavior modification, and vaccination strategies. |
COVID-19 clinical characteristics and outcomes in children and adolescents hospitalized at the university hospital of the west indies, Jamaica in 2020-2021 (preprint)
Berry CLS , Melbourne-Chambers RH , Harrison AN , Anzinger JJ , Gordon-Johnson KAM , Deyde VM , Christie CDC . medRxiv 2021 28 Background and Objectives: Multisystem inflammatory syndrome of children (MISC) carries a high attributable morbidity. We describe children aged <16 years hospitalised with COVID-19 and/or MISC, April 2020 to June 2021. Method(s): All were tested for SARS-CoV-2, infectious disease consultations performed, modified CDC criteria for MISC applied, charts reviewed and data analyzed. Result(s): Among 79 consecutive children with SARS-CoV-2, 41(52%) were hospitalised; with median age 10.5 years; Afro-Caribbean ethnicity 40(98%); males 21(51%); SARS-CoV-2 RT-PCR positivity 26 (63%), IgG/IgM positivity 7(17%), community exposures 8 (20%). MISC-cases 18 (44%) vs. non-MISC 23(56%) had fever (94% vs. 30%; p<0.01), fatigue/lethargy (41% vs. 4%; p=0.004), rhinorrhoea (28% vs. 4%; p=0.035), elevated neutrophils (100% vs. 87%; p=0.024) and >=4 abnormal inflammatory biomarkers 13 (72%). MISC-cases had >2 organ/systems (100% vs. 35%; p<0.01), including gastrointestinal (72% vs. 17%; p<0.01), haematological/coagulopathic (67% vs. 4%; p<0.01); dermatologic (56% vs. 0%; p<0.01), cardiac (17% vs. 0%; p=0.042) with Kawasaki Syndrome (44% vs. 0%; p<0.01) and pleural effusions (17% vs. 0%; p=0.042). MISC-cases were treated with intravenous immune gammaglobulin (14, 78%), aspirin (12, 68%), steroids (9, 50%) and intensive care with non-invasive ventilation (2, 11%). One (6%) with pre-morbid illness died, the remainder recovered. Conclusion(s): MISC was treated successfully with intravenous gammaglobulin, steroids and/or aspirin in 94% before cardiopulmonary decompensation, or need for inotropes, vasopressors, or invasive ventilation. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license. |
The CDC domestic mpox response - United States, 2022-2023
McQuiston JH , Braden CR , Bowen MD , McCollum AM , McDonald R , Carnes N , Carter RJ , Christie A , Doty JB , Ellington S , Fehrenbach SN , Gundlapalli AV , Hutson CL , Kachur RE , Maitland A , Pearson CM , Prejean J , Quilter LAS , Rao AK , Yu Y , Mermin J . MMWR Morb Mortal Wkly Rep 2023 72 (20) 547-552 Monkeypox (mpox) is a serious viral zoonosis endemic in west and central Africa. An unprecedented global outbreak was first detected in May 2022. CDC activated its emergency outbreak response on May 23, 2022, and the outbreak was declared a Public Health Emergency of International Concern on July 23, 2022, by the World Health Organization (WHO),* and a U.S. Public Health Emergency on August 4, 2022, by the U.S. Department of Health and Human Services.(†) A U.S. government response was initiated, and CDC coordinated activities with the White House, the U.S. Department of Health and Human Services, and many other federal, state, and local partners. CDC quickly adapted surveillance systems, diagnostic tests, vaccines, therapeutics, grants, and communication systems originally developed for U.S. smallpox preparedness and other infectious diseases to fit the unique needs of the outbreak. In 1 year, more than 30,000 U.S. mpox cases were reported, more than 140,000 specimens were tested, >1.2 million doses of vaccine were administered, and more than 6,900 patients were treated with tecovirimat, an antiviral medication with activity against orthopoxviruses such as Variola virus and Monkeypox virus. Non-Hispanic Black (Black) and Hispanic or Latino (Hispanic) persons represented 33% and 31% of mpox cases, respectively; 87% of 42 fatal cases occurred in Black persons. Sexual contact among gay, bisexual, and other men who have sex with men (MSM) was rapidly identified as the primary risk for infection, resulting in profound changes in our scientific understanding of mpox clinical presentation, pathogenesis, and transmission dynamics. This report provides an overview of the first year of the response to the U.S. mpox outbreak by CDC, reviews lessons learned to improve response and future readiness, and previews continued mpox response and prevention activities as local viral transmission continues in multiple U.S. jurisdictions (Figure). |
Hospitalized children with SARS-CoV-2 infection and MIS-C in Jamaica: A dive into the first 15 months of the novel pandemic
Berry CS , Melbourne-Chambers RH , Harrison AN , Anzinger JJ , Gordon-Johnson KM , Deyde VM , Christie CDC . Front Pediatr 2022 10 904788 OBJECTIVES: COVID-19 in children was initially mild until the emergence of Multisystem Inflammatory Syndrome in Children (MIS-C). We describe pediatric COVID-19 in a developing country within the Caribbean. METHODS: Jamaican children who were hospitalized with SARS-CoV-2 infection, in one Caribbean regional academic referral center from April 2020 through June 2021 were included. Prospective surveillance and pediatric infectious disease consultations were performed using the CDC's MIS-C case definition. Data were extracted from patients' hospital charts using WHO's reporting form, entered into the RedCap database, and SPSS 28 was used for analysis. MIS-C and non-MIS-C patients were compared using independent sample t-tests for continuous variables and Fisher's exact test for categorical variables, p values < 0.05 were statistically significant. RESULTS: Seventy-nine children with COVID-19 with/without MIS-C presented to UHWI. Thirty-eight (48%) were mild ambulatory cases. Hospitalizations occurred in 41 (52%) children, with median age of 10 ½ years. SARS-CoV-2 RT-PCR positivity was present in 26 (63%), Immunoglobulin M, or Immunoglobulin G (IgM/IgG) positivity in 8 (20%), with community exposures in 7 (17%). Eighteen (44%) MIS-C positive patients were significantly more likely than 23 MIS-C negative patients (56%) to present with fever (94% vs. 30%; p < 0.001), fatigue/lethargy (41% vs. 4%; p = 0.006), lymphadenopathy (33% vs. 0%; p = 0.003), elevated neutrophils (100% vs. 87%; p = 0.024), and ESR (78% vs. 9%; p = 0.002). Involvement of > two organ systems occurred more frequently in MIS-C positive cases (100% vs. 34%; p < 0.001), including gastrointestinal (72% vs. 17%; p < 0.001); vomiting/nausea (39% vs. 9%; p < 0.028); hematological/coagulopathic (67% vs. 4%; p < 0.001); dermatologic involvement (56% vs. 0%; p < 0.001); and mucositis (28% vs. 0%; p = 0.001). MIS-C patients had Kawasaki syndrome (44%), cardiac involvement (17%), and pleural effusions (17%). MIS-C patients had >4 abnormal inflammatory biomarkers including D-dimers, C-reactive protein, ESR, ferritin, troponins, lactate dehydrogenase, neutrophils, platelets, lymphocytes, and albumen (72%). MIS-C patients were treated with intravenous immune gamma globulin (78%), aspirin (68%), steroids (50%), and non-invasive ventilation (11%). None required inotropes/vasopressors. MIS-C negative patients received standard care. All recovered except one child who was receiving renal replacement therapy and developed myocardial complications. CONCLUSIONS: In this first report of COVID-19 from the Caribbean, children and adolescents with and without MIS-C were not very severe. Critical care interventions were minimal and outcomes were excellent. |
Epidemiologic features of the monkeypox outbreak and the public health response - United States, May 17-October 6, 2022
Kava CM , Rohraff DM , Wallace B , Mendoza-Alonzo JL , Currie DW , Munsey AE , Roth NM , Bryant-Genevier J , Kennedy JL , Weller DL , Christie A , McQuiston JH , Hicks P , Strid P , Sims E , Negron ME , Iqbal K , Ellington S , Smith DK . MMWR Morb Mortal Wkly Rep 2022 71 (45) 1449-1456 On May 17, 2022, the Massachusetts Department of Health announced the first suspected case of monkeypox associated with the global outbreak in a U.S. resident. On May 23, 2022, CDC launched an emergency response (1,2). CDC's emergency response focused on surveillance, laboratory testing, medical countermeasures, and education. Medical countermeasures included rollout of a national JYNNEOS vaccination strategy, Food and Drug Administration (FDA) issuance of an emergency use authorization to allow for intradermal administration of JYNNEOS, and use of tecovirimat for patients with, or at risk for, severe monkeypox. During May 17-October 6, 2022, a total of 26,384 probable and confirmed* U.S. monkeypox cases were reported to CDC. Daily case counts peaked during mid-to-late August. Among 25,001 of 25,569 (98%) cases in adults with information on gender identity,(†) 23,683 (95%) occurred in cisgender men. Among 13,997 cisgender men with information on recent sexual or close intimate contact,(§) 10,440 (75%) reported male-to-male sexual contact (MMSC) ≤21 days preceding symptom onset. Among 21,211 (80%) cases in persons with information on race and ethnicity,(¶) 6,879 (32%), 6,628 (31%), and 6,330 (30%) occurred in non-Hispanic Black or African American (Black), Hispanic or Latino (Hispanic), and non-Hispanic White (White) persons, respectively. Among 5,017 (20%) cases in adults with information on HIV infection status, 2,876 (57%) had HIV infection. Prevention efforts, including vaccination, should be prioritized among persons at highest risk within groups most affected by the monkeypox outbreak, including gay, bisexual, and other men who have sex with men (MSM); transgender, nonbinary, and gender-diverse persons; racial and ethnic minority groups; and persons who are immunocompromised, including persons with advanced HIV infection or newly diagnosed HIV infection. |
Epidemiologic and clinical characteristics of Monkeypox cases - United States, May 17-July 22, 2022
Philpott D , Hughes CM , Alroy KA , Kerins JL , Pavlick J , Asbel L , Crawley A , Newman AP , Spencer H , Feldpausch A , Cogswell K , Davis KR , Chen J , Henderson T , Murphy K , Barnes M , Hopkins B , Fill MA , Mangla AT , Perella D , Barnes A , Hughes S , Griffith J , Berns AL , Milroy L , Blake H , Sievers MM , Marzan-Rodriguez M , Tori M , Black SR , Kopping E , Ruberto I , Maxted A , Sharma A , Tarter K , Jones SA , White B , Chatelain R , Russo M , Gillani S , Bornstein E , White SL , Johnson SA , Ortega E , Saathoff-Huber L , Syed A , Wills A , Anderson BJ , Oster AM , Christie A , McQuiston J , McCollum AM , Rao AK , Negrón ME . MMWR Morb Mortal Wkly Rep 2022 71 (32) 1018-1022 Monkeypox, a zoonotic infection caused by an orthopoxvirus, is endemic in parts of Africa. On August 4, 2022, the U.S. Department of Health and Human Services declared the U.S. monkeypox outbreak, which began on May 17, to be a public health emergency (1,2). After detection of the first U.S. monkeypox case), CDC and health departments implemented enhanced monkeypox case detection and reporting. Among 2,891 cases reported in the United States through July 22 by 43 states, Puerto Rico, and the District of Columbia (DC), CDC received case report forms for 1,195 (41%) cases by July 27. Among these, 99% of cases were among men; among men with available information, 94% reported male-to-male sexual or close intimate contact during the 3 weeks before symptom onset. Among the 88% of cases with available data, 41% were among non-Hispanic White (White) persons, 28% among Hispanic or Latino (Hispanic) persons, and 26% among non-Hispanic Black or African American (Black) persons. Forty-two percent of persons with monkeypox with available data did not report the typical prodrome as their first symptom, and 46% reported one or more genital lesions during their illness; 41% had HIV infection. Data suggest that widespread community transmission of monkeypox has disproportionately affected gay, bisexual, and other men who have sex with men and racial and ethnic minority groups. Compared with historical reports of monkeypox in areas with endemic disease, currently reported outbreak-associated cases are less likely to have a prodrome and more likely to have genital involvement. CDC and other federal, state, and local agencies have implemented response efforts to expand testing, treatment, and vaccination. Public health efforts should prioritize gay, bisexual, and other men who have sex with men, who are currently disproportionately affected, for prevention and testing, while addressing equity, minimizing stigma, and maintaining vigilance for transmission in other populations. Clinicians should test patients with rash consistent with monkeypox,(†) regardless of whether the rash is disseminated or was preceded by prodrome. Likewise, although most cases to date have occurred among gay, bisexual, and other men who have sex with men, any patient with rash consistent with monkeypox should be considered for testing. CDC is continually evaluating new evidence and tailoring response strategies as information on changing case demographics, clinical characteristics, transmission, and vaccine effectiveness become available.(§). |
Guidance for Implementing COVID-19 Prevention Strategies in the Context of Varying Community Transmission Levels and Vaccination Coverage.
Christie A , Brooks JT , Hicks LA , Sauber-Schatz EK , Yoder JS , Honein MA . MMWR Morb Mortal Wkly Rep 2021 70 (30) 1044-1047 COVID-19 vaccination remains the most effective means to achieve control of the pandemic. In the United States, COVID-19 cases and deaths have markedly declined since their peak in early January 2021, due in part to increased vaccination coverage (1). However, during June 19-July 23, 2021, COVID-19 cases increased approximately 300% nationally, followed by increases in hospitalizations and deaths, driven by the highly transmissible B.1.617.2 (Delta) variant* of SARS-CoV-2, the virus that causes COVID-19. Available data indicate that the vaccines authorized in the United States (Pfizer-BioNTech, Moderna, and Janssen [Johnson & Johnson]) offer high levels of protection against severe illness and death from infection with the Delta variant and other currently circulating variants of the virus (2). Despite widespread availability, vaccine uptake has slowed nationally with wide variation in coverage by state (range = 33.9%-67.2%) and by county (range = 8.8%-89.0%).(†) Unvaccinated persons, as well as persons with certain immunocompromising conditions (3), remain at substantial risk for infection, severe illness, and death, especially in areas where the level of SARS-CoV-2 community transmission is high. The Delta variant is more than two times as transmissible as the original strains circulating at the start of the pandemic and is causing large, rapid increases in infections, which could compromise the capacity of some local and regional health care systems to provide medical care for the communities they serve. Until vaccination coverage is high and community transmission is low, public health practitioners, as well as schools, businesses, and institutions (organizations) need to regularly assess the need for prevention strategies to avoid stressing health care capacity and imperiling adequate care for both COVID-19 and other non-COVID-19 conditions. CDC recommends five critical factors be considered to inform local decision-making: 1) level of SARS-CoV-2 community transmission; 2) health system capacity; 3) COVID-19 vaccination coverage; 4) capacity for early detection of increases in COVID-19 cases; and 5) populations at increased risk for severe outcomes from COVID-19. Among strategies to prevent COVID-19, CDC recommends all unvaccinated persons wear masks in public indoor settings. Based on emerging evidence on the Delta variant (2), CDC also recommends that fully vaccinated persons wear masks in public indoor settings in areas of substantial or high transmission. Fully vaccinated persons might consider wearing a mask in public indoor settings, regardless of transmission level, if they or someone in their household is immunocompromised or is at increased risk for severe disease, or if someone in their household is unvaccinated (including children aged <12 years who are currently ineligible for vaccination). |
Decreases in COVID-19 Cases, Emergency Department Visits, Hospital Admissions, and Deaths Among Older Adults Following the Introduction of COVID-19 Vaccine - United States, September 6, 2020-May 1, 2021.
Christie A , Henley SJ , Mattocks L , Fernando R , Lansky A , Ahmad FB , Adjemian J , Anderson RN , Binder AM , Carey K , Dee DL , Dias T , Duck WM , Gaughan DM , Lyons BC , McNaghten AD , Park MM , Reses H , Rodgers L , Van Santen K , Walker D , Beach MJ . MMWR Morb Mortal Wkly Rep 2021 70 (23) 858-864 Throughout the COVID-19 pandemic, older U.S. adults have been at increased risk for severe COVID-19-associated illness and death (1). On December 14, 2020, the United States began a nationwide vaccination campaign after the Food and Drug Administration's Emergency Use Authorization of Pfizer-BioNTech COVID-19 vaccine. The Advisory Committee on Immunization Practices (ACIP) recommended prioritizing health care personnel and residents of long-term care facilities, followed by essential workers and persons at risk for severe illness, including adults aged ≥65 years, in the early phases of the vaccination program (2). By May 1, 2021, 82%, 63%, and 42% of persons aged ≥65, 50-64, and 18-49 years, respectively, had received ≥1 COVID-19 vaccine dose. CDC calculated the rates of COVID-19 cases, emergency department (ED) visits, hospital admissions, and deaths by age group during November 29-December 12, 2020 (prevaccine) and April 18-May 1, 2021. The rate ratios comparing the oldest age groups (≥70 years for hospital admissions; ≥65 years for other measures) with adults aged 18-49 years were 40%, 59%, 65%, and 66% lower, respectively, in the latter period. These differential declines are likely due, in part, to higher COVID-19 vaccination coverage among older adults, highlighting the potential benefits of rapidly increasing vaccination coverage. |
CDC Interim Recommendations for Fully Vaccinated People: An Important First Step.
Christie A , Mbaeyi SA , Walensky RP . JAMA 2021 325 (15) 1501-1502 On December 11, 2020, the US reached an extraordinary milestone in the efforts to end the COVID-19 pandemic: the Food and Drug Administration authorized emergency use of the first COVID-19 vaccine, manufactured by Pfizer-BioNTech. Since then, 2 additional COVID-19 vaccines, Moderna and Janssen (Johnson & Johnson), have received Emergency Use Authorization in the US and, as of March 8, 2021, more than 31 million people, or 9.4% of the total population, have completed a vaccination series.1 |
Summary of Guidance for Public Health Strategies to Address High Levels of Community Transmission of SARS-CoV-2 and Related Deaths, December 2020.
Honein MA , Christie A , Rose DA , Brooks JT , Meaney-Delman D , Cohn A , Sauber-Schatz EK , Walker A , McDonald LC , Liburd LC , Hall JE , Fry AM , Hall AJ , Gupta N , Kuhnert WL , Yoon PW , Gundlapalli AV , Beach MJ , Walke HT . MMWR Morb Mortal Wkly Rep 2020 69 (49) 1860-1867 In the 10 months since the first confirmed case of coronavirus disease 2019 (COVID-19) was reported in the United States on January 20, 2020 (1), approximately 13.8 million cases and 272,525 deaths have been reported in the United States. On October 30, the number of new cases reported in the United States in a single day exceeded 100,000 for the first time, and by December 2 had reached a daily high of 196,227.* With colder weather, more time spent indoors, the ongoing U.S. holiday season, and silent spread of disease, with approximately 50% of transmission from asymptomatic persons (2), the United States has entered a phase of high-level transmission where a multipronged approach to implementing all evidence-based public health strategies at both the individual and community levels is essential. This summary guidance highlights critical evidence-based CDC recommendations and sustainable strategies to reduce COVID-19 transmission. These strategies include 1) universal face mask use, 2) maintaining physical distance from other persons and limiting in-person contacts, 3) avoiding nonessential indoor spaces and crowded outdoor spaces, 4) increasing testing to rapidly identify and isolate infected persons, 5) promptly identifying, quarantining, and testing close contacts of persons with known COVID-19, 6) safeguarding persons most at risk for severe illness or death from infection with SARS-CoV-2, the virus that causes COVID-19, 7) protecting essential workers with provision of adequate personal protective equipment and safe work practices, 8) postponing travel, 9) increasing room air ventilation and enhancing hand hygiene and environmental disinfection, and 10) achieving widespread availability and high community coverage with effective COVID-19 vaccines. In combination, these strategies can reduce SARS-CoV-2 transmission, long-term sequelae or disability, and death, and mitigate the pandemic's economic impact. Consistent implementation of these strategies improves health equity, preserves health care capacity, maintains the function of essential businesses, and supports the availability of in-person instruction for kindergarten through grade 12 schools and preschool. Individual persons, households, and communities should take these actions now to reduce SARS-CoV-2 transmission from its current high level. These actions will provide a bridge to a future with wide availability and high community coverage of effective vaccines, when safe return to more everyday activities in a range of settings will be possible. |
Vaccination of contacts of Ebola virus disease survivors to prevent further transmission.
Doshi RH , Fleming M , Mukoka AK , Carter RJ , Hyde TB , Choi M , Nzaji MK , Bateyi SH , Christie A , Nichol ST , Damon IK , Beach M , Musenga EM , Fitter DL . Lancet Glob Health 2020 8 (12) e1455-e1456 ![]() ![]() On April 10, 2020, just 2 days before the anticipated declaration of the end of the North Kivu and Ituri Ebola virus disease (EVD) outbreak in DR Congo, and 53 days after the last confirmed case of EVD had been reported, a new case was confirmed. Sequencing of patient samples from the case in April and six others that followed indicated that these cases were likely to have come from a reintroduction of the virus from a persistently infected survivor.1 This group of cases marked the second flare-up linked to an EVD survivor during this outbreak. In November, 2019, a relapse case in North Kivu resulted in widespread transmission across multiple health zones, helping to extend the outbreak by at least 3 months. |
Ebola Response Priorities in the Time of Covid-19.
Christie A , Neatherlin JC , Nichol ST , Beach M , Redfield RR . N Engl J Med 2020 383 (13) 1202-1204 On April 10, 2020, a total of 53 days after the last patient with Ebola virus disease (EVD) had been isolated and more than 23 months since the start of the 10th EVD outbreak in the Democratic Republic of Congo (DRC), a new confirmed case was reported in the Beni health zone. This case, and the six that followed, brought the total to 3462 cases — the second-largest Ebola outbreak in history. Although the outbreak was declared over on June 25, 2020, additional cases attributable to persistently infected survivors may occur. Therefore, surveillance and rapid-response capacity should be maintained, not only for a duration equivalent to two incubation periods (42 days) after the last confirmed case tested negative, but also for at least 90 additional days of enhanced surveillance. |
Bolstering community cooperation in Ebola resurgence protocols: Combining field blood draw and point-of-care diagnosis
Fallah MP , Skrip LA , Raftery P , Kullie M , Borbor W , Laney AS , Blackley DJ , Christie A , Dokubo EK , Lo TQ , Coulter S , Baller A , Vonhm BT , Bemah P , Lomax S , Yeiah A , Wapoe-Sackie Y , Mann J , Clement P , Davies-Wayne G , Hamblion E , Wolfe C , Williams D , Gasasira A , Kateh F , Nyenswah TG , Galvani AP . PLoS Med 2017 14 (1) e1002227 Alison Galvani and colleagues describe a community-based protocol to improve cooperation with Ebola testing as well as contact tracing, quarantining, and treatment. |
Implementation of a national semen testing and counseling program for male Ebola survivors - Liberia, 2015-2016
Purpura LJ , Soka M , Baller A , White S , Rogers E , Choi MJ , Mahmoud N , Wasunna C , Massaquoi M , Vanderende K , Kollie J , Dweh S , Bemah P , Christie A , Ladele V , Subah O , Pillai S , Mugisha M , Kpaka J , Nichol S , Stroher U , Abad N , Mettee-Zarecki S , Bailey JA , Rollin P , Marston B , Nyenswah T , Gasasira A , Knust B , Williams D . MMWR Morb Mortal Wkly Rep 2016 65 (36) 963-966 ![]() According to World Health Organization (WHO) data, the Ebola virus disease (Ebola) outbreak that began in West Africa in 2014 has resulted in 28,603 cases and 11,301 deaths. In March 2015, epidemiologic investigation and genetic sequencing in Liberia implicated sexual transmission from a male Ebola survivor, with Ebola virus detected by reverse transcription-polymerase chain reaction (RT-PCR) 199 days after symptom onset, far exceeding the 101 days reported from an earlier Ebola outbreak. In response, WHO released interim guidelines recommending that all male survivors, in addition to receiving condoms and sexual risk reduction counseling at discharge from an Ebola treatment unit (ETU), be offered semen testing for Ebola virus RNA by RT-PCR 3 months after disease onset, and every month thereafter until two consecutive semen specimens collected at least 1 week apart test negative for Ebola virus RNA. Male Ebola survivors should also receive counseling to promote safe sexual practices until their semen twice tests negative. When these recommendations were released, testing of semen was not widely available in Liberia. Challenges in establishing and operating the first nationwide semen testing and counseling program for male Ebola survivors included securing sufficient resources for the program, managing a public health semen testing program in the context of ongoing research studies that were also collecting and screening semen, identification of adequate numbers of trained counselors and appropriate health communication messages for the program, overcoming Ebola survivor-associated stigma, identification and recruitment of male Ebola survivors, and operation of mobile teams. |
Prevention of sexual transmission of Ebola in Liberia through a national semen testing and counselling programme for survivors: an analysis of Ebola virus RNA results and behavioural data.
Soka MJ , Choi MJ , Baller A , White S , Rogers E , Purpura LJ , Mahmoud N , Wasunna C , Massaquoi M , Abad N , Kollie J , Dweh S , Bemah PK , Christie A , Ladele V , Subah OC , Pillai S , Mugisha M , Kpaka J , Kowalewski S , German E , Stenger M , Nichol S , Stroher U , Vanderende KE , Zarecki SM , Green HH , Bailey JA , Rollin P , Marston B , Nyenswah TG , Gasasira A , Knust B , Williams D . Lancet Glob Health 2016 4 (10) e736-43 ![]() BACKGROUND: Ebola virus has been detected in semen of Ebola virus disease survivors after recovery. Liberia's Men's Health Screening Program (MHSP) offers Ebola virus disease survivors semen testing for Ebola virus. We present preliminary results and behavioural outcomes from the first national semen testing programme for Ebola virus. METHODS: The MHSP operates out of three locations in Liberia: Redemption Hospital in Montserrado County, Phebe Hospital in Bong County, and Tellewoyan Hospital in Lofa County. Men aged 15 years and older who had an Ebola treatment unit discharge certificate are eligible for inclusion. Participants' semen samples were tested for Ebola virus RNA by real-time RT-PCR and participants received counselling on safe sexual practices. Participants graduated after receiving two consecutive negative semen tests. Counsellors collected information on sociodemographics and sexual behaviours using questionnaires administered at enrolment, follow up, and graduation visits. Because the programme is ongoing, data analysis was restricted to data obtained from July 7, 2015, to May 6, 2016. FINDINGS: As of May 6, 2016, 466 Ebola virus disease survivors had enrolled in the programme; real-time RT-PCR results were available from 429 participants. 38 participants (9%) produced at least one semen specimen that tested positive for Ebola virus RNA. Of these, 24 (63%) provided semen specimens that tested positive 12 months or longer after Ebola virus disease recovery. The longest interval between discharge from an Ebola treatment unit and collection of a positive semen sample was 565 days. Among participants who enrolled and provided specimens more than 90 days since their Ebola treatment unit discharge, men older than 40 years were more likely to have a semen sample test positive than were men aged 40 years or younger (p=0.0004). 84 (74%) of 113 participants who reported not using a condom at enrolment reported using condoms at their first follow-up visit (p<0.0001). 176 (46%) of 385 participants who reported being sexually active at enrolment reported abstinence at their follow-up visit (p<0.0001). INTERPRETATION: Duration of detection of Ebola virus RNA by real-time RT-PCR varies by individual and might be associated with age. By combining behavioural counselling and laboratory testing, the Men's Health Screening Program helps male Ebola virus disease survivors understand their individual risk and take appropriate measures to protect their sexual partners. FUNDING: World Health Organization and the US Centers for Disease Control and Prevention. |
CDC's response to the 2014-2016 Ebola epidemic - Guinea, Liberia, and Sierra Leone
Dahl BA , Kinzer MH , Raghunathan PL , Christie A , De Cock KM , Mahoney F , Bennett SD , Hersey S , Morgan OW . MMWR Suppl 2016 65 (3) 12-20 CDC's response to the 2014-2016 Ebola virus disease (Ebola) epidemic in West Africa was the largest in the agency's history and occurred in a geographic area where CDC had little operational presence. Approximately 1,450 CDC responders were deployed to Guinea, Liberia, and Sierra Leone since the start of the response in July 2014 to the end of the response at the end of March 2016, including 455 persons with repeat deployments. The responses undertaken in each country shared some similarities but also required unique strategies specific to individual country needs. The size and duration of the response challenged CDC in several ways, particularly with regard to staffing. The lessons learned from this epidemic will strengthen CDC's ability to respond to future public health emergencies. These lessons include the importance of ongoing partnerships with ministries of health in resource-limited countries and regions, a cadre of trained CDC staff who are ready to be deployed, and development of ongoing working relationships with U.S. government agencies and other multilateral and nongovernment organizations that deploy for international public health emergencies. CDC's establishment of a Global Rapid Response Team in June 2015 is anticipated to meet some of these challenges. The activities summarized in this report would not have been possible without collaboration with many U.S. and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html). |
Reduced evolutionary rate in reemerged Ebola virus transmission chains.
Blackley DJ , Wiley MR , Ladner JT , Fallah M , Lo T , Gilbert ML , Gregory C , D'Ambrozio J , Coulter S , Mate S , Balogun Z , Kugelman J , Nwachukwu W , Prieto K , Yeiah A , Amegashie F , Kearney B , Wisniewski M , Saindon J , Schroth G , Fakoli L , Diclaro JW 2nd , Kuhn JH , Hensley LE , Jahrling PB , Stroher U , Nichol ST , Massaquoi M , Kateh F , Clement P , Gasasira A , Bolay F , Monroe SS , Rambaut A , Sanchez-Lockhart M , Scott Laney A , Nyenswah T , Christie A , Palacios G . Sci Adv 2016 2 (4) e1600378 ![]() On 29 June 2015, Liberia's respite from Ebola virus disease (EVD) was interrupted for the second time by a renewed outbreak ("flare-up") of seven confirmed cases. We demonstrate that, similar to the March 2015 flare-up associated with sexual transmission, this new flare-up was a reemergence of a Liberian transmission chain originating from a persistently infected source rather than a reintroduction from a reservoir or a neighboring country with active transmission. Although distinct, Ebola virus (EBOV) genomes from both flare-ups exhibit significantly low genetic divergence, indicating a reduced rate of EBOV evolution during persistent infection. Using this rate of change as a signature, we identified two additional EVD clusters that possibly arose from persistently infected sources. These findings highlight the risk of EVD flare-ups even after an outbreak is declared over. |
Ebola and its control in Liberia, 2014-2015
Nyenswah TG , Kateh F , Bawo L , Massaquoi M , Gbanyan M , Fallah M , Nagbe TK , Karsor KK , Wesseh CS , Sieh S , Gasasira A , Graaff P , Hensley L , Rosling H , Lo T , Pillai SK , Gupta N , Montgomery JM , Ransom RL , Williams D , Laney AS , Lindblade KA , Slutsker L , Telfer JL , Christie A , Mahoney F , De Cock KM . Emerg Infect Dis 2016 22 (2) 169-77 The severe epidemic of Ebola virus disease in Liberia started in March 2014. On May 9, 2015, the World Health Organization declared Liberia free of Ebola, 42 days after safe burial of the last known case-patient. However, another 6 cases occurred during June-July; on September 3, 2015, the country was again declared free of Ebola. Liberia had by then reported 10,672 cases of Ebola and 4,808 deaths, 37.0% and 42.6%, respectively, of the 28,103 cases and 11,290 deaths reported from the 3 countries that were heavily affected at that time. Essential components of the response included government leadership and sense of urgency, coordinated international assistance, sound technical work, flexibility guided by epidemiologic data, transparency and effective communication, and efforts by communities themselves. Priorities after the epidemic include surveillance in case of resurgence, restoration of health services, infection control in healthcare settings, and strengthening of basic public health systems. |
Molecular Evidence of Sexual Transmission of Ebola Virus.
Mate SE , Kugelman JR , Nyenswah TG , Ladner JT , Wiley MR , Cordier-Lassalle T , Christie A , Schroth GP , Gross SM , Davies-Wayne GJ , Shinde SA , Murugan R , Sieh SB , Badio M , Fakoli L , Taweh F , de Wit E , van Doremalen N , Munster VJ , Pettitt J , Prieto K , Humrighouse BW , Stroher U , DiClaro JW , Hensley LE , Schoepp RJ , Safronetz D , Fair J , Kuhn JH , Blackley DJ , Laney AS , Williams DE , Lo T , Gasasira A , Nichol ST , Formenty P , Kateh FN , De Cock KM , Bolay F , Sanchez-Lockhart M , Palacios G . N Engl J Med 2015 373 (25) 2448-54 ![]() A suspected case of sexual transmission from a male survivor of Ebola virus disease (EVD) to his female partner (the patient in this report) occurred in Liberia in March 2015. Ebola virus (EBOV) genomes assembled from blood samples from the patient and a semen sample from the survivor were consistent with direct transmission. The genomes shared three substitutions that were absent from all other Western African EBOV sequences and that were distinct from the last documented transmission chain in Liberia before this case. Combined with epidemiologic data, the genomic analysis provides evidence of sexual transmission of EBOV and evidence of the persistence of infective EBOV in semen for 179 days or more after the onset of EVD. (Funded by the Defense Threat Reduction Agency and others.). |
Possible sexual transmission of Ebola virus - Liberia, 2015
Christie A , Davies-Wayne GJ , Cordier-Lasalle T , Blackley DJ , Laney AS , Williams DE , Shinde SA , Badio M , Lo T , Mate SE , Ladner JT , Wiley MR , Kugelman JR , Palacios G , Holbrook MR , Janosko KB , Wit Ed , Doremalen Nv , Munster VJ , Pettitt J , Schoepp RJ , Verhenne L , Evlampidou I , Kollie KK , Sieh SB , Gasasira A , Bolay F , Kateh FN , Nyenswah TG , De Cock KM . MMWR Morb Mortal Wkly Rep 2015 64 (17) 479-81 On March 20, 2015, 30 days after the most recent confirmed Ebola Virus Disease (Ebola) patient in Liberia was isolated, Ebola was laboratory confirmed in a woman in Monrovia. The investigation identified only one epidemiologic link to Ebola: unprotected vaginal intercourse with a survivor. Published reports from previous outbreaks have demonstrated Ebola survivors can continue to harbor virus in immunologically privileged sites for a period of time after convalescence. Ebola virus has been isolated from semen as long as 82 days after symptom onset and viral RNA has been detected in semen up to 101 days after symptom onset. One instance of possible sexual transmission of Ebola has been reported, although the accompanying evidence was inconclusive. In addition, possible sexual transmission of Marburg virus, a filovirus related to Ebola, was documented in 1968. This report describes the investigation by the Government of Liberia and international response partners of the source of Liberia's latest Ebola case and discusses the public health implications of possible sexual transmission of Ebola virus. Based on information gathered in this investigation, CDC now recommends that contact with semen from male Ebola survivors be avoided until more information regarding the duration and infectiousness of viral shedding in body fluids is known. If male survivors have sex (oral, vaginal, or anal), a condom should be used correctly and consistently every time. |
Initiation of a ring approach to infection prevention and control at non-Ebola health care facilities - Liberia, January-February 2015
Nyenswah T , Massaquoi M , Gbanya MZ , Fallah M , Amegashie F , Kenta A , Johnson KL , Yahya D , Badini M , Soro L , Pessoa-Silva CL , Roger I , Selvey L , VanderEnde K , Murphy M , Cooley LA , Olsen SJ , Christie A , Vertefeuille J , Navin T , McElroy P , Park BJ , Esswein E , Fagan R , Mahoney F . MMWR Morb Mortal Wkly Rep 2015 64 (18) 505-8 From mid-January to mid-February 2015, all confirmed Ebola virus disease (Ebola) cases that occurred in Liberia were epidemiologically linked to a single index patient from the St. Paul Bridge area of Montserrado County. Of the 22 confirmed patients in this cluster, eight (36%) sought and received care from at least one of 10 non-Ebola health care facilities (HCFs), including clinics and hospitals in Montserrado and Margibi counties, before admission to an Ebola treatment unit. After recognition that three patients in this emerging cluster had received care from a non-Ebola treatment unit, and in response to the risk for Ebola transmission in non-Ebola treatment unit health care settings, a focused infection prevention and control (IPC) rapid response effort for the immediate area was developed to target facilities at increased risk for exposure to a person with Ebola (Ring IPC). The Ring IPC approach, which provided rapid, intensive, and short-term IPC support to HCFs in areas of active Ebola transmission, was an addition to Liberia's proposed longer term national IPC strategy, which focused on providing a comprehensive package of IPC training and support to all HCFs in the country. This report describes possible health care worker exposures to the cluster's eight patients who sought care from an HCF and implementation of the Ring IPC approach. On May 9, 2015, the World Health Organization (WHO) declared the end of the Ebola outbreak in Liberia. |
Controlling the last known cluster of Ebola virus disease - Liberia, January-February 2015
Nyenswah T , Fallah M , Sieh S , Kollie K , Badio M , Gray A , Dilah P , Shannon M , Duwor S , Ihekweazu C , Cordier-Lasalle T , Shinde SA , Hamblion E , Davies-Wayne G , Ratnesh M , Dye C , Yoder JS , McElroy P , Hoots B , Christie A , Vertefeuille J , Olsen SJ , Laney AS , Neal JJ , Navin TR , Coulter S , Pordell P , Lo T , Kinkade C , Mahoney F . MMWR Morb Mortal Wkly Rep 2015 64 (18) 500-4 As one of the three West African countries highly affected by the 2014-2015 Ebola virus disease (Ebola) epidemic, Liberia reported approximately 10,000 cases. The Ebola epidemic in Liberia was marked by intense urban transmission, multiple community outbreaks with source cases occurring in patients coming from the urban areas, and outbreaks in health care facilities (HCFs). This report, based on data from routine case investigations and contact tracing, describes efforts to stop the last known chain of Ebola transmission in Liberia. The index patient became ill on December 29, 2014, and the last of 21 associated cases was in a patient admitted into an Ebola treatment unit (ETU) on February 18, 2015. The chain of transmission was stopped because of early detection of new cases; identification, monitoring, and support of contacts in acceptable settings; effective triage within the health care system; and rapid isolation of symptomatic contacts. In addition, a "sector" approach, which divided Montserrado County into geographic units, facilitated the ability of response teams to rapidly respond to community needs. In the final stages of the outbreak, intensive coordination among partners and engagement of community leaders were needed to stop transmission in densely populated Montserrado County. A companion report describes the efforts to enhance infection prevention and control efforts in HCFs. After February 19, no additional clusters of Ebola cases have been detected in Liberia. On May 9, the World Health Organization declared the end of the Ebola outbreak in Liberia. |
Rapid response to Ebola outbreaks in remote areas - Liberia, July-November 2014
Kateh F , Nagbe T , Kieta A , Barskey A , Gasasira AN , Driscoll A , Tucker A , Christie A , Karmo B , Scott C , Barradas D , Blackley D , Dweh E , Warren F , Mahoney F , Kassay G , Calvert GM , Castro G , Logan G , Appiah G , Kirking H , Koon H , Papowitz H , Walke H , Cole IB , Montgomery J , Neatherlin J , Tappero JW , Forrester J , Woodring J , Mott J , Attfield K , DeCock K , Lindblade KA , Powell K , Yeoman K , Adams L , Broyles LN , Slutsker L , Belcher L , Cooper L , Santos M , Westercamp M , Weinberg MP , Massoudi M , Dea M , Patel M , Hennessey M , Fomba M , Lubogo M , Maxwell N , Moonan P , Arzoaquoi S , Gee S , Zayzay S , Pillai S , Williams S , Zarecki SM , Yett S , James S , Grube S , Gupta S , Nelson T , Malibiche T , Frank W , Smith W , Nyenswah T . MMWR Morb Mortal Wkly Rep 2015 64 (7) 188-192 West Africa is experiencing its first epidemic of Ebola virus disease (Ebola). As of February 9, Liberia has reported 8,864 Ebola cases, of which 3,147 were laboratory-confirmed. Beginning in August 2014, the Liberia Ministry of Health and Social Welfare (MOHSW), supported by CDC, the World Health Organization (WHO), and others, began systematically investigating and responding to Ebola outbreaks in remote areas. Because many of these areas lacked mobile telephone service, easy road access, and basic infrastructure, flexible and targeted interventions often were required. Development of a national strategy for the Rapid Isolation and Treatment of Ebola (RITE) began in early October. The strategy focuses on enhancing capacity of county health teams (CHT) to investigate outbreaks in remote areas and lead tailored responses through effective and efficient coordination of technical and operational assistance from the MOHSW central level and international partners. To measure improvements in response indicators and outcomes over time, data from investigations of 12 of 15 outbreaks in remote areas with illness onset dates of index cases during July 16-November 20, 2014, were analyzed. The times to initial outbreak alerts and durations of the outbreaks declined over that period while the proportions of patients who were isolated and treated increased. At the same time, the case-fatality rate in each outbreak declined. Implementation of strategies, such as RITE, to rapidly respond to rural outbreaks of Ebola through coordinated and tailored responses can successfullyreduce transmission and improve outcomes. |
Ebola epidemic - Liberia, March-October 2014
Nyenswah T , Fahnbulleh M , Massaquoi M , Nagbe T , Bawo L , Falla JD , Kohar H , Gasasira A , Nabeth P , Yett S , Gergonne B , Casey S , Espinosa B , McCoy A , Feldman H , Hensley L , Baily M , Fields B , Lo T , Lindblade K , Mott J , Boulanger L , Christie A , Wang S , Montgomery J , Mahoney F . MMWR Morb Mortal Wkly Rep 2014 63 (46) 1082-6 On March 21, 2014, the Guinea Ministry of Health reported the outbreak of an illness characterized by fever, severe diarrhea, vomiting and a high fatality rate (59%), leading to the first known epidemic of Ebola virus disease (Ebola) in West Africa and the largest and longest Ebola epidemic in history. As of November 2, Liberia had reported the largest number of cases (6,525) and deaths (2,697) among the three affected countries of West Africa with ongoing transmission (Guinea, Liberia, and Sierra Leone). The response strategy in Liberia has included management of the epidemic through an incident management system (IMS) in which the activities of all partners are coordinated. Within the IMS, key strategies for epidemic control include surveillance, case investigation, laboratory confirmation, contact tracing, safe transportation of persons with suspected Ebola, isolation, infection control within the health care system, community engagement, and safe burial. This report provides a brief overview of the progression of the epidemic in Liberia and summarizes the interventions implemented. |
Frontiers in cancer epidemiology: a challenge to the research community from the Epidemiology and Genomics Research Program at the National Cancer Institute.
Khoury MJ , Freedman AN , Gillanders EM , Harvey CE , Kaefer C , Reid BC , Rogers S , Schully SD , Seminara D , Verma M . Cancer Epidemiol Biomarkers Prev 2012 21 (7) 999-1001 ![]() The Epidemiology and Genomics Research Program (EGRP) at the National Cancer Institute (NCI) is developing scientific priorities for cancer epidemiology research in the next decade. We would like to engage the research community and other stakeholders in a planning effort that will include a workshop in December 2012 to help shape new foci for cancer epidemiology research. To facilitate the process of defining the future of cancer epidemiology, we invite the research community to join in an ongoing web-based conversation at http://blog-epi.grants.cancer.gov/ to develop priorities and the next generation of high-impact studies. (Cancer Epidemiol Biomarkers Prev; 21(7); 999-1001. (c)2012 AACR.) |
Characterization of human clinical isolates of Dietzia species previously misidentified as Rhodococcus equi.
Niwa H , Lasker BA , Hinrikson HP , Franzen CG , Steigerwalt AG , Whitney AM , Brown JM . Eur J Clin Microbiol Infect Dis 2011 31 (5) 811-20 In this study, 16 human clinical isolates of Dietzia species previously misidentified as Rhodococcus equi were evaluated using phenotypic methods, including traditional and commercial (API Coryne) biochemical tests, antimicrobial susceptibility testing, and 16S rRNA gene and gyrB gene sequencing. Positive results for both the hydrolysis of adenine and Christie-Atkins-Munch-Petersen (CAMP) reaction allowed for differentiation between the Dietzia isolates and the type strain of Rhodococcus equi; however, traditional and commercial phenotypic profiles could not be used to reliably identify Dietzia species. The analysis of 16S rRNA gene and gyrB gene sequences could discriminate all Dietzia strains from the type strain of R. equi. Most Dietzia species had distinct 16S rRNA gene and gyrB gene sequences; however, the 16S rRNA gene sequences of the type strains of D. schimae and D. cercidiphylli were identical to D. maris and D. natronolimnaea, respectively. Based on comparative sequence analysis, five clinical isolates clustered with D. maris/D. schimae and nine with D. natronolimnaea/D. cercidiphylli. The two remaining isolates were found to be most closely related to the D. cinnamea/D. papillomatosis clade. Even though molecular analyses were not sufficiently discriminative to accurately identify all Dietzia species, the method was able to reliably identify isolates that were previously misidentified by phenotypic methods to the genus level. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 17, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure