Last data update: Sep 30, 2024. (Total: 47785 publications since 2009)
Records 1-4 (of 4 Records) |
Query Trace: Chow CC[original query] |
---|
COVID-19 reopening strategies at the county level in the face of uncertainty: Multiple Models for Outbreak Decision Support (preprint)
Shea K , Borchering RK , Probert WJM , Howerton E , Bogich TL , Li S , van Panhuis WG , Viboud C , Aguás R , Belov A , Bhargava SH , Cavany S , Chang JC , Chen C , Chen J , Chen S , Chen Y , Childs LM , Chow CC , Crooker I , Valle SYD , España G , Fairchild G , Gerkin RC , Germann TC , Gu Q , Guan X , Guo L , Hart GR , Hladish TJ , Hupert N , Janies D , Kerr CC , Klein DJ , Klein E , Lin G , Manore C , Meyers LA , Mittler J , Mu K , Núñez RC , Oidtman R , Pasco R , Piontti APY , Paul R , Pearson CAB , Perdomo DR , Perkins TA , Pierce K , Pillai AN , Rael RC , Rosenfeld K , Ross CW , Spencer JA , Stoltzfus AB , Toh KB , Vattikuti S , Vespignani A , Wang L , White L , Xu P , Yang Y , Yogurtcu ON , Zhang W , Zhao Y , Zou D , Ferrari M , Pannell D , Tildesley M , Seifarth J , Johnson E , Biggerstaff M , Johansson M , Slayton RB , Levander J , Stazer J , Salerno J , Runge MC . medRxiv 2020 Policymakers make decisions about COVID-19 management in the face of considerable uncertainty. We convened multiple modeling teams to evaluate reopening strategies for a mid-sized county in the United States, in a novel process designed to fully express scientific uncertainty while reducing linguistic uncertainty and cognitive biases. For the scenarios considered, the consensus from 17 distinct models was that a second outbreak will occur within 6 months of reopening, unless schools and non-essential workplaces remain closed. Up to half the population could be infected with full workplace reopening; non-essential business closures reduced median cumulative infections by 82%. Intermediate reopening interventions identified no win-win situations; there was a trade-off between public health outcomes and duration of workplace closures. Aggregate results captured twice the uncertainty of individual models, providing a more complete expression of risk for decision-making purposes. |
Multiple models for outbreak decision support in the face of uncertainty
Shea K , Borchering RK , Probert WJM , Howerton E , Bogich TL , Li SL , van Panhuis WG , Viboud C , Aguás R , Belov AA , Bhargava SH , Cavany SM , Chang JC , Chen C , Chen J , Chen S , Chen Y , Childs LM , Chow CC , Crooker I , Del Valle SY , España G , Fairchild G , Gerkin RC , Germann TC , Gu Q , Guan X , Guo L , Hart GR , Hladish TJ , Hupert N , Janies D , Kerr CC , Klein DJ , Klein EY , Lin G , Manore C , Meyers LA , Mittler JE , Mu K , Núñez RC , Oidtman RJ , Pasco R , Pastore YPiontti A , Paul R , Pearson CAB , Perdomo DR , Perkins TA , Pierce K , Pillai AN , Rael RC , Rosenfeld K , Ross CW , Spencer JA , Stoltzfus AB , Toh KB , Vattikuti S , Vespignani A , Wang L , White LJ , Xu P , Yang Y , Yogurtcu ON , Zhang W , Zhao Y , Zou D , Ferrari MJ , Pannell D , Tildesley MJ , Seifarth J , Johnson E , Biggerstaff M , Johansson MA , Slayton RB , Levander JD , Stazer J , Kerr J , Runge MC . Proc Natl Acad Sci U S A 2023 120 (18) e2207537120 Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020. |
Monkeypox outbreak - nine states, May 2022
Minhaj FS , Ogale YP , Whitehill F , Schultz J , Foote M , Davidson W , Hughes CM , Wilkins K , Bachmann L , Chatelain R , Donnelly MAP , Mendoza R , Downes BL , Roskosky M , Barnes M , Gallagher GR , Basgoz N , Ruiz V , Kyaw NTT , Feldpausch A , Valderrama A , Alvarado-Ramy F , Dowell CH , Chow CC , Li Y , Quilter L , Brooks J , Daskalakis DC , McClung RP , Petersen BW , Damon I , Hutson C , McQuiston J , Rao AK , Belay E , McCollum AM . MMWR Morb Mortal Wkly Rep 2022 71 (23) 764-769 On May 17, 2022, the Massachusetts Department of Public Health (MDPH) Laboratory Response Network (LRN) laboratory confirmed the presence of orthopoxvirus DNA via real-time polymerase chain reaction (PCR) from lesion swabs obtained from a Massachusetts resident. Orthopoxviruses include Monkeypox virus, the causative agent of monkeypox. Subsequent real-time PCR testing at CDC on May 18 confirmed that the patient was infected with the West African clade of Monkeypox virus. Since then, confirmed cases* have been reported by nine states. In addition, 28 countries and territories,(†) none of which has endemic monkeypox, have reported laboratory-confirmed cases. On May 17, CDC, in coordination with state and local jurisdictions, initiated an emergency response to identify, monitor, and investigate additional monkeypox cases in the United States. This response has included releasing a Health Alert Network (HAN) Health Advisory, developing interim public health and clinical recommendations, releasing guidance for LRN testing, hosting clinician and public health partner outreach calls, disseminating health communication messages to the public, developing protocols for use and release of medical countermeasures, and facilitating delivery of vaccine postexposure prophylaxis (PEP) and antivirals that have been stockpiled by the U.S. government for preparedness and response purposes. On May 19, a call center was established to provide guidance to states for the evaluation of possible cases of monkeypox, including recommendations for clinical diagnosis and orthopoxvirus testing. The call center also gathers information about possible cases to identify interjurisdictional linkages. As of May 31, this investigation has identified 17(§) cases in the United States; most cases (16) were diagnosed in persons who identify as gay, bisexual, or men who have sex with men (MSM). Ongoing investigation suggests person-to-person community transmission, and CDC urges health departments, clinicians, and the public to remain vigilant, institute appropriate infection prevention and control measures, and notify public health authorities of suspected cases to reduce disease spread. Public health authorities are identifying cases and conducting investigations to determine possible sources and prevent further spread. This activity was reviewed by CDC and conducted consistent with applicable federal law and CDC policy.(¶). |
What we are watching-five top global infectious disease threats, 2012: a perspective from CDC's Global Disease Detection Operations Center
Christian KA , Ijaz K , Dowell SF , Chow CC , Chitale RA , Bresee JS , Mintz E , Pallansch MA , Wassilak S , McCray E , Arthur RR . Emerg Health Threats J 2013 6 20632 Disease outbreaks of international public health importance continue to occur regularly; detecting and tracking significant new public health threats in countries that cannot or might not report such events to the global health community is a challenge. The Centers for Disease Control and Prevention's (CDC) Global Disease Detection (GDD) Operations Center, established in early 2007, monitors infectious and non-infectious public health events to identify new or unexplained global public health threats and better position CDC to respond, if public health assistance is requested or required. At any one time, the GDD Operations Center actively monitors approximately 30-40 such public health threats; here we provide our perspective on five of the top global infectious disease threats that we were watching in 2012: 1 avian influenza A (H5N1), 2 cholera, 3 wild poliovirus, 4 enterovirus-71, and 5 extensively drug-resistant tuberculosis. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Sep 30, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure