Last data update: Aug 15, 2025. (Total: 49733 publications since 2009)
| Records 1-20 (of 20 Records) |
| Query Trace: Chiang CF[original query] |
|---|
| Epidemiologic and genomic characterization of an outbreak of Rift Valley fever among humans and dairy cattle in northern Tanzania
Madut DB , Rubach MP , Allan KJ , Thomas KM , de Glanville WA , Halliday JEB , Costales C , Carugati M , Rolfe RJ , Bonnewell JP , Maze MJ , Mremi AR , Amsi PT , Kalengo NH , Lyamuya F , Kinabo GD , Mbwasi R , Kilonzo KG , Maro VP , Mmbaga BT , Lwezaula B , Mosha C , Marandu A , Kibona TJ , Zhu F , Chawla T , Chia WN , Anderson DE , Wang LF , Liu J , Houpt ER , Martines RB , Zaki SR , Leach A , Gibbons A , Chiang CF , Patel K , Klena JD , Cleaveland S , Crump JA . J Infect Dis 2024
BACKGROUND: A peri-urban outbreak of Rift Valley fever virus (RVFV) among dairy cattle from May through August 2018 in northern Tanzania was detected through testing samples from prospective livestock abortion surveillance. We sought to identify concurrent human infections, their phylogeny, and epidemiologic characteristics in a cohort of febrile patients enrolled from 2016-2019 at hospitals serving the epizootic area. METHODS: From September 2016 through May 2019, we conducted a prospective cohort study that enrolled febrile patients hospitalized at two hospitals in Moshi, Tanzania. Archived serum, plasma, or whole blood samples were retrospectively tested for RVFV by PCR. Human samples positive for RVFV were sequenced and compared to RVFV sequences obtained from cattle through a prospective livestock abortion study. Phylogenetic analysis was performed on complete RVFV genomes. RESULTS: Among 656 human participants, we detected RVFV RNA in four (0.6%), including one death with hepatic necrosis and other end-organ damage at autopsy. Humans infected with RVFV were enrolled from June through August 2018, and all resided in or near urban areas. Phylogenetic analysis of human and cattle RVFV sequences demonstrated that most clustered to lineage B, a lineage previously described in East Africa. A lineage E strain clustering with lineages in Angola was also identified in cattle. CONCLUSION: We provide evidence that an apparently small RVFV outbreak among dairy cattle in northern Tanzania was associated with concurrent severe and fatal infections among humans. Our findings highlight the unidentified scale and diversity of inter-epizootic RVFV transmission, including near and within an urban area. |
| Streamlined detection of Nipah virus antibodies using a split nanoluc biosensor
Bergeron É , Chiang CF , Lo MK , Karaaslan E , Satter SM , Rahman MZ , Hossain ME , Aquib WR , Rahman DI , Sarwar SB , Montgomery JM , Klena JD , Spiropoulou CF . Emerg Microbes Infect 2024 2398640 ABSTRACTNipah virus (NiV) is an emerging zoonotic RNA virus that can cause fatal respiratory and neurological disease in animals and humans. Accurate NiV diagnostics and surveillance tools are crucial for the identification of acute and resolved infections and to improve our understanding of NiV transmission and circulation. Here, we have developed and validated a split NanoLuc luciferase NiV glycoprotein (G) biosensor for detecting antibodies in clinical and animal samples. This assay is performed by simply mixing reagents and measuring luminescence, which depends on the complementation of the split NanoLuc luciferase G biosensor following its binding to antibodies. This anti-NiV-G "mix-and-read" assay was validated using the WHO's first international standard for anti-NiV antibodies and more than 700 serum samples from the NiV-endemic country of Bangladesh. Anti-NiV antibodies from survivors persisted for at least 8 years according to both ⍺NiV-G mix-and-read and NiV neutralization assays. The ⍺NiV-G mix-and-read assay sensitivity (98.6%) and specificity (100%) were comparable to anti-NiV IgG ELISA performance but failed to detect anti-NiV antibodies in samples collected less than a week following the appearance of symptoms. Overall, the anti-NiV-G biosensor represents a simple, fast, and reliable tool that could support the expansion of NiV surveillance and retrospective outbreak investigations. |
| Human Orthohantavirus disease prevalence and genotype distribution in the U.S., 2008–2020: a retrospective observational study
Whitmer SLM , Whitesell A , Mobley M , Talundzic E , Shedroff E , Cossaboom CM , Messenger S , Deldari M , Bhatnagar J , Estetter L , Zufan S , Cannon D , Chiang CF , Gibbons A , Krapiunaya I , Morales-Betoulle M , Choi M , Knust B , Amman B , Montgomery JM , Shoemaker T , Klena JD . Lancet Reg Health - Am 2024 37
Background: In the United States (U.S.), hantavirus pulmonary syndrome (HPS) and non-HPS hantavirus infection are nationally notifiable diseases. Criteria for identifying human cases are based on clinical symptoms (HPS or non-HPS) and acute diagnostic results (IgM+, rising IgG+ titers, RT-PCR+, or immunohistochemistry (IHC)+). Here we provide an overview of diagnostic testing and summarize human Hantavirus disease occurrence and genotype distribution in the U.S. from 2008 to 2020. Methods: Epidemiological data from the national hantavirus registry was merged with laboratory diagnostic testing results performed at the CDC. Residual hantavirus-positive specimens were sequenced, and the available epidemiological and genetic data sets were linked to conduct a genomic epidemiological study of hantavirus disease in the U.S. Findings: From 1993 to 2020, 833 human hantavirus cases have been identified, and from 2008 to 2020, 335 human cases have occurred. Among New World (NW) hantavirus cases detected at the CDC diagnostic laboratory (representing 29.2% of total cases), most (85.0%) were detected during acute disease, however, some convalescent cases were detected in states not traditionally associated with hantavirus infections (Connecticut, Missouri, New Jersey, Pennsylvania, Tennessee, and Vermont). From 1993 to 2020, 94.9% (745/785) of U.S. hantaviruses cases were detected west of the Mississippi with 45.7% (359/785) in the Four Corners region of the U.S. From 2008 to 2020, 67.7% of NW hantavirus cases were detected between the months of March and August. Sequencing of RT-PCR-positive cases demonstrates a geographic separation of Orthohantavirus sinnombreense species [Sin Nombre virus (SNV), New York virus, and Monongahela virus]; however, there is a large gap in viral sequence data from the Northwestern and Central U.S. Finally, these data indicate that commercial IgM assays are not concordant with CDC-developed assays, and that “concordant positive” (i.e., commercial IgM+ and CDC IgM+ results) specimens exhibit clinical characteristics of hantavirus disease. Interpretation: Hantaviral disease is broadly distributed in the contiguous U.S, viral variants are localised to specific geographic regions, and hantaviral disease infrequently detected in most Southeastern states. Discordant results between two diagnostic detection methods highlight the need for an improved standardised testing plan in the U.S. Hantavirus surveillance and detection will continue to improve with clearly defined, systematic reporting methods, as well as explicit guidelines for clinical characterization and diagnostic criteria. Funding: This work was funded by core funds provided to the Viral Special Pathogens Branch at CDC. © 2024 |
| Development of a neutralization assay using a vesicular stomatitis virus expressing Nipah virus glycoprotein and a fluorescent protein
Jain S , Lo MK , Kainulainen MH , Welch SR , Spengler JR , Satter SM , Rahman MZ , Hossain ME , Chiang CF , Klena JD , Bergeron É , Montgomery JM , Spiropoulou CF , Albariño CG . Virology 2023 587 109858 Nipah virus (NiV) is a highly pathogenic paramyxovirus with a high case fatality rate. Due to its high pathogenicity, pandemic potential, and lack of therapeutics or approved vaccines, its study requires biosafety level 4 (BSL4) containment. In this report, we developed a novel neutralization assay for use in biosafety level 2 laboratories. The assay uses a recombinant vesicular stomatitis virus expressing NiV glycoprotein and a fluorescent protein. The recombinant virus propagates as a replication-competent virus in a cell line constitutively expressing NiV fusion protein, but it is restricted to a single round of replication in wild-type cells. We used this system to evaluate the neutralization activity of monoclonal and polyclonal antibodies, plasma from NiV-infected hamsters, and serum from human patients. Therefore, this recombinant virus could be used as a surrogate for using pathogenic NiV and may constitute a powerful tool to develop therapeutics in low containment laboratories. |
| Seroprevalence of Antibodies to SARS-CoV-2 in Six Sites in the United States, March 23-May 3, 2020 (preprint)
Havers FP , Reed C , Lim T , Montgomery JM , Klena JD , Hall AJ , Fry AM , Cannon DL , Chiang CF , Gibbons A , Krapiunaya I , Morales-Betoulle M , Roguski K , Rasheed MAU , Freeman B , Lester S , Mills L , Carroll DS , Owen SM , Johnson JA , Semenova V , Schiffer J , Thornburg NJ , Blackmore C , Blog D , Dunn A , Lindquist S , Pritchard S , Sosa L , Turabelidze G , Wiesman J , Williams RW . medRxiv 2020 2020.06.25.20140384 Importance Reported cases of SARS-CoV-2 infection likely underestimate the prevalence of infection in affected communities. Large-scale seroprevalence studies provide better estimates of the proportion of the population previously infected.Objective To estimate prevalence of SARS-CoV-2 antibodies in convenience samples from several geographic sites in the United States.Design Serologic testing of convenience samples using residual sera obtained for routine clinical testing by two commercial laboratory companies.Setting Connecticut (CT), south Florida (FL), Missouri (MO), New York City metro region (NYC), Utah (UT), and Washington State’s (WA) Puget Sound region.Participants Persons of all ages with serum collected during intervals from March 23 through May 3, 2020.Exposure SARS-CoV-2 virus infection.Main outcomes and measures We estimated the presence of antibodies to SARS-CoV-2 spike protein using an ELISA assay. We standardized estimates to the site populations by age and sex. Estimates were adjusted for test performance characteristics (96.0% sensitivity and 99.3% specificity). We estimated the number of infections in each site by extrapolating seroprevalence to site populations. We compared estimated infections to number of reported COVID-19 cases as of last specimen collection date.Results We tested sera from 11,933 persons. Adjusted estimates of the proportion of persons seroreactive to the SARS-CoV-2 spike protein ranged from 1.13% (95% confidence interval [CI] 0.70-1.94) in WA to 6.93% (95% CI 5.02-8.92) in NYC (collected March 23-April 1). For sites with later collection dates, estimates ranged from 1.85% (95% CI 1.00-3.23, collected April 6-10) for FL to 4.94% (95% CI 3.61-6.52) for CT (April 26-May 3). The estimated number of infections ranged from 6 to 24 times the number of reported cases in each site.Conclusions and relevance Our seroprevalence estimates suggest that for five of six U.S. sites, from late March to early May 2020, >10 times more SARS-CoV-2 infections occurred than the number of reported cases. Seroprevalence and under-ascertainment varied by site and specimen collection period. Most specimens from each site had no evidence of antibody to SARS-CoV-2. Tracking population seroprevalence serially, in a variety of specific geographic sites, will inform models of transmission dynamics and guide future community-wide public health measures.Question What proportion of persons in six U.S. sites had detectable antibodies to SARS-CoV-2, March 23-May 3, 2020?Findings We tested 11,933 residual clinical specimens. We estimate that from 1.1% of persons in the Puget Sound to 6.9% in New York City (collected March 23-April 1) had detectable antibodies. Estimates ranged from 1.9% in south Florida to 4.9% in Connecticut with specimens collected during intervals from April 6-May 3. Six to 24 times more infections were estimated per site with seroprevalence than with case report data.Meaning For most sites, evidence suggests >10 times more SARS-CoV-2 infections occurred than reported cases. Most persons in each site likely had no detectable SARS-CoV-2 antibodies.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study was funded by the Centers for Disease Control and Prevention.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This protocol underwent review by CDC human subjects research officials, who determined that the testing represented non-research activity in the setting of a public health response to the COVID-19 pandemic.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any su h study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesA limited dataset will be made publicly available at a later time. |
| Prevalence of Crimean-Congo hemorrhagic fever virus among livestock and ticks in Zhambyl Region, Kazakhstan, 2017
Bryant-Genevier J , Bumburidi Y , Kazazian L , Seffren V , Head JR , Berezovskiy D , Zhakipbayeva B , Salyer SJ , Knust B , Klena JD , Chiang CF , Mirzabekova G , Rakhimov K , Koekeev J , Kartabayev K , Mamadaliyev S , Guerra M , Blanton C , Shoemaker T , Singer D , Moffett DB . Am J Trop Med Hyg 2022 106 (5) 1478-85 Crimean-Congo hemorrhagic fever (CCHF) is a highly fatal zoonotic disease endemic to Kazakhstan. Previous work estimated the seroprevalence of CCHF virus (CCHFV) among livestock owners in the Zhambyl region of southern Kazakhstan at 1.2%. To estimate CCHFV seroprevalence among cattle and sheep, we selected 15 villages with known history of CCHFV circulation (endemic) and 15 villages without known circulation (nonendemic) by cluster sampling with probability proportional to livestock population size. We collected whole blood samples from 521 sheep and 454 cattle from randomly selected households within each village and collected ticks found on the animals. We tested livestock blood for CCHFV-specific IgG antibodies by ELISA; ticks were screened for CCHFV RNA by real-time reverse transcription polymerase chain reaction and CCHFV antigen by antigen-capture ELISA. We administered questionnaires covering animal demographics and livestock herd characteristics to an adult in each selected household. Overall weighted seroprevalence was 5.7% (95% CI: 3.1, 10.3) among sheep and 22.5% (95% CI: 15.8, 31.2) among cattle. CCHFV-positive tick pools were found on two sheep (2.4%, 95% CI: 0.6, 9.5) and three cattle (3.8%, 95% CI: 1.2, 11.5); three CCHFV-positive tick pools were found in nonendemic villages. Endemic villages reported higher seroprevalence among sheep (15.5% versus 2.8%, P < 0.001) but not cattle (25.9% versus 20.1%, P = 0.42). Findings suggest that the current village classification scheme may not reflect the geographic distribution of CCHFV in Zhambyl and underscore that public health measures must address the risk of CCHF even in areas without a known history of circulation. |
| Rift Valley fever and Crimean-Congo hemorrhagic fever viruses in ruminants, Jordan
Obaidat MM , Graziano JC , Morales-Betoulle M , Brown SM , Chiang CF , Klena JD . Emerg Infect Dis 2021 27 (2) 653-655 The epidemiology of Rift Valley fever virus (RVFV) and Crimean-Congo hemorrhagic fever virus (CCHFV) in Jordan is unknown. Our investigation showed 3% of 989 tested dairy cattle, sheep, and goats were RVFV seropositive and 14% were CCHFV seropositive. Ongoing surveillance is needed to assess risk to humans and protect public health. |
| Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States, March 23-May 12, 2020.
Havers FP , Reed C , Lim T , Montgomery JM , Klena JD , Hall AJ , Fry AM , Cannon DL , Chiang CF , Gibbons A , Krapiunaya I , Morales-Betoulle M , Roguski K , Rasheed MAU , Freeman B , Lester S , Mills L , Carroll DS , Owen SM , Johnson JA , Semenova V , Blackmore C , Blog D , Chai SJ , Dunn A , Hand J , Jain S , Lindquist S , Lynfield R , Pritchard S , Sokol T , Sosa L , Turabelidze G , Watkins SM , Wiesman J , Williams RW , Yendell S , Schiffer J , Thornburg NJ . JAMA Intern Med 2020 IMPORTANCE: Reported cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely underestimate the prevalence of infection in affected communities. Large-scale seroprevalence studies provide better estimates of the proportion of the population previously infected. OBJECTIVE: To estimate prevalence of SARS-CoV-2 antibodies in convenience samples from several geographic sites in the US. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study performed serologic testing on a convenience sample of residual sera obtained from persons of all ages. The serum was collected from March 23 through May 12, 2020, for routine clinical testing by 2 commercial laboratory companies. Sites of collection were San Francisco Bay area, California; Connecticut; south Florida; Louisiana; Minneapolis-St Paul-St Cloud metro area, Minnesota; Missouri; New York City metro area, New York; Philadelphia metro area, Pennsylvania; Utah; and western Washington State. EXPOSURES: Infection with SARS-CoV-2. MAIN OUTCOMES AND MEASURES: The presence of antibodies to SARS-CoV-2 spike protein was estimated using an enzyme-linked immunosorbent assay, and estimates were standardized to the site populations by age and sex. Estimates were adjusted for test performance characteristics (96.0% sensitivity and 99.3% specificity). The number of infections in each site was estimated by extrapolating seroprevalence to site populations; estimated infections were compared with the number of reported coronavirus disease 2019 (COVID-19) cases as of last specimen collection date. RESULTS: Serum samples were tested from 16 025 persons, 8853 (55.2%) of whom were women; 1205 (7.5%) were 18 years or younger and 5845 (36.2%) were 65 years or older. Most specimens from each site had no evidence of antibodies to SARS-CoV-2. Adjusted estimates of the proportion of persons seroreactive to the SARS-CoV-2 spike protein antibodies ranged from 1.0% in the San Francisco Bay area (collected April 23-27) to 6.9% of persons in New York City (collected March 23-April 1). The estimated number of infections ranged from 6 to 24 times the number of reported cases; for 7 sites (Connecticut, Florida, Louisiana, Missouri, New York City metro area, Utah, and western Washington State), an estimated greater than 10 times more SARS-CoV-2 infections occurred than the number of reported cases. CONCLUSIONS AND RELEVANCE: During March to early May 2020, most persons in 10 diverse geographic sites in the US had not been infected with SARS-CoV-2 virus. The estimated number of infections, however, was much greater than the number of reported cases in all sites. The findings may reflect the number of persons who had mild or no illness or who did not seek medical care or undergo testing but who still may have contributed to ongoing virus transmission in the population. |
| Validation of a SARS-CoV-2 spike protein ELISA for use in contact investigations and serosurveillance.
Freeman B , Lester S , Mills L , Rasheed MAU , Moye S , Abiona O , Hutchinson GB , Morales-Betoulle M , Krapinunaya I , Gibbons A , Chiang CF , Cannon D , Klena J , Johnson JA , Owen SM , Graham BS , Corbett KS , Thornburg NJ . bioRxiv 2020 Since emergence of SARS-CoV-2 in late 2019, there has been a critical need to understand prevalence, transmission patterns, to calculate the burden of disease and case fatality rates. Molecular diagnostics, the gold standard for identifying viremic cases, are not ideal for determining true case counts and rates of asymptomatic infection. Serological detection of SARS-CoV-2 specific antibodies can contribute to filling these knowledge gaps. In this study, we describe optimization and validation of a SARS-CoV-2-specific-enzyme linked immunosorbent assay (ELISA) using the prefusion-stabilized form of the spike protein [1]. We performed receiver operator characteristic (ROC) analyses to define the specificities and sensitivities of the optimized assay and examined cross reactivity with immune sera from persons confirmed tohave had infections with other coronaviruses. These assays will be used to perform contact investigations and to conduct large-scale, cross sectional surveillance to define disease burden in the population. |
| Seoul virus infection and spread in US home-based ratteries-rat and human testing results from a multistate outbreak investigation.
Knust B , Brown S , de St Maurice A , Whitmer S , Koske SE , Ervin E , Patel K , Graziano J , Morales-Betoulle ME , House J , Cannon D , Kerins J , Holzbauer S , Austin C , Gibbons-Burgener S , Colton L , Dunn J , Zufan S , Choi MJ , Davis WR , Chiang CF , Manning CR , Roesch L , Shoemaker T , Purpura L , McQuiston J , Peterson D , Radcliffe R , Garvey A , Christel E , Morgan L , Scheftel J , Kazmierczak J , Klena JD , Nichol ST , Rollin PE . J Infect Dis 2020 222 (8) 1311-1319
BACKGROUND: During 2017, a multi-state outbreak investigation occurred following the confirmation of Seoul virus (SEOV) infections in people and pet rats. A total of 147 humans and 897 rats were tested. METHODS: In addition to IgG and IgM serology and traditional RT-PCR, novel quantitative RT-PCR primers/probe were developed, and whole genome sequencing was performed. RESULTS: Seventeen people had SEOV IgM, indicating recent infection; seven reported symptoms and three were hospitalized. All patients recovered. Thirty-one facilities in 11 US states had SEOV infection, and among those with >/=10 rats tested, rat IgG prevalence ranged 2-70% and SEOV RT-PCR positivity ranged 0-70%. Human lab-confirmed cases were significantly associated with rat IgG positivity and RT-PCR positivity (p=0.03 and p=0.006, respectively). Genomic sequencing identified >99.5% homology between SEOV sequences in this outbreak, and these were >99% identical to SEOV associated with previous pet rat infections in England, the Netherlands, and France. Frequent trade of rats between home-based ratteries contributed to transmission of SEOV between facilities. CONCLUSIONS: Pet rat owners, breeders, and the healthcare and public health community should be aware and take steps to prevent SEOV transmission in pet rats and to humans. Biosecurity measures and diagnostic testing can prevent further infections. |
| Marburg virus disease outbreak in Kween District Uganda, 2017: Epidemiological and laboratory findings
Nyakarahuka L , Shoemaker TR , Balinandi S , Chemos G , Kwesiga B , Mulei S , Kyondo J , Tumusiime A , Kofman A , Masiira B , Whitmer S , Brown S , Cannon D , Chiang CF , Graziano J , Morales-Betoulle M , Patel K , Zufan S , Komakech I , Natseri N , Chepkwurui PM , Lubwama B , Okiria J , Kayiwa J , Nkonwa IH , Eyu P , Nakiire L , Okarikod EC , Cheptoyek L , Wangila BE , Wanje M , Tusiime P , Bulage L , Mwebesa HG , Ario AR , Makumbi I , Nakinsige A , Muruta A , Nanyunja M , Homsy J , Zhu BP , Nelson L , Kaleebu P , Rollin PE , Nichol ST , Klena JD , Lutwama JJ . PLoS Negl Trop Dis 2019 13 (3) e0007257
INTRODUCTION: In October 2017, a blood sample from a resident of Kween District, Eastern Uganda, tested positive for Marburg virus. Within 24 hour of confirmation, a rapid outbreak response was initiated. Here, we present results of epidemiological and laboratory investigations. METHODS: A district task force was activated consisting of specialised teams to conduct case finding, case management and isolation, contact listing and follow up, sample collection and testing, and community engagement. An ecological investigation was also carried out to identify the potential source of infection. Virus isolation and Next Generation sequencing were performed to identify the strain of Marburg virus. RESULTS: Seventy individuals (34 MVD suspected cases and 36 close contacts of confirmed cases) were epidemiologically investigated, with blood samples tested for MVD. Only four cases met the MVD case definition; one was categorized as a probable case while the other three were confirmed cases. A total of 299 contacts were identified; during follow- up, two were confirmed as MVD. Of the four confirmed and probable MVD cases, three died, yielding a case fatality rate of 75%. All four cases belonged to a single family and 50% (2/4) of the MVD cases were female. All confirmed cases had clinical symptoms of fever, vomiting, abdominal pain and bleeding from body orifices. Viral sequences indicated that the Marburg virus strain responsible for this outbreak was closely related to virus strains previously shown to be circulating in Uganda. CONCLUSION: This outbreak of MVD occurred as a family cluster with no additional transmission outside of the four related cases. Rapid case detection, prompt laboratory testing at the Uganda National VHF Reference Laboratory and presence of pre-trained, well-prepared national and district rapid response teams facilitated the containment and control of this outbreak within one month, preventing nationwide and global transmission of the disease. |
| Notes from the Field: Contact tracing investigation after first case of Andes virus in the United States - Delaware, February 2018
Kofman A , Eggers P , Kjemtrup A , Hall R , Brown SM , Morales-Betoulle M , Graziano J , Zufan SE , Whitmer SLM , Cannon DL , Chiang CF , Choi MJ , Rollin PE , Cetron MS , Yaglom HD , Duwell M , Kuhar DT , Kretschmer M , Knust B , Klena JD , Alvarado-Ramy F , Shoemaker T , Towner JS , Nichol ST . MMWR Morb Mortal Wkly Rep 2018 67 (41) 1162-1163 In January 2018, a woman admitted to a Delaware hospital tested positive for New World hantavirus immunoglobulin M (IgM) and immunoglobulin G (IgG) by enzyme-linked immunosorbent assay (ELISA). Subsequent testing by CDC’s Viral Special Pathogens Branch detected New World hantavirus by nested reverse transcription–polymerase chain reaction (RT-PCR) and Andes virus by nucleic acid sequencing. This case represents the first confirmed importation of Andes virus infection into the United States; two imported cases have also been reported in Switzerland (1). Before her illness, the patient had traveled to the Andes region of Argentina and Chile from December 20, 2017, to January 3, 2018. She stayed in cabins and youth hostels in reportedly poor condition. No rodent exposures were reported. After returning to the United States on January 10, she developed fever, malaise, and myalgias on January 14. On January 17, while ill, she traveled on two commercial domestic flights. She was hospitalized during January 20–25 in Delaware and discharged to her home after clinical recovery. |
| Notes from the field: Exported case of sin nombre hantavirus pulmonary syndrome - Israel, 2017
Kofman A , Rahav G , Yazzie D , Shorty H , Yaglom HD , Peterson D , Peek-Bullock M , Choi MJ , Wieder-Finesod A , Klena JD , Venkat H , Chiang CF , Knust B , Gaither M , Maurer M , Hoeschele DR , Nichol ST . MMWR Morb Mortal Wkly Rep 2018 67 (40) 1129 In November 2017, CDC confirmed Sin Nombre virus (SNV) infection in a previously healthy man aged 47 years who was admitted to a hospital in Israel. The patient had traveled with his family on vacation to the southwestern United States (Arizona, Nevada, and Utah) during October 3–9, 2017. During this time, he and his family hiked and biked the southern rim of the Grand Canyon and Zion National Park and took a guided tour through Antelope Cave. On November 7, approximately 3 weeks after his return to Israel, he was hospitalized with fever, cough, and shortness of breath requiring bilevel positive airway pressure. A chest radiograph indicated diffuse reticulonodular infiltrates with consolidations at the right costophrenic angle and in the retrocardiac space. Based upon the patient’s travel history and clinical findings, hantavirus pulmonary syndrome was suspected. A blood specimen collected on November 9 tested positive for SNV using nested reverse transcription–polymerase chain reaction; he had an immunoglobulin M titer of ≥1:6,400 and an immunoglobulin G titer of ≥1:6,400. Hantavirus pulmonary syndrome has a mortality rate of approximately 36%.* The patient was treated with supportive care and discharged from the hospital on November 19. No illness was reported in any family member who traveled with him. |
| Notes from the field: Multiple cases of Seoul virus infection in a household with infected pet rats - Tennessee, December 2016-April 2017
Fill MA , Mullins H , May AS , Henderson H , Brown SM , Chiang CF , Patel NR , Klena JD , de St Maurice A , Knust B , Nichol ST , Dunn JR , Schaffner W , Jones TF . MMWR Morb Mortal Wkly Rep 2017 66 (40) 1081-1082 In late December 2016, a female aged 18 years in Tennessee (patient A) developed fever, chills, anorexia, nausea, and hematuria. Approximately 1 week later, she was evaluated by her local physician and received a diagnosis of an unspecified viral illness. Laboratory testing at that time was notable only for an elevated creatinine level (1.27 mg/dL; normal = 0.60–1.10 mg/dL). She recovered from her illness without treatment or complications. | In January 2017, an outbreak of Seoul virus infection was identified among rat breeders and owners in Wisconsin and Illinois. CDC assisted Illinois and Wisconsin health officials in performing tracing of potentially infected or exposed rats, and in late January 2017, the Tennessee Department of Health was notified that pet rats owned by patient A were linked to confirmed Seoul virus–infected rats. On February 14, 2017, a follow-up specimen of patient A’s blood tested positive for Seoul virus immunoglobulin M and immunoglobulin G by enzyme-linked immunosorbent assay; she declined testing of her rats, although they were presumed to be positive in light of the patient’s confirmed infection. Consistent with CDC guidance, the Tennessee Department of Health recommended euthanizing the rats; however, patient A refused. In collaboration with the Tennessee Department of Agriculture, an order of quarantine was issued to patient A, prohibiting movement of the rodents from her home. In addition, she and her family received extensive education about risk reduction techniques, including avoiding contact with rodent urine, droppings, saliva, and nesting materials. |
| Endocytic pathways used by Andes virus to enter primary human lung endothelial cells
Chiang CF , Flint M , Lin JS , Spiropoulou CF . PLoS One 2016 11 (10) e0164768 Andes virus (ANDV) is the major cause of hantavirus pulmonary syndrome (HPS) in South America. Despite a high fatality rate (up to 40%), no vaccines or antiviral therapies are approved to treat ANDV infection. To understand the role of endocytic pathways in ANDV infection, we used 3 complementary approaches to identify cellular factors required for ANDV entry into human lung microvascular endothelial cells. We screened an siRNA library targeting 140 genes involved in membrane trafficking, and identified 55 genes required for ANDV infection. These genes control the major endocytic pathways, endosomal transport, cell signaling, and cytoskeleton rearrangement. We then used infectious ANDV and retroviral pseudovirions to further characterize the possible involvement of 9 of these genes in the early steps of ANDV entry. In addition, we used markers of cellular endocytosis along with chemical inhibitors of known endocytic pathways to show that ANDV uses multiple routes of entry to infect target cells. These entry mechanisms are mainly clathrin-, dynamin-, and cholesterol-dependent, but can also occur via a clathrin-independent manner. |
| Ebola Virus Disease Diagnostics, Sierra Leone: Analysis of Real-time Reverse Transcription-Polymerase Chain Reaction Values for Clinical Blood and Oral Swab Specimens.
Erickson BR , Sealy TK , Flietstra T , Morgan L , Kargbo B , Matt-Lebby VE , Gibbons A , Chakrabarti AK , Graziano J , Presser L , Flint M , Bird BH , Brown S , Klena JD , Blau DM , Brault AC , Belser JA , Salzer JS , Schuh AJ , Lo M , Zivcec M , Priestley RA , Pyle M , Goodman C , Bearden S , Amman BR , Basile A , Bergeron E , Bowen MD , Dodd KA , Freeman MM , McMullan LK , Paddock CD , Russell BJ , Sanchez AJ , Towner JS , Wang D , Zemtsova GE , Stoddard RA , Turnsek M , Guerrero LW , Emery SL , Stovall J , Kainulainen MH , Perniciaro JL , Mijatovic-Rustempasic S , Shakirova G , Winter J , Sexton C , Liu F , Slater K , Anderson R , Andersen L , Chiang CF , Tzeng WP , Crowe SJ , Maenner MJ , Spiropoulou CF , Nichol ST , Stroher U . J Infect Dis 2016 214 S258-S262
During the Ebola virus outbreak of 2013-2016, the Viral Special Pathogens Branch field laboratory in Sierra Leone tested approximately 26 000 specimens between August 2014 and October 2015. Analysis of the B2M endogenous control Ct values showed its utility in monitoring specimen quality, comparing results with different specimen types, and interpretation of results. For live patients, blood is the most sensitive specimen type and oral swabs have little diagnostic utility. However, swabs are highly sensitive for diagnostic testing of corpses. |
| Small interfering RNA inhibition of Andes virus replication.
Chiang CF , Albarino CG , Lo MK , Spiropoulou CF . PLoS One 2014 9 (6) e99764
Andes virus (ANDV) is the most common causative agent of hantavirus pulmonary syndrome (HPS) in the Americas, and is the only hantavirus associated with human-to-human transmission. Case fatality rates of ANDV-induced HPS are approximately 40%. There are currently no effective vaccines or antivirals against ANDV. Since HPS severity correlates with viral load, we tested small interfering RNA (siRNA) directed against ANDV genes as a potential antiviral strategy. We designed pools of 4 siRNAs targeting each of the ANDV genome segments (S, M, and L), and tested their efficacy in reducing viral replication in vitro. The siRNA pool targeting the S segment reduced viral transcription and replication in Vero-E6 cells more efficiently than those targeting the M and L segments. In contrast, siRNAs targeting the S, M, or L segment were similar in their ability to reduce viral replication in human lung microvascular endothelial cells. Importantly, these siRNAs inhibit ANDV replication even if given after infection. Taken together, our findings indicate that siRNAs targeting the ANDV genome efficiently inhibit ANDV replication, and show promise as a strategy for developing therapeutics against ANDV infection. |
| Implementation of exon arrays: alternative splicing during T-cell proliferation as determined by whole genome analysis
Whistler T , Chiang CF , Lonergan W , Hollier M , Unger ER . BMC Genomics 2010 11 496
BACKGROUND: The contribution of alternative splicing and isoform expression to cellular response is emerging as an area of considerable interest, and the newly developed exon arrays allow for systematic study of these processes. We use this pilot study to report on the feasibility of exon array implementation looking to replace the 3' in vitro transcription expression arrays in our laboratory. One of the most widely studied models of cellular response is T-cell activation from exogenous stimulation. Microarray studies have contributed to our understanding of key pathways activated during T-cell stimulation. We use this system to examine whole genome transcription and alternate exon usage events that are regulated during lymphocyte proliferation in an attempt to evaluate the exon arrays. RESULTS: Peripheral blood mononuclear cells form healthy donors were activated using phytohemagglutinin, IL2 and ionomycin and harvested at 5 points over a 7 day period. Flow cytometry measured cell cycle events and the Affymetrix exon array platform was used to identify the gene expression and alternate exon usage changes. Gene expression changes were noted in a total of 2105 transcripts, and alternate exon usage identified in 472 transcript clusters. There was an overlap of 263 transcripts which showed both differential expression and alternate exon usage over time. Gene ontology enrichment analysis showed a broader range of biological changes in biological processes for the differentially expressed genes, which include cell cycle, cell division, cell proliferation, chromosome segregation, cell death, component organization and biogenesis and metabolic process ontologies. The alternate exon usage ontological enrichments are in metabolism and component organization and biogenesis. We focus on alternate exon usage changes in the transcripts of the spliceosome complex. The real-time PCR validation rates were 86% for transcript expression and 71% for alternate exon usage. CONCLUSIONS: This study illustrates that the Exon array technology has the potential to provide information on both transcript expression and isoform usage, with very little increase in expense. |
| Use of monoclonal antibodies against Hendra and Nipah viruses in an antigen capture ELISA
Chiang CF , Lo MK , Rota PA , Spiropoulou CF , Rollin PE . Virol J 2010 7 115 BACKGROUND: Outbreaks of Hendra (HeV) and Nipah (NiV) viruses have been reported starting in 1994 and 1998, respectively. Both viruses are capable of causing fatal disease in humans and effecting great economical loss in the livestock industry. RESULTS: Through screening of hybridomas derived from mice immunized with gamma-irradiated Nipah virus, we identified two secreted antibodies; one reactive with the nucleocapsid (N) protein and the other, the phosphoprotein (P) of henipaviruses. Epitope mapping and protein sequence alignments between NiV and HeV suggest the last 14 amino acids of the carboxyl terminus of the N protein is the target of the anti-N antibody. The anti-P antibody recognizes an epitope in the amino-terminal half of P protein. These monoclonal antibodies were used to develop two antigen capture ELISAs, one for virus detection and the other for differentiation between NiV and HeV. The lower limit of detection of the capture assay with both monoclonal antibodies was 400 pfu. The anti-N antibody was used to successfully detect NiV in a lung tissue suspension from an infected pig. CONCLUSION: The antigen capture ELISA developed is potentially affordable tool to provide rapid detection and differentiation between the henipaviruses. |
| The comparison of different pre- and post-analysis filters for determination of exon-level alternative splicing events using affymetrix arrays
Whistler T , Chiang CF , Lin JM , Lonergan W , Reeves WC . J Biomol Tech 2010 21 (1) 44-53
Understanding the biologic significance of alternative splicing has been impeded by the difficulty in systematically identifying and validating transcript isoforms. Current exon array workflows suggest several different filtration steps to reduce the number of tests and increase the detection of alternative splicing events. In this study, we examine the effects of the suggested pre-analysis filtration by detection above background P value or signal intensity. This is followed post-analytically by restriction of exon expression to a fivefold change between groups, limiting the analysis to known alternative splicing events, or using the intersection of the results from different algorithms. Combinations of the filters are also examined. We find that none of the filtering methods reduces the number of technical false-positive calls identified by visual inspection. These include edge effects, nonresponsive probe sets, and inclusion of intronic and untranslated region probe sets into transcript annotations. Modules for filtering the exon microarray data on the basis of annotation features are needed. We propose new approaches to data filtration that would reduce the number of technical false-positives and therefore, impact the time spent performing visual inspection of the exon arrays. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Aug 15, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure




