Last data update: Oct 07, 2024. (Total: 47845 publications since 2009)
Records 1-13 (of 13 Records) |
Query Trace: Chea Nora[original query] |
---|
Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States.
Kapoor M , Pringle K , Kumar A , Dearth S , Liu L , Lovchik J , Perez O , Pontones P , Richards S , Yeadon-Fagbohun J , Breakwell L , Chea N , Cohen NJ , Schneider E , Erdman D , Haynes L , Pallansch M , Tao Y , Tong S , Gerber S , Swerdlow D , Feikin DR . Clin Infect Dis 2014 59 (11) 1511-8 BACKGROUND: The Middle East respiratory syndrome coronavirus (MERS-CoV) was discovered September 2012 in the Kingdom of Saudi Arabia (KSA). The first US case of MERS-CoV was confirmed on 2 May 2014. METHODS: We summarize the clinical symptoms and signs, laboratory and radiologic findings, and MERS-CoV-specific tests. RESULTS: The patient is a 65-year-old physician who worked in a hospital in KSA where MERS-CoV patients were treated. His illness onset included malaise, myalgias, and low-grade fever. He flew to the United States on day of illness (DOI) 7. His first respiratory symptom, a dry cough, developed on DOI 10. On DOI 11, he presented to an Indiana hospital as dyspneic, hypoxic, and with a right lower lobe infiltrate on chest radiography. On DOI 12, his serum tested positive by real-time reverse transcription polymerase chain reaction (rRT-PCR) for MERS-CoV and showed high MERS-CoV antibody titers, whereas his nasopharyngeal swab was rRT-PCR negative. Expectorated sputum was rRT-PCR positive the following day, with a high viral load (5.31 × 10(6) copies/mL). He was treated with antibiotics, intravenous immunoglobulin, and oxygen by nasal cannula. He was discharged on DOI 22. The genome sequence was similar (>99%) to other known MERS-CoV sequences, clustering with those from KSA from June to July 2013. CONCLUSIONS: This patient had a prolonged nonspecific prodromal illness before developing respiratory symptoms. Both sera and sputum were rRT-PCR positive when nasopharyngeal specimens were negative. US clinicians must be vigilant for MERS-CoV in patients with febrile and/or respiratory illness with recent travel to the Arabian Peninsula, especially among healthcare workers. |
Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak - United States, December 31, 2019-February 4, 2020.
Patel A , Jernigan DB , 2019-nCOV CDC Response Team , Abdirizak Fatuma , Abedi Glen , Aggarwal Sharad , Albina Denise , Allen Elizabeth , Andersen Lauren , Anderson Jade , Anderson Megan , Anderson Tara , Anderson Kayla , Bardossy Ana Cecilia , Barry Vaughn , Beer Karlyn , Bell Michael , Berger Sherri , Bertulfo Joseph , Biggs Holly , Bornemann Jennifer , Bornstein Josh , Bower Willie , Bresee Joseph , Brown Clive , Budd Alicia , Buigut Jennifer , Burke Stephen , Burke Rachel , Burns Erin , Butler Jay , Cantrell Russell , Cardemil Cristina , Cates Jordan , Cetron Marty , Chatham-Stephens Kevin , Chatham-Stevens Kevin , Chea Nora , Christensen Bryan , Chu Victoria , Clarke Kevin , Cleveland Angela , Cohen Nicole , Cohen Max , Cohn Amanda , Collins Jennifer , Conners Erin , Curns Aaron , Dahl Rebecca , Daley Walter , Dasari Vishal , Davlantes Elizabeth , Dawson Patrick , Delaney Lisa , Donahue Matthew , Dowell Chad , Dyal Jonathan , Edens William , Eidex Rachel , Epstein Lauren , Evans Mary , Fagan Ryan , Farris Kevin , Feldstein Leora , Fox LeAnne , Frank Mark , Freeman Brandi , Fry Alicia , Fuller James , Galang Romeo , Gerber Sue , Gokhale Runa , Goldstein Sue , Gorman Sue , Gregg William , Greim William , Grube Steven , Hall Aron , Haynes Amber , Hill Sherrasa , Hornsby-Myers Jennifer , Hunter Jennifer , Ionta Christopher , Isenhour Cheryl , Jacobs Max , Jacobs Slifka Kara , Jernigan Daniel , Jhung Michael , Jones-Wormley Jamie , Kambhampati Anita , Kamili Shifaq , Kennedy Pamela , Kent Charlotte , Killerby Marie , Kim Lindsay , Kirking Hannah , Koonin Lisa , Koppaka Ram , Kosmos Christine , Kuhar David , Kuhnert-Tallman Wendi , Kujawski Stephanie , Kumar Archana , Landon Alexander , Lee Leslie , Leung Jessica , Lindstrom Stephen , Link-Gelles Ruth , Lively Joana , Lu Xiaoyan , Lynch Brian , Malapati Lakshmi , Mandel Samantha , Manns Brian , Marano Nina , Marlow Mariel , Marston Barbara , McClung Nancy , McClure Liz , McDonald Emily , McGovern Oliva , Messonnier Nancy , Midgley Claire , Moulia Danielle , Murray Janna , Noelte Kate , Noonan-Smith Michelle , Nordlund Kristen , Norton Emily , Oliver Sara , Pallansch Mark , Parashar Umesh , Patel Anita , Patel Manisha , Pettrone Kristen , Pierce Taran , Pietz Harald , Pillai Satish , Radonovich Lewis , Reagan-Steiner Sarah , Reel Amy , Reese Heather , Rha Brian , Ricks Philip , Rolfes Melissa , Roohi Shahrokh , Roper Lauren , Rotz Lisa , Routh Janell , Sakthivel Senthil Kumar Sarmiento Luisa , Schindelar Jessica , Schneider Eileen , Schuchat Anne , Scott Sarah , Shetty Varun , Shockey Caitlin , Shugart Jill , Stenger Mark , Stuckey Matthew , Sunshine Brittany , Sykes Tamara , Trapp Jonathan , Uyeki Timothy , Vahey Grace , Valderrama Amy , Villanueva Julie , Walker Tunicia , Wallace Megan , Wang Lijuan , Watson John , Weber Angie , Weinbaum Cindy , Weldon William , Westnedge Caroline , Whitaker Brett , Whitaker Michael , Williams Alcia , Williams Holly , Willams Ian , Wong Karen , Xie Amy , Yousef Anna . Am J Transplant 2020 20 (3) 889-895 This article summarizes what is currently known about the 2019 novel coronavirus and offers interim guidance. |
Molecular epidemiology of carbapenem-resistant Enterobacterales in Thailand, 2016-2018.
Paveenkittiporn W , Lyman M , Biedron C , Chea N , Bunthi C , Kolwaite A , Janejai N . Antimicrob Resist Infect Control 2021 10 (1) 88 BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) is a global threat. Enterobacterales develops carbapenem resistance through several mechanisms, including the production of carbapenemases. We aim to describe the prevalence of Carbapenem-resistant Enterobacterales (CRE) with and without carbapenemase production and distribution of carbapenemase-producing (CP) genes in Thailand using 2016-2018 data from a national antimicrobial resistance surveillance system developed by the Thailand National Institute of Health (NIH). METHODS: CRE was defined as any Enterobacterales resistant to ertapenem, imipenem, or meropenem. Starting in 2016, 25 tertiary care hospitals from the five regions of Thailand submitted the first CRE isolate from each specimen type and patient admission to Thailand NIH, accompanied by a case report form with patient information. NIH performed confirmatory identification and antimicrobial susceptibility testing and performed multiplex polymerase chain reaction testing to detect CP-genes. Using 2016-2018 data, we calculated proportions of CP-CRE, stratified by specimen type, organism, and CP-gene using SAS 9.4. RESULTS: Overall, 4,296 presumed CRE isolates were submitted to Thailand NIH; 3,946 (93%) were confirmed CRE. Urine (n = 1622, 41%) and sputum (n = 1380, 35%) were the most common specimen types, while blood only accounted for 323 (8%) CRE isolates. The most common organism was Klebsiella pneumoniae (n = 2660, 72%), followed by Escherichia coli (n = 799, 22%). The proportion of CP-CRE was high for all organism types (range: 85-98%). Of all CRE isolates, 2909 (80%) had one CP-gene and 629 (17%) had > 1 CP-gene. New Delhi metallo-beta-lactamase (NDM) was the most common CP-gene, present in 2392 (65%) CRE isolates. K. pneumoniae carbapenemase (KPC) and Verona integron-encoded metallo-β-lactamase (VIM) genes were not detected among any isolates. CONCLUSION: CP genes were found in a high proportion (97%) of CRE isolates from hospitals across Thailand. The prevalence of NDM and OXA-48-like genes in Thailand is consistent with pattern seen in Southeast Asia, but different from that in the United States and other regions. As carbapenemase testing is not routinely performed in Thailand, hospital staff should consider treating all patients with CRE with enhanced infection control measures; in line with CDC recommendation for enhanced infection control measures for CP-CRE because of their high propensity to spread. |
Practices and activities among healthcare personnel with severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection working in different healthcare settings-ten Emerging Infections Program sites, April-November 2020.
Chea N , Eure T , Penna AR , Brown CJ , Nadle J , Godine D , Frank L , Czaja CA , Johnston H , Barter D , Miller BF , Angell K , Marshall K , Meek J , Brackney M , Carswell S , Thomas S , Wilson LE , Perlmutter R , Marceaux-Galli K , Fell A , Lim S , Lynfield R , Davis SS , Phipps EC , Sievers M , Dumyati G , Concannon C , McCullough K , Woods A , Seshadri S , Myers C , Pierce R , Ocampo VLS , Guzman-Cottrill JA , Escutia G , Samper M , Pena SA , Adre C , Groenewold M , Thompson ND , Magill SS . Infect Control Hosp Epidemiol 2021 43 (8) 1-17 Healthcare personnel with SARS-CoV-2 infection were interviewed to describe activities and practices in and outside the workplace. Among 2,625 healthcare personnel, workplace-related factors that may increase infection risk were more common among nursing home personnel than hospital personnel, whereas selected factors outside the workplace were more common among hospital personnel. |
Interim Estimates of Vaccine Effectiveness of Pfizer-BioNTech and Moderna COVID-19 Vaccines Among Health Care Personnel - 33 U.S. Sites, January-March 2021.
Pilishvili T , Fleming-Dutra KE , Farrar JL , Gierke R , Mohr NM , Talan DA , Krishnadasan A , Harland KK , Smithline HA , Hou PC , Lee LC , Lim SC , Moran GJ , Krebs E , Steele M , Beiser DG , Faine B , Haran JP , Nandi U , Schrading WA , Chinnock B , Henning DJ , LoVecchio F , Nadle J , Barter D , Brackney M , Britton A , Marceaux-Galli K , Lim S , Phipps EC , Dumyati G , Pierce R , Markus TM , Anderson DJ , Debes AK , Lin M , Mayer J , Babcock HM , Safdar N , Fischer M , Singleton R , Chea N , Magill SS , Verani J , Schrag S . MMWR Morb Mortal Wkly Rep 2021 70 (20) 753-758 Throughout the COVID-19 pandemic, health care personnel (HCP) have been at high risk for exposure to SARS-CoV-2, the virus that causes COVID-19, through patient interactions and community exposure (1). The Advisory Committee on Immunization Practices recommended prioritization of HCP for COVID-19 vaccination to maintain provision of critical services and reduce spread of infection in health care settings (2). Early distribution of two mRNA COVID-19 vaccines (Pfizer-BioNTech and Moderna) to HCP allowed assessment of the effectiveness of these vaccines in a real-world setting. A test-negative case-control study is underway to evaluate mRNA COVID-19 vaccine effectiveness (VE) against symptomatic illness among HCP at 33 U.S. sites across 25 U.S. states. Interim analyses indicated that the VE of a single dose (measured 14 days after the first dose through 6 days after the second dose) was 82% (95% confidence interval [CI] = 74%-87%), adjusted for age, race/ethnicity, and underlying medical conditions. The adjusted VE of 2 doses (measured ≥7 days after the second dose) was 94% (95% CI = 87%-97%). VE of partial (1-dose) and complete (2-dose) vaccination in this population is comparable to that reported from clinical trials and recent observational studies, supporting the effectiveness of mRNA COVID-19 vaccines against symptomatic disease in adults, with strong 2-dose protection. |
Occupational Risk Factors for SARS-CoV-2 Infection among Healthcare Personnel: A Cross-Sectional Analysis of Subjects Enrolled in the COPE Study.
Howard-Anderson J , Adams C , Sherman AC , Dube WC , Smith TC , Edupuganti N , Chea N , Magill SS , Espinoza DO , Zhu Y , Phadke VK , Edupuganti S , Steinberg JP , Lopman BA , Jacob JT , Collins MH , Fridkin SK . Infect Control Hosp Epidemiol 2021 43 (3) 1-20 Among 353 healthcare personnel in a longitudinal cohort in four hospitals in Atlanta, GA (May-June 2020), 23 (6.5%) had SARS-CoV-2 antibodies. Spending >50% of a typical shift at bedside (OR 3.4, 95% CI: 1.2-10.5) and Black race (OR 8.4, 95% CI: 2.7-27.4) were associated with SARS-CoV-2 seropositivity. |
COVID-19-Associated Hospitalizations Among Health Care Personnel - COVID-NET, 13 States, March 1-May 31, 2020.
Kambhampati AK , O'Halloran AC , Whitaker M , Magill SS , Chea N , Chai SJ , Daily Kirley P , Herlihy RK , Kawasaki B , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Monroe ML , Ryan PA , Kim S , Reeg L , Como-Sabetti K , Danila R , Davis SS , Torres S , Barney G , Spina NL , Bennett NM , Felsen CB , Billing LM , Shiltz J , Sutton M , West N , Schaffner W , Talbot HK , Chatelain R , Hill M , Brammer L , Fry AM , Hall AJ , Wortham JM , Garg S , Kim L . MMWR Morb Mortal Wkly Rep 2020 69 (43) 1576-1583 Health care personnel (HCP) can be exposed to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), both within and outside the workplace, increasing their risk for infection. Among 6,760 adults hospitalized during March 1-May 31, 2020, for whom HCP status was determined by the COVID-19-Associated Hospitalization Surveillance Network (COVID-NET), 5.9% were HCP. Nursing-related occupations (36.3%) represented the largest proportion of HCP hospitalized with COVID-19. Median age of hospitalized HCP was 49 years, and 89.8% had at least one underlying medical condition, of which obesity was most commonly reported (72.5%). A substantial proportion of HCP with COVID-19 had indicators of severe disease: 27.5% were admitted to an intensive care unit (ICU), 15.8% required invasive mechanical ventilation, and 4.2% died during hospitalization. HCP can have severe COVID-19-associated illness, highlighting the need for continued infection prevention and control in health care settings as well as community mitigation efforts to reduce transmission. |
Enhanced contact investigations for nine early travel-related cases of SARS-CoV-2 in the United States.
Burke RM , Balter S , Barnes E , Barry V , Bartlett K , Beer KD , Benowitz I , Biggs HM , Bruce H , Bryant-Genevier J , Cates J , Chatham-Stephens K , Chea N , Chiou H , Christiansen D , Chu VT , Clark S , Cody SH , Cohen M , Conners EE , Dasari V , Dawson P , DeSalvo T , Donahue M , Dratch A , Duca L , Duchin J , Dyal JW , Feldstein LR , Fenstersheib M , Fischer M , Fisher R , Foo C , Freeman-Ponder B , Fry AM , Gant J , Gautom R , Ghinai I , Gounder P , Grigg CT , Gunzenhauser J , Hall AJ , Han GS , Haupt T , Holshue M , Hunter J , Ibrahim MB , Jacobs MW , Jarashow MC , Joshi K , Kamali T , Kawakami V , Kim M , Kirking HL , Kita-Yarbro A , Klos R , Kobayashi M , Kocharian A , Lang M , Layden J , Leidman E , Lindquist S , Lindstrom S , Link-Gelles R , Marlow M , Mattison CP , McClung N , McPherson TD , Mello L , Midgley CM , Novosad S , Patel MT , Pettrone K , Pillai SK , Pray IW , Reese HE , Rhodes H , Robinson S , Rolfes M , Routh J , Rubin R , Rudman SL , Russell D , Scott S , Shetty V , Smith-Jeffcoat SE , Soda EA , Spitters C , Stierman B , Sunenshine R , Terashita D , Traub E , Vahey GM , Verani JR , Wallace M , Westercamp M , Wortham J , Xie A , Yousaf A , Zahn M . PLoS One 2020 15 (9) e0238342 Coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. In response to the first cases identified in the United States, close contacts of confirmed COVID-19 cases were investigated to enable early identification and isolation of additional cases and to learn more about risk factors for transmission. Close contacts of nine early travel-related cases in the United States were identified and monitored daily for development of symptoms (active monitoring). Selected close contacts (including those with exposures categorized as higher risk) were targeted for collection of additional exposure information and respiratory samples. Respiratory samples were tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction at the Centers for Disease Control and Prevention. Four hundred four close contacts were actively monitored in the jurisdictions that managed the travel-related cases. Three hundred thirty-eight of the 404 close contacts provided at least basic exposure information, of whom 159 close contacts had ≥1 set of respiratory samples collected and tested. Across all actively monitored close contacts, two additional symptomatic COVID-19 cases (i.e., secondary cases) were identified; both secondary cases were in spouses of travel-associated case patients. When considering only household members, all of whom had ≥1 respiratory sample tested for SARS-CoV-2, the secondary attack rate (i.e., the number of secondary cases as a proportion of total close contacts) was 13% (95% CI: 4-38%). The results from these contact tracing investigations suggest that household members, especially significant others, of COVID-19 cases are at highest risk of becoming infected. The importance of personal protective equipment for healthcare workers is also underlined. Isolation of persons with COVID-19, in combination with quarantine of exposed close contacts and practice of everyday preventive behaviors, is important to mitigate spread of COVID-19. |
Real-Time Polymerase Chain Reaction Detection of Angiostrongylus cantonensis DNA in Cerebrospinal Fluid from Patients with Eosinophilic Meningitis.
Qvarnstrom Y , Xayavong M , Aramburu da Silva AC , Park SY , Whelen AC , Calimlim PS , Sciulli RH , Honda SA , Higa K , Kitsutani P , Chea N , Heng S , Johnson S , Graeff-Teixeira C , Fox LM , da Silva AJ . Am J Trop Med Hyg 2015 94 (1) 176-81 Angiostrongylus cantonensis is the most common infectious cause of eosinophilic meningitis. Timely diagnosis of these infections is difficult, partly because reliable laboratory diagnostic methods are unavailable. The aim of this study was to evaluate the usefulness of a real-time polymerase chain reaction (PCR) assay for the detection of A. cantonensis DNA in human cerebrospinal fluid (CSF) specimens. A total of 49 CSF specimens from 33 patients with eosinophilic meningitis were included: A. cantonensis DNA was detected in 32 CSF specimens, from 22 patients. Four patients had intermittently positive and negative real-time PCR results on subsequent samples, indicating that the level of A. cantonensis DNA present in CSF may fluctuate during the course of the illness. Immunodiagnosis and/or supplemental PCR testing supported the real-time PCR findings for 30 patients. On the basis of these observations, this real-time PCR assay can be useful to detect A. cantonensis in the CSF from patients with eosinophilic meningitis. |
Improved Phenotype-Based Definition for Identifying Carbapenemase Producers among Carbapenem-Resistant Enterobacteriaceae.
Chea N , Bulens SN , Kongphet-Tran T , Lynfield R , Shaw KM , Vagnone PS , Kainer MA , Muleta DB , Wilson L , Vaeth E , Dumyati G , Concannon C , Phipps EC , Culbreath K , Janelle SJ , Bamberg WM , Guh AY , Limbago B , Kallen AJ . Emerg Infect Dis 2015 21 (9) 1611-6 Preventing transmission of carbapenemase-producing, carbapenem-resistant Enterobacteriaceae (CP-CRE) is a public health priority. A phenotype-based definition that reliably identifies CP-CRE while minimizing misclassification of non-CP-CRE could help prevention efforts. To assess possible definitions, we evaluated enterobacterial isolates that had been tested and deemed nonsusceptible to >1 carbapenem at US Emerging Infections Program sites. We determined the number of non-CP isolates that met (false positives) and CP isolates that did not meet (false negatives) the Centers for Disease Control and Prevention CRE definition in use during our study: 30% (94/312) of CRE had carbapenemase genes, and 21% (14/67) of Klebsiella pneumoniae carbapenemase-producing Klebsiella isolates had been misclassified as non-CP. A new definition requiring resistance to 1 carbapenem rarely missed CP strains, but 55% of results were false positive; adding the modified Hodge test to the definition decreased false positives to 12%. This definition should be considered for use in carbapenemase-producing CRE surveillance and prevention. |
Epidemiologic Investigation of a Cluster of Neuroinvasive Bacillus cereus Infections in 5 Patients With Acute Myelogenous Leukemia.
Rhee C , Klompas M , Tamburini FB , Fremin BJ , Chea N , Epstein L , Halpin AL , Guh A , Gallen R , Coulliette A , Gee J , Hsieh C , Desjardins CA , Pedamullu CS , DeAngelo DJ , Manzo VE , Folkerth RD , Milner DA Jr , Pecora N , Osborne M , Chalifoux-Judge D , Bhatt AS , Yokoe DS . Open Forum Infect Dis 2015 2 (3) ofv096 BACKGROUND: Five neuroinvasive Bacillus cereus infections (4 fatal) occurred in hospitalized patients with acute myelogenous leukemia (AML) during a 9-month period, prompting an investigation by infection control and public health officials. METHODS: Medical records of case-patients were reviewed and a matched case-control study was performed. Infection control practices were observed. Multiple environmental, food, and medication samples common to AML patients were cultured. Multilocus sequence typing was performed for case and environmental B cereus isolates. RESULTS: All 5 case-patients received chemotherapy and had early-onset neutropenic fevers that resolved with empiric antibiotics. Fever recurred at a median of 17 days (range, 9-20) with headaches and abrupt neurological deterioration. Case-patients had B cereus identified in central nervous system (CNS) samples by (1) polymerase chain reaction or culture or (2) bacilli seen on CNS pathology stains with high-grade B cereus bacteremia. Two case-patients also had colonic ulcers with abundant bacilli on autopsy. No infection control breaches were observed. On case-control analysis, bananas were the only significant exposure shared by all 5 case-patients (odds ratio, 9.3; P = .04). Five environmental or food isolates tested positive for B cereus, including a homogenized banana peel isolate and the shelf of a kitchen cart where bananas were stored. Multilocus sequence typing confirmed that all case and environmental strains were genetically distinct. Multilocus sequence typing-based phylogenetic analysis revealed that the organisms clustered in 2 separate clades. CONCLUSIONS: The investigation of this neuroinvasive B cereus cluster did not identify a single point source but was suggestive of a possible dietary exposure. Our experience underscores the potential virulence of B cereus in immunocompromised hosts. |
Epidemiological and virological characteristics of influenza viruses circulating in Cambodia from 2009 to 2011.
Horm SV , Mardy S , Rith S , Ly S , Heng S , Vong S , Kitsutani P , Ieng V , Tarantola A , Ly S , Sar B , Chea N , Sokhal B , Barr I , Kelso A , Horwood PF , Timmermans A , Hurt A , Lon C , Saunders D , Ung SA , Asgari N , Roces MC , Touch S , Komadina N , Buchy P . PLoS One 2014 9 (10) e110713 BACKGROUND: The Cambodian National Influenza Center (NIC) monitored and characterized circulating influenza strains from 2009 to 2011. METHODOLOGY/PRINCIPAL FINDINGS: Sentinel and study sites collected nasopharyngeal specimens for diagnostic detection, virus isolation, antigenic characterization, sequencing and antiviral susceptibility analysis from patients who fulfilled case definitions for influenza-like illness, acute lower respiratory infections and event-based surveillance. Each year in Cambodia, influenza viruses were detected mainly from June to November, during the rainy season. Antigenic analysis show that A/H1N1pdm09 isolates belonged to the A/California/7/2009-like group. Circulating A/H3N2 strains were A/Brisbane/10/2007-like in 2009 before drifting to A/Perth/16/2009-like in 2010 and 2011. The Cambodian influenza B isolates from 2009 to 2011 all belonged to the B/Victoria lineage represented by the vaccine strains B/Brisbane/60/2008 and B/Malaysia/2506/2004. Sequences of the M2 gene obtained from representative 2009-2011 A/H3N2 and A/H1N1pdm09 strains all contained the S31N mutation associated with adamantanes resistance except for one A/H1N1pdm09 strain isolated in 2011 that lacked this mutation. No reduction in the susceptibility to neuraminidase inhibitors was observed among the influenza viruses circulating from 2009 to 2011. Phylogenetic analysis revealed that A/H3N2 strains clustered each year to a distinct group while most A/H1N1pdm09 isolates belonged to the S203T clade. CONCLUSIONS/SIGNIFICANCE: In Cambodia, from 2009 to 2011, influenza activity occurred throughout the year with peak seasonality during the rainy season from June to November. Seasonal influenza epidemics were due to multiple genetically distinct viruses, even though all of the isolates were antigenically similar to the reference vaccine strains. The drug susceptibility profile of Cambodian influenza strains revealed that neuraminidase inhibitors would be the drug of choice for influenza treatment and chemoprophylaxis in Cambodia, as adamantanes are no longer expected to be effective. |
Identification of molecular markers associated with alteration of receptor-binding specificity in a novel genotype of highly pathogenic avian influenza A(H5N1) viruses detected in Cambodia in 2013.
Rith S , Davis CT , Duong V , Sar B , Horm SV , Chin S , Ly S , Laurent D , Richner B , Oboho I , Jang Y , Davis W , Thor S , Balish A , Iuliano AD , Sorn S , Holl D , Sok T , Seng H , Tarantola A , Tsuyuoka R , Parry A , Chea N , Allal L , Kitsutani P , Warren D , Prouty M , Horwood P , Widdowson MA , Lindstrom S , Villanueva J , Donis R , Cox N , Buchy P . J Virol 2014 88 (23) 13897-909 Human infections with influenza A(H5N1) virus in Cambodia increased sharply during 2013. Molecular characterization of viruses detected in clinical specimens from human cases revealed the presence of mutations associated with alteration of receptor-binding specificity (K189R, Q222L) and respiratory droplet transmission in ferrets (N220K with Q222L). Discovery of quasispecies at position 222 (Q/L), in addition to absence of the mutations in poultry/environmental samples, suggested the mutations occurred during human infection and did not transmit further. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 07, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure