Last data update: Jan 27, 2025. (Total: 48650 publications since 2009)
Records 1-30 (of 51 Records) |
Query Trace: Chatterjee P[original query] |
---|
Delayed low-dose oral administration of 4'-fluorouridine inhibits pathogenic arenaviruses in animal models of lethal disease
Welch SR , Spengler JR , Westover JB , Bailey KW , Davies KA , Aida-Ficken V , Bluemling GR , Boardman KM , Wasson SR , Mao S , Kuiper DL , Hager MW , Saindane MT , Andrews MK , Krueger RE , Sticher ZM , Jung KH , Chatterjee P , Shrivastava-Ranjan P , Lo MK , Coleman-McCray JD , Sorvillo TE , Genzer SC , Scholte FEM , Kelly JA , Jenks MH , McMullan LK , Albariño CG , Montgomery JM , Painter GR , Natchus MG , Kolykhalov AA , Gowen BB , Spiropoulou CF , Flint M . Sci Transl Med 2024 16 (774) eado7034 Development of broad-spectrum antiviral therapies is critical for outbreak and pandemic preparedness against emerging and reemerging viruses. Viruses inducing hemorrhagic fevers cause high morbidity and mortality in humans and are associated with several recent international outbreaks, but approved therapies for treating most of these pathogens are lacking. Here, we show that 4'-fluorouridine (4'-FlU; EIDD-2749), an orally available ribonucleoside analog, has antiviral activity against multiple hemorrhagic fever viruses in cell culture, including Nipah virus, Crimean-Congo hemorrhagic fever virus, orthohantaviruses, and arenaviruses. We performed preclinical in vivo evaluation of oral 4'-FlU against two arenaviruses, Old World Lassa virus (LASV) and New World Junín virus (JUNV), in guinea pig models of lethal disease. 4'-FlU demonstrated both advantageous pharmacokinetic characteristics and high efficacy in both of these lethal disease guinea pig models. Additional experiments supported protection of the infected animals even when 4'-FlU delivery was reduced to a low dose of 0.5 milligram per kilogram. To demonstrate clinical utility, 4'-FlU treatment was evaluated when initiated late in the course of infection (12 or 9 days after infection for LASV and JUNV, respectively). Delayed treatment resulted in rapid resolution of clinical signs, demonstrating an extended window for therapeutic intervention. These data support the use of 4'-FlU as a potent and efficacious treatment against highly pathogenic arenaviruses of public health concern with a virus inhibition profile suggesting broad-spectrum utility as an orally available antiviral drug against a wide variety of viral pathogens. |
Optimization of Bangladesh and Malaysian genotype recombinant reporter Nipah viruses for in vitro antiviral screening and in vivo disease modeling
Lo MK , Jain S , Davies KA , Sorvillo TE , Welch SR , Coleman-McCray JD , Chatterjee P , Hotard AL , O'Neal T , Flint M , Ai H , Albariño CG , Spengler JR , Montgomery JM , Spiropoulou CF . Antiviral Res 2024 231 106013 ![]() ![]() Nipah virus (NiV) causes near-annual outbreaks of fatal encephalitis and respiratory disease in South Asia with a high mortality rate (∼70%). Since there are no approved therapeutics for NiV disease in humans, the WHO has designated NiV and henipaviral diseases priority pathogens for research and development. We generated a new recombinant green fluorescent reporter NiV of the circulating Bangladesh genotype (rNiV-B-ZsG) and optimized it alongside our previously generated Malaysian genotype reporter counterpart (rNiV-M-ZsG) for antiviral screening in primary-like human respiratory cell types. Validating our platform for rNiV-B-ZsG with a synthetic compound library directed against viral RNA-dependent RNA polymerases, we identified a hit compound and confirmed its sub-micromolar activity against wild-type NiV, green fluorescent reporter, and the newly constructed bioluminescent red fluorescent double reporter (rNiV-B-BREP) NiV. We furthermore demonstrated that rNiV-B-ZsG and rNiV-B-BREP viruses showed pathogenicity comparable to wild-type NiV-B in the Syrian golden hamster model of disease, supporting additional use of these tools for both pathogenesis and advanced pre-clinical studies in vivo. |
Identification of a macrocyclic compound targeting the Lassa virus polymerase
Aida-Ficken V , Kelly JA , Chatterjee P , Jenks MH , McMullan LK , Albariño CG , Montgomery JM , Seley-Radtke KL , Spiropoulou CF , Flint M . Antiviral Res 2024 105923 There are no approved vaccines or therapeutics for Lassa virus (LASV) infections. To identify compounds with anti-LASV activity, we conducted a cell-based screening campaign at biosafety level 4 and tested almost 60,000 compounds for activity against an infectious reporter LASV. Hits from this screen included several structurally related macrocycles. The most potent, Mac128, had a sub-micromolar EC(50) against the reporter virus, inhibited wild-type clade IV LASV, and reduced viral titers by 4 orders of magnitude. Mechanistic studies suggested that Mac128 inhibited viral replication at the level of the polymerase. |
Examination of SARS-CoV-2 serological test results from multiple commercial and laboratory platforms with an in-house serum panel
Lester SN , Stumpf M , Freeman BD , Mills L , Schiffer J , Semenova V , Jia T , Desai R , Browning P , Alston B , Ategbole M , Bolcen S , Chen A , David E , Manitis P , Tatum H , Qin Y , Zellner B , Drobeniuc J , Tejada-Strop A , Chatterjee P , Shrivastava-Ranjan P , Jenks MH , McMullan LK , Flint M , Spiropoulou CF , Niemeyer GP , Werner BJ , Bean CJ , Johnson JA , Hoffmaster AR , Satheshkumar PS , Schuh AJ , Owen SM , Thornburg NJ . Access Microbiol 2024 6 (2) Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that was identified in 2019. SARS-CoV-2 infection results in an acute, severe respiratory disease called coronavirus disease 2019 (COVID-19). The emergence and rapid spread of SARS-CoV-2 has led to a global public health crisis, which continues to affect populations across the globe. Real time reverse transcription polymerase chain reaction (rRT-PCR) is the reference standard test for COVID-19 diagnosis. Serological tests are valuable tools for serosurveillance programs and establishing correlates of protection from disease. This study evaluated the performance of one in-house enzyme linked immunosorbent assay (ELISA) utilizing the pre-fusion stabilized ectodomain of SARS-CoV-2 spike (S), two commercially available chemiluminescence assays Ortho VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagent Pack and Abbott SARS-CoV-2 IgG assay and one commercially available Surrogate Virus Neutralization Test (sVNT), GenScript USA Inc., cPass SARS-CoV-2 Neutralization Antibody Detection Kit for the detection of SARS-CoV-2 specific antibodies. Using a panel of rRT-PCR confirmed COVID-19 patients' sera and a negative control group as a reference standard, all three immunoassays demonstrated high comparable positivity rates and low discordant rates. All three immunoassays were highly sensitive with estimated sensitivities ranging from 95.4-96.6 %. ROC curve analysis indicated that all three immunoassays had high diagnostic accuracies with area under the curve (AUC) values ranging from 0.9698 to 0.9807. High positive correlation was demonstrated among the conventional microneutralization test (MNT) titers and the sVNT inhibition percent values. Our study indicates that independent evaluations are necessary to optimize the overall utility and the interpretation of the results of serological tests. Overall, we demonstrate that all serological tests evaluated in this study are suitable for the detection of SARS-CoV-2 antibodies. |
High-throughput quantitation of SARS-CoV-2 antibodies in a single-dilution homogeneous assay (preprint)
Kainulainen MH , Bergeron E , Chatterjee P , Chapman AP , Lee J , Chida A , Tang X , Wharton RE , Mercer KB , Petway M , Jenks HM , Flietstra TD , Schuh AJ , Satheshkumar PS , Chaitram JM , Owen SM , Finn MG , Goldstein JM , Montgomery JM , Spiropoulou CF . medRxiv 2020 2020.09.16.20195446 SARS-CoV-2 emerged in late 2019 and has since spread around the world, causing a pandemic of the respiratory disease COVID-19. Detecting antibodies against the virus is an essential tool for tracking infections and developing vaccines. Such tests, primarily utilizing the enzyme-linked immunosorbent assay (ELISA) principle, can be either qualitative (reporting positive/negative results) or quantitative (reporting a value representing the quantity of specific antibodies). Quantitation is vital for determining stability or decline of antibody titers in convalescence, efficacy of different vaccination regimens, and detection of asymptomatic infections. Quantitation typically requires two-step ELISA testing, in which samples are first screened in a qualitative assay and positive samples are subsequently analyzed as a dilution series. To overcome the throughput limitations of this approach, we developed a simpler and faster system that is highly automatable and achieves quantitation in a single-dilution screening format with sensitivity and specificity comparable to those of ELISA.One sentence summary Protein complementation enables mix-and-read SARS-CoV-2 serology that rivals sensitivity and specificity of ELISA but excels in throughput and quantitation.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis research was funded by the Centers for Disease Control and Prevention.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Residual specimen materials were used for diagnostics development under a protocol that was reviewed and approved by the CDC Institutional Review Board (See 45 C.F.R. part 46; 21 C.F.R. part 56)All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesNo external data links |
Improving reporting standards for polygenic scores in risk prediction studies (preprint)
Wand H , Lambert SA , Tamburro C , Iacocca MA , O'Sullivan JW , Sillari C , Kullo IJ , Rowley R , Dron JS , Brockman D , Venner E , McCarthy MI , Antoniou AC , Easton DF , Hegele RA , Khera AV , Chatterjee N , Kooperberg C , Edwards K , Vlessis K , Kinnear K , Danesh JN , Parkinson H , Ramos EM , Roberts MC , Ormond KE , Khoury MJ , Janssens Acjw , Goddard KAB , Kraft P , MacArthur JAL , Inouye M , Wojcik GL . medRxiv 2020 2020.04.23.20077099 Polygenic risk scores (PRS), often aggregating the results from genome-wide association studies, can bridge the gap between the initial discovery efforts and clinical applications for disease risk estimation. However, there is remarkable heterogeneity in the reporting of these risk scores. This lack of adherence to reporting standards hinders the translation of PRS into clinical care. The ClinGen Complex Disease Working Group, in a collaboration with the Polygenic Score (PGS) Catalog, have updated the Genetic Risk Prediction (GRIPS) Reporting Statement to the current state of the field and to enable downstream utility. Drawing upon experts in epidemiology, statistics, disease-specific applications, implementation, and policy, this 22-item reporting framework defines the minimal information needed to interpret and evaluate a PRS, especially with respect to any downstream clinical applications. Items span detailed descriptions of the study population (recruitment method, key demographic and clinical characteristics, inclusion/exclusion criteria, and outcome definition), statistical methods for both PRS development and validation, and considerations for potential limitations of the published risk score and downstream clinical utility. Additionally, emphasis has been placed on data availability and transparency to facilitate reproducibility and benchmarking against other PRS, such as deposition in the publicly available PGS Catalog. By providing these criteria in a structured format that builds upon existing standards and ontologies, the use of this framework in publishing PRS will facilitate translation of PRS into clinical care and progress towards defining best practices.Summary In recent years, polygenic risk scores (PRS) have increasingly been used to capture the genome-wide liability underlying many human traits and diseases, hoping to better inform an individual’s genetic risk. However, a lack of adherence to existing reporting standards has hindered the translation of this important tool into clinical and public health practice; in particular, details necessary for benchmarking and reproducibility are underreported. To address this gap, the ClinGen Complex Disease Working Group and Polygenic Score (PGS) Catalog have updated the Genetic Risk Prediction (GRIPS) Reporting Statement into the 22-item Polygenic Risk Score Reporting Statement (PRS-RS). This framework provides the minimal information expected of authors to promote the validity, transparency, and reproducibility of PRS by encouraging authors to detail the study population, statistical methods, and potential clinical utility of a published score. The widespread adoption of this framework will encourage rigorous methodological consideration and facilitate benchmarking to ensure high quality scores are translated into the clinic.Competing Interest StatementMIM is on the advisory panels Pfizer, Novo Nordisk, and Zoe Global; Honoraria: Merck, Pfizer, Novo Nordisk, and Eli Lilly; Research funding: Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, Novo Nordisk, Pfizer, Roche, Sanofi Aventis, Servier & Takeda. As of June 2019, he is an employee of Genentech with stock and stock options in Roche. No other authors have competing interests to declare.Funding StatementClinGen is primarily funded by the National Human Genome Research Institute (NHGRI), through the following three grants: U41HG006834, U41HG009649, U41HG009650. ClinGen also receives support for content curation from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), through the following three grants: U24HD093483, U24HD093486, U24HD093487. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additionally, the views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health. Research reported in this publication was supported by the National Human Genome Research Institute of the National Institutes of Health under Award Number U41HG007823 (EBI-NHGRI GWAS Catalog, PGS Catalog). In addition, we acknowledge funding from the European Molecular Biology Laboratory. Individuals were funded from the following sources: MIM was a Wellcome Investigator and an NIHR Senior Investigator with funding from NIDDK (U01-DK105535); Wellcome (090532, 098381, 106130, 203141, 212259). MI, SAL, and JD were supported by core funding from: the UK Medical Research Council (MR/L003120/1), the British Heart Foundation (RG/13/13/30194; RG/18/13/33946) and the National Institute for Health Research (Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust). SAL is supported by a Canadian Institutes of Health Research postdoctoral fellowship (MFE-171279). JD holds a British Heart Foundation Personal Chair and a National Institute for Health Research Senior Investigator Award. This work was also supported by Health Data Research UK, which is funded by the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation and Wellcome.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:N/AAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesN/A |
Broad-spectrum in vitro antiviral activity of ODBG-P-RVn: an orally-available, lipid-modified monophosphate prodrug of remdesivir parent nucleoside (GS-441524) (preprint)
Lo MK , Shrivastava-Ranjan P , Chatterjee P , Flint M , Beadle JR , Valiaeva N , Schooley RT , Hostetler KY , Montgomery JM , Spiropoulou C . bioRxiv 2021 The intravenous administration of remdesivir for COVID-19 confines its utility to hospitalized patients. We evaluated the broad-spectrum antiviral activity of ODBG-P-RVn, an orally available, lipid-modified monophosphate prodrug of the remdesivir parent nucleoside (GS-441524) against viruses that cause diseases of human public health concern, including SARS-CoV-2. ODBG-P-RVn showed 20-fold greater antiviral activity than GS-441524 and had near-equivalent activity to remdesivir in primary-like human small airway epithelial cells. Our results warrant investigation of ODBG-P-RVn efficacy in vivo. |
Differential neutralization and inhibition of SARS-CoV-2 variants by antibodies elicited by COVID-19 mRNA vaccines (preprint)
Wang L , Kainulainen MH , Jiang N , Di H , Bonenfant G , Mills L , Currier M , Shrivastava-Ranjan P , Calderon BM , Sheth M , Hossain J , Lin X , Lester S , Pusch E , Jones J , Cui D , Chatterjee P , Jenks HM , Morantz E , Larson G , Hatta M , Harcourt J , Tamin A , Li Y , Tao Y , Zhao K , Burroughs A , Wong T , Tong S , Barnes JR , Tenforde MW , Self WH , Shapiro NI , Exline MC , Files DC , Gibbs KW , Hager DN , Patel M , Laufer Halpin AS , Lee JS , Xie X , Shi PY , Davis CT , Spiropoulou CF , Thornburg NJ , Oberste MS , Dugan V , Wentworth DE , Zhou B , Batra D , Beck A , Caravas J , Cintron-Moret R , Cook PW , Gerhart J , Gulvik C , Hassell N , Howard D , Knipe K , Kondor RJ , Kovacs N , Lacek K , Mann BR , McMullan LK , Moser K , Paden CR , Martin BR , Schmerer M , Shepard S , Stanton R , Stark T , Sula E , Tymeckia K , Unoarumhi Y . bioRxiv 2021 30 The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of many new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccines. To ascertain and rank the risk of VOCs and VOIs, we analyzed their ability to escape from vaccine-induced antibodies. The variants showed differential reductions in neutralization and replication titers by post-vaccination sera. Although the Omicron variant showed the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retained moderate neutralizing activity against that variant. Therefore, vaccination remains the most effective strategy to combat the COVID-19 pandemic. |
Development of a novel minigenome and recombinant VSV expressing Seoul hantavirus glycoprotein-based assays to identify anti-hantavirus therapeutics
Shrivastava-Ranjan P , Jain S , Chatterjee P , Montgomery JM , Flint M , Albariño C , Spiropoulou CF . Antiviral Res 2023 214 105619 Seoul virus (SEOV) is an emerging global health threat that can cause hemorrhagic fever with renal syndrome (HFRS), which results in case fatality rates of ∼2%. There are no approved treatments for SEOV infections. We developed a cell-based assay system to identify potential antiviral compounds for SEOV and generated additional assays to characterize the mode of action of any promising antivirals. To test if candidate antivirals targeted SEOV glycoprotein-mediated entry, we developed a recombinant reporter vesicular stomatitis virus expressing SEOV glycoproteins. To facilitate the identification of candidate antiviral compounds targeting viral transcription/replication, we successfully generated the first reported minigenome system for SEOV. This SEOV minigenome (SEOV-MG) screening assay will also serve as a prototype assay for discovery of small molecules inhibiting replication of other hantaviruses, including Andes and Sin Nombre viruses. Ours is a proof-of-concept study in which we tested several compounds previously reported to have activity against other negative-strand RNA viruses using our newly developed hantavirus antiviral screening systems. These systems can be used under lower biocontainment conditions than those needed for infectious viruses, and identified several compounds with robust anti-SEOV activity. Our findings have important implications for the development of anti-hantavirus therapeutics. |
One Health Investigation of SARS-CoV-2 in People and Animals on Multiple Mink Farms in Utah.
Cossaboom CM , Wendling NM , Lewis NM , Rettler H , Harvey RR , Amman BR , Towner JS , Spengler JR , Erickson R , Burnett C , Young EL , Oakeson K , Carpenter A , Kainulainen MH , Chatterjee P , Flint M , Uehara A , Li Y , Zhang J , Kelleher A , Lynch B , Retchless AC , Tong S , Ahmad A , Bunkley P , Godino C , Herzegh O , Drobeniuc J , Rooney J , Taylor D , Barton Behravesh C . Viruses 2022 15 (1) ![]() ![]() From July-November 2020, mink (Neogale vison) on 12 Utah farms experienced an increase in mortality rates due to confirmed SARS-CoV-2 infection. We conducted epidemiologic investigations on six farms to identify the source of virus introduction, track cross-species transmission, and assess viral evolution. Interviews were conducted and specimens were collected from persons living or working on participating farms and from multiple animal species. Swabs and sera were tested by SARS-CoV-2 real-time reverse transcription polymerase chain reaction (rRT-PCR) and serological assays, respectively. Whole genome sequencing was attempted for specimens with cycle threshold values <30. Evidence of SARS-CoV-2 infection was detected by rRT-PCR or serology in ≥1 person, farmed mink, dog, and/or feral cat on each farm. Sequence analysis showed high similarity between mink and human sequences on corresponding farms. On farms sampled at multiple time points, mink tested rRT-PCR positive up to 16 weeks post-onset of increased mortality. Workers likely introduced SARS-CoV-2 to mink, and mink transmitted SARS-CoV-2 to other animal species; mink-to-human transmission was not identified. Our findings provide critical evidence to support interventions to prevent and manage SARS-CoV-2 in people and animals on mink farms and emphasizes the importance of a One Health approach to address emerging zoonoses. |
Progress toward measles and rubella elimination - India, 2005-2021
Murugan R , VanderEnde K , Dhawan V , Haldar P , Chatterjee S , Sharma D , Dzeyie KA , Pattabhiramaiah SB , Khanal S , Sangal L , Bahl S , Tanwar SSS , Morales M , Kassem AM . MMWR Morb Mortal Wkly Rep 2022 71 (50) 1569-1575 In 2019, India, along with other countries in the World Health Organization (WHO) South-East Asia Region,* adopted the goal of measles and rubella elimination by 2023,(†) a revision of the previous goal of measles elimination and control of rubella and congenital rubella syndrome (CRS) by 2020(§) (1-3). During 2017-2021, India adopted a national strategic plan for measles and rubella elimination (4), introduced rubella-containing vaccine (RCV) into the routine immunization program, launched a nationwide measles-rubella supplementary immunization activity (SIA) catch-up campaign, transitioned from outbreak-based surveillance to case-based acute fever and rash surveillance, and more than doubled the number of laboratories in the measles-rubella network, from 13 to 27. Strategies included 1) achieving and maintaining high population immunity with at least 95% vaccination coverage by providing 2 doses of measles- and rubella-containing vaccines; 2) ensuring a sensitive and timely case-based measles, rubella and CRS surveillance system; 3) maintaining an accredited measles and rubella laboratory network; 4) ensuring adequate outbreak preparedness and rapid response to measles and rubella outbreaks; and 5) strengthening support and linkages to achieve these strategies, including planning and progress monitoring, advocacy, social mobilization and communication, identification and utilization of synergistic linkages of integrated program efforts, research, and development. This report describes India's progress toward the elimination of measles and rubella during 2005-2021, with a focus on the years 2017-2021.(¶) During 2005-2021, coverage with the first dose of a measles-containing vaccine (MCV) administered through routine immunization increased 31%, from 68% to 89%. During 2011-2021, coverage with a second MCV dose (MCV2) increased by 204%, from 27% to 82%. During 2017-2021, coverage with a first dose of RCV (RCV1) increased almost 14-fold, from 6% to 89%. More than 324 million children received a measles- and rubella-containing vaccine (MRCV) during measles-rubella SIAs completed in 34 (94%) of 36 states and union territories (states) during 2017-2019. During 2017-2021, annual measles incidence decreased 62%, from 10.4 to 4.0 cases per 1 million population, and rubella incidence decreased 48%, from 2.3 to 1.2 cases per 1 million population. India has made substantial progress toward measles and rubella elimination; however, urgent and intensified efforts are required to achieve measles and rubella elimination by 2023. |
Differential neutralization and inhibition of SARS-CoV-2 variants by antibodies elicited by COVID-19 mRNA vaccines.
Wang L , Kainulainen MH , Jiang N , Di H , Bonenfant G , Mills L , Currier M , Shrivastava-Ranjan P , Calderon BM , Sheth M , Mann BR , Hossain J , Lin X , Lester S , Pusch EA , Jones J , Cui D , Chatterjee P , Jenks MH , Morantz EK , Larson GP , Hatta M , Harcourt JL , Tamin A , Li Y , Tao Y , Zhao K , Lacek K , Burroughs A , Wang W , Wilson M , Wong T , Park SH , Tong S , Barnes JR , Tenforde MW , Self WH , Shapiro NI , Exline MC , Files DC , Gibbs KW , Hager DN , Patel M , Halpin AL , McMullan LK , Lee JS , Xia H , Xie X , Shi PY , Davis CT , Spiropoulou CF , Thornburg NJ , Oberste MS , Dugan VG , Wentworth DE , Zhou B . Nat Commun 2022 13 (1) 4350 ![]() ![]() The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccine-mediated protection from disease. To ascertain and rank the risk of VOCs and VOIs, we analyze the ability of 14 variants (614G, Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, Kappa, Lambda, Mu, and Omicron) to escape from mRNA vaccine-induced antibodies. The variants show differential reductions in neutralization and replication by post-vaccination sera. Although the Omicron variant (BA.1, BA.1.1, and BA.2) shows the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retain moderate neutralizing activity against that variant. Therefore, vaccination remains an effective strategy during the COVID-19 pandemic. |
Broad-Spectrum In Vitro Antiviral Activity of ODBG-P-RVn: An Orally-Available, Lipid-Modified Monophosphate Prodrug of Remdesivir Parent Nucleoside (GS-441524).
Lo MK , Shrivastava-Ranjan P , Chatterjee P , Flint M , Beadle JR , Valiaeva N , Murphy J , Schooley RT , Hostetler KY , Montgomery JM , Spiropoulou CF . Microbiol Spectr 2021 9 (3) e0153721 The necessity for intravenous administration of remdesivir confines its utility for treatment of coronavirus disease 2019 (COVID-19) to hospitalized patients. We evaluated the broad-spectrum antiviral activity of ODBG-P-RVn, an orally available, lipid-modified monophosphate prodrug of the remdesivir parent nucleoside (GS-441524), against viruses that cause diseases of human public health concern, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ODBG-P-RVn showed 20-fold greater antiviral activity than GS-441524 and had activity nearly equivalent to that of remdesivir in primary-like human small airway epithelial cells. Our results warrant in vivo efficacy evaluation of ODBG-P-RVn. IMPORTANCE While remdesivir remains one of the few drugs approved by the FDA to treat coronavirus disease 2019 (COVID-19), its intravenous route of administration limits its use to hospital settings. Optimizing the stability and absorption of remdesivir may lead to a more accessible and clinically potent therapeutic. Here, we describe an orally available lipid-modified version of remdesivir with activity nearly equivalent to that of remdesivir against emerging viruses that cause significant disease, including Ebola and Nipah viruses. Our work highlights the importance of such modifications to optimize drug delivery to relevant and appropriate human tissues that are most affected by such diseases. |
Purification of native histidine-rich protein 2 (nHRP2) from Plasmodium falciparum culture supernatant, infected RBCs, and parasite lysate.
Singh B , McCaffery JN , Kong A , Ah Y , Wilson S , Chatterjee S , Tomar D , Aidoo M , Udhayakumar V , Rogier E . Malar J 2021 20 (1) 405 ![]() BACKGROUND: Despite the widespread use of histidine-rich protein 2 (HRP2)-based rapid diagnostic tests (RDTs), purified native HRP2 antigen is not standardly used in research applications or assessment of RDTs used in the field. METHODS: This report describes the purification of native HRP2 (nHRP2) from the HB3 Plasmodium falciparum culture strain. As this culture strain lacks pfhrp3 from its genome, it is an excellent source of HRP2 protein only and does not produce the closely-related HRP3. The nHRP2 protein was isolated from culture supernatant, infected red blood cells (iRBCs), and whole parasite lysate using nickel-metal chelate chromatography. Biochemical characterization of nHRP2 from HB3 culture was conducted by SDS-PAGE and western blotting, and nHRP2 was assayed by RDT, ELISA, and bead-based immunoassay. RESULTS: Purified nHRP2 was identified by SDS-PAGE and western blot as a - 60 kDa protein that bound anti-HRP-2 monoclonal antibodies. Mouse anti-HRP2 monoclonal antibody was found to produce high optical density readings between dilutions of 1:100 and 1:3,200 by ELISA with assay signal observed up to a 1:200,000 dilution. nHRP2 yield from HB3 culture by bead-based immunoassay revealed that both culture supernatant and iRBC lysate were practical sources of large quantities of this antigen, producing a total yield of 292.4 µg of nHRP2 from two pooled culture preparations. Assessment of nHRP2 recognition by RDTs revealed that Carestart Pf HRP2 and HRP2/pLDH RDTs detected purified nHRP2 when applied at concentrations between 20.6 and 2060 ng/mL, performing within a log-fold dilution of commercially-available recombinant HRP2. The band intensity observed for the nHRP2 dilutions was equivalent to that observed for P. falciparum culture strain dilutions of 3D7 and US06 F Nigeria XII between 12.5 and 1000 parasites/µL. CONCLUSIONS: Purified nHRP2 could be a valuable reagent for laboratory applications as well as assessment of new and existing RDTs prior to their use in clinical settings. These results establish that it is possible to extract microgram quantities of the native HRP2 antigen from HB3 culture and that this purified protein is well recognized by existing monoclonal antibody lines and RDTs. |
Screening and Identification of Lujo Virus Inhibitors Using a Recombinant Reporter Virus Platform.
Welch SR , Spengler JR , Genzer SC , Chatterjee P , Flint M , Bergeron É , Montgomery JM , Nichol ST , Albariño CG , Spiropoulou CF . Viruses 2021 13 (7) ![]() ![]() Lujo virus (LUJV), a highly pathogenic arenavirus, was first identified in 2008 in Zambia. To aid the identification of effective therapeutics for LUJV, we developed a recombinant reporter virus system, confirming reporter LUJV comparability with wild-type virus and its utility in high-throughput antiviral screening assays. Using this system, we evaluated compounds with known and unknown efficacy against related arenaviruses, with the aim of identifying LUJV-specific and potential new pan-arenavirus antivirals. We identified six compounds demonstrating robust anti-LUJV activity, including several compounds with previously reported activity against other arenaviruses. These data provide critical evidence for developing broad-spectrum antivirals against high-consequence arenaviruses. |
High-throughput quantitation of SARS-CoV-2 antibodies in a single-dilution homogeneous assay.
Kainulainen MH , Bergeron E , Chatterjee P , Chapman AP , Lee J , Chida A , Tang X , Wharton RE , Mercer KB , Petway M , Jenks HM , Flietstra TD , Schuh AJ , Satheshkumar PS , Chaitram JM , Owen SM , McMullan LK , Flint M , Finn MG , Goldstein JM , Montgomery JM , Spiropoulou CF . Sci Rep 2021 11 (1) 12330 SARS-CoV-2 emerged in late 2019 and has since spread around the world, causing a pandemic of the respiratory disease COVID-19. Detecting antibodies against the virus is an essential tool for tracking infections and developing vaccines. Such tests, primarily utilizing the enzyme-linked immunosorbent assay (ELISA) principle, can be either qualitative (reporting positive/negative results) or quantitative (reporting a value representing the quantity of specific antibodies). Quantitation is vital for determining stability or decline of antibody titers in convalescence, efficacy of different vaccination regimens, and detection of asymptomatic infections. Quantitation typically requires two-step ELISA testing, in which samples are first screened in a qualitative assay and positive samples are subsequently analyzed as a dilution series. To overcome the throughput limitations of this approach, we developed a simpler and faster system that is highly automatable and achieves quantitation in a single-dilution screening format with sensitivity and specificity comparable to those of ELISA. |
Improving reporting standards for polygenic scores in risk prediction studies.
Wand H , Lambert SA , Tamburro C , Iacocca MA , O'Sullivan JW , Sillari C , Kullo IJ , Rowley R , Dron JS , Brockman D , Venner E , McCarthy MI , Antoniou AC , Easton DF , Hegele RA , Khera AV , Chatterjee N , Kooperberg C , Edwards K , Vlessis K , Kinnear K , Danesh JN , Parkinson H , Ramos EM , Roberts MC , Ormond KE , Khoury MJ , Janssens Acjw , Goddard KAB , Kraft P , MacArthur JAL , Inouye M , Wojcik GL . Nature 2021 591 (7849) 211-219 Polygenic risk scores (PRSs), which often aggregate results from genome-wide association studies, can bridge the gap between initial discovery efforts and clinical applications for the estimation of disease risk using genetics. However, there is notable heterogeneity in the application and reporting of these risk scores, which hinders the translation of PRSs into clinical care. Here, in a collaboration between the Clinical Genome Resource (ClinGen) Complex Disease Working Group and the Polygenic Score (PGS) Catalog, we present the Polygenic Risk Score Reporting Standards (PRS-RS), in which we update the Genetic Risk Prediction Studies (GRIPS) Statement to reflect the present state of the field. Drawing on the input of experts in epidemiology, statistics, disease-specific applications, implementation and policy, this comprehensive reporting framework defines the minimal information that is needed to interpret and evaluate PRSs, especially with respect to downstream clinical applications. Items span detailed descriptions of study populations, statistical methods for the development and validation of PRSs and considerations for the potential limitations of these scores. In addition, we emphasize the need for data availability and transparency, and we encourage researchers to deposit and share PRSs through the PGS Catalog to facilitate reproducibility and comparative benchmarking. By providing these criteria in a structured format that builds on existing standards and ontologies, the use of this framework in publishing PRSs will facilitate translation into clinical care and progress towards defining best practice. |
Design, synthesis and biological evaluation of 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles as inhibitors of ebola virus infection
Bessières M , Plebanek E , Chatterjee P , Shrivastava-Ranjan P , Flint M , Spiropoulou CF , Warszycki D , Bojarski AJ , Roy V , Agrofoglio LA . Eur J Med Chem 2021 214 113211 Novel 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles were designed and synthesized as Ebola virus inhibitors. The proposed structures of the new prepared benzimidazole-piperidine hybrids were confirmed based on their spectral data and CHN analyses. The target compounds were screened in vitro for their anti-Ebola activity. Among tested molecules, compounds 26a (EC(50=)0.93 μM, SI = 10) and 25a (EC(50=)0.64 μM, SI = 20) were as potent as and more selective than Toremifene reference drug (EC(50) = 0.38 μM, SI = 7) against cell line. Data suggests that the mechanism by which 25a and 26a block EBOV infection is through the inhibition of viral entry at the level of NPC1. Furthermore, a docking study revealed that several of the NPC1 amino acids that participate in binding to GP are involved in the binding of the most active compounds 25a and 26a. Finally, in silico ADME prediction indicates that 26a is an idealy drug-like candidate. Our results could enable the development of small molecule drug capable of inhibiting Ebola virus, especially at the viral entry step. |
Hantavirus infection is inhibited by griffithsin in cell culture
Shrivastava-Ranjan P , Lo MK , Chatterjee P , Flint M , Nichol ST , Montgomery JM , O'Keefe BR , Spiropoulou CF . Front Cell Infect Microbiol 2020 10 561502 Andes virus (ANDV) and Sin Nombre virus (SNV), highly pathogenic hantaviruses, cause hantavirus pulmonary syndrome in the Americas. Currently no therapeutics are approved for use against these infections. Griffithsin (GRFT) is a high-mannose oligosaccharide-binding lectin currently being evaluated in phase I clinical trials as a topical microbicide for the prevention of human immunodeficiency virus (HIV-1) infection (ClinicalTrials.gov Identifiers: NCT04032717, NCT02875119) and has shown broad-spectrum in vivo activity against other viruses, including severe acute respiratory syndrome coronavirus, hepatitis C virus, Japanese encephalitis virus, and Nipah virus. In this study, we evaluated the in vitro antiviral activity of GRFT and its synthetic trimeric tandemer 3mGRFT against ANDV and SNV. Our results demonstrate that GRFT is a potent inhibitor of ANDV infection. GRFT inhibited entry of pseudo-particles typed with ANDV envelope glycoprotein into host cells, suggesting that it inhibits viral envelope protein function during entry. 3mGRFT is more potent than GRFT against ANDV and SNV infection. Our results warrant the testing of GRFT and 3mGRFT against ANDV infection in animal models. |
Remdesivir targets a structurally analogous region of the Ebola virus and SARS-CoV-2 polymerases.
Lo MK , Albariño CG , Perry JK , Chang S , Tchesnokov EP , Guerrero L , Chakrabarti A , Shrivastava-Ranjan P , Chatterjee P , McMullan LK , Martin R , Jordan R , Götte M , Montgomery JM , Nichol ST , Flint M , Porter D , Spiropoulou CF . Proc Natl Acad Sci U S A 2020 117 (43) 26946-26954 ![]() Remdesivir is a broad-spectrum antiviral nucleotide prodrug that has been clinically evaluated in Ebola virus patients and recently received emergency use authorization (EUA) for treatment of COVID-19. With approvals from the Federal Select Agent Program and the Centers for Disease Control and Prevention's Institutional Biosecurity Board, we characterized the resistance profile of remdesivir by serially passaging Ebola virus under remdesivir selection; we generated lineages with low-level reduced susceptibility to remdesivir after 35 passages. We found that a single amino acid substitution, F548S, in the Ebola virus polymerase conferred low-level reduced susceptibility to remdesivir. The F548 residue is highly conserved in filoviruses but should be subject to specific surveillance among novel filoviruses, in newly emerging variants in ongoing outbreaks, and also in Ebola virus patients undergoing remdesivir therapy. Homology modeling suggests that the Ebola virus polymerase F548 residue lies in the F-motif of the polymerase active site, a region that was previously identified as susceptible to resistance mutations in coronaviruses. Our data suggest that molecular surveillance of this region of the polymerase in remdesivir-treated COVID-19 patients is also warranted. |
Potent in vitro activity of beta-D-4'-chloromethyl-2'-deoxy-2'-fluorocytidine against Nipah virus
Lo MK , Amblard F , Flint M , Chatterjee P , Kasthuri M , Li C , Russell O , Verma K , Bassit L , Schinazi RF , Nichol ST , Spiropoulou CF . Antiviral Res 2020 175 104712 Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus that continues to cause outbreaks in humans characterized by high mortality and significant clinical sequelae in survivors. Currently, no therapeutics are approved for use in humans against NiV infection. Here, we report that 4'-chloromethyl-2'-deoxy-2'-fluorocytidine (ALS-8112) inhibits NiV. ALS-8112 is the parent nucleoside of lumicitabine, which has been evaluated in phase I and II clinical trials to treat pediatric and adult respiratory syncytial virus infection. In this study, we tested ALS-8112 against NiV and other major human respiratory pneumo- and paramyxoviruses in 2 human lung epithelial cell lines, and demonstrated the ability of ALS-8112 to reduce infectious wild-type NiV yield by over 6 orders of magnitude with no apparent cytotoxicity. However, further cytotoxicity testing in primary cells and bone marrow progenitor cells indicated cytotoxicity at higher concentrations of ALS-8112. Our results warrant the evaluation of lumicitabine against NiV infection in relevant animal models. |
Probing the effects of pyrimidine functional group switches on acyclic fleximer analogues for antiviral activity
Yates MK , Chatterjee P , Flint M , Arefeayne Y , Makuc D , Plavec J , Spiropoulou CF , Seley-Radtke KL . Molecules 2019 24 (17) Due to their ability to inhibit viral DNA or RNA replication, nucleoside analogues have been used for decades as potent antiviral therapeutics. However, one of the major limitations of nucleoside analogues is the development of antiviral resistance. In that regard, flexible nucleoside analogues known as "fleximers" have garnered attention over the years due to their ability to survey different amino acids in enzyme binding sites, thus overcoming the potential development of antiviral resistance. Acyclic fleximers have previously demonstrated antiviral activity against numerous viruses including Middle East Respiratory Syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), and, most recently, flaviviruses such as Dengue (DENV) and Yellow Fever Virus (YFV). Due to these interesting results, a Structure Activity Relationship (SAR) study was pursued in order to analyze the effect of the pyrimidine functional group and acyl protecting group on antiviral activity, cytotoxicity, and conformation. The results of those studies are presented herein. |
A genome-wide CRISPR screen identifies N-acetylglucosamine-1-phosphate transferase as a potential antiviral target for Ebola virus.
Flint M , Chatterjee P , Lin DL , McMullan LK , Shrivastava-Ranjan P , Bergeron E , Lo MK , Welch SR , Nichol ST , Tai AW , Spiropoulou CF . Nat Commun 2019 10 (1) 285 ![]() ![]() There are no approved therapies for Ebola virus infection. Here, to find potential therapeutic targets, we perform a screen for genes essential for Ebola virus (EBOV) infection. We identify GNPTAB, which encodes the alpha and beta subunits of N-acetylglucosamine-1-phosphate transferase. We show that EBOV infection of a GNPTAB knockout cell line is impaired, and that this is reversed by reconstituting GNPTAB expression. Fibroblasts from patients with mucolipidosis II, a disorder associated with mutations in GNPTAB, are refractory to EBOV, whereas cells from their healthy parents support infection. Impaired infection correlates with loss of the expression of cathepsin B, known to be essential for EBOV entry. GNPTAB activity is dependent upon proteolytic cleavage by the SKI-1/S1P protease. Inhibiting this protease with the small-molecule PF-429242 blocks EBOV entry and infection. Disruption of GNPTAB function may represent a strategy for a host-targeted therapy for EBOV. |
Statins suppress Ebola virus infectivity by interfering with glycoprotein processing
Shrivastava-Ranjan P , Flint M , Bergeron E , McElroy AK , Chatterjee P , Albarino CG , Nichol ST , Spiropoulou CF . mBio 2018 9 (3) Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD.IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune system are characteristic features of EVD, statins could be explored as part of EVD therapeutics. |
Identification of 2'-deoxy-2'-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus
Welch SR , Scholte FEM , Flint M , Chatterjee P , Nichol ST , Bergeron E , Spiropoulou CF . Antiviral Res 2017 147 91-99 Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne orthonairovirus, causes a severe hemorrhagic disease in humans (Crimean-Congo hemorrhagic fever, CCHF). Currently, no vaccines are approved to prevent CCHF; treatment is limited to supportive care and the use of ribavirin, the therapeutic benefits of which remain unclear. CCHF is part of WHO's priority list of infectious diseases warranting further research and development. To aid in the identification of new antiviral compounds, we generated a recombinant CCHFV expressing a reporter protein, allowing us to quantify virus inhibition by measuring the reduction in fluorescence in infected cells treated with candidate compounds. The screening assay was readily adaptable to high-throughput screening (HTS) of compounds using Huh7 cells, with a signal-to-noise ratio of 50:1, and Z'-factors > 0.6 in both 96- and 384-well formats. A screen of candidate nucleoside analog compounds identified 2'-deoxy-2'-fluorocytidine (EC50 = 61 +/- 18 nM) as having 200 x the potency of ribavirin (EC50 = 12.5 +/- 2.6 muM), as well as 17 x the potency of T-705 (favipiravir), another compound with reported anti-CCHFV activity (EC50 = 1.03 +/- 0.16 muM). Furthermore, we also determined that 2'-deoxy-2'-fluorocytidine acts synergistically with T-705 to inhibit CCHFV replication without causing cytotoxicity. The incorporation of this reporter virus into the high-throughput screening assay described here will allow more rapid identification of effective therapeutic options to combat this emerging human pathogen. |
The economic value of long-lasting insecticidal nets and indoor residual spraying implementation in Mozambique
Lee BY , Bartsch SM , Stone NTB , Zhang S , Brown ST , Chatterjee C , DePasse JV , Zenkov E , Briet OJT , Mendis C , Viisainen K , Candrinho B , Colborn J . Am J Trop Med Hyg 2017 96 (6) 1430-1440 Malaria-endemic countries have to decide how much of their limited resources for vector control to allocate toward implementing long-lasting insecticidal nets (LLINs) versus indoor residual spraying (IRS). To help the Mozambique Ministry of Health use an evidence-based approach to determine funding allocation toward various malaria control strategies, the Global Fund convened the Mozambique Modeling Working Group which then used JANUS, a software platform that includes integrated computational economic, operational, and clinical outcome models that can link with different transmission models (in this case, OpenMalaria) to determine the economic value of vector control strategies. Any increase in LLINs (from 80% baseline coverage) or IRS (from 80% baseline coverage) would be cost-effective (incremental cost-effectiveness ratios <= $114/disability-adjusted life year averted). However, LLIN coverage increases tend to be more cost-effective than similar IRS coverage increases, except where both pyrethroid resistance is high and LLIN usage is low. In high-transmission northern regions, increasing LLIN coverage would be more cost-effective than increasing IRS coverage. In medium-transmission central regions, changing from LLINs to IRS would be more costly and less effective. In low-transmission southern regions, LLINs were more costly and less effective than IRS, due to low LLIN usage. In regions where LLINs are more cost-effective than IRS, it is worth considering prioritizing LLIN coverage and use. However, IRS may have an important role in insecticide resistance management and epidemic control. Malaria intervention campaigns are not a one-size-fits-all solution, and tailored approaches are necessary to account for the heterogeneity of malaria epidemiology. |
Flex-nucleoside analogues - Novel therapeutics against filoviruses
Yates MK , Raje MR , Chatterjee P , Spiropoulou CF , Bavari S , Flint M , Soloveva V , Seley-Radtke KL . Bioorg Med Chem Lett 2017 27 (12) 2800-2802 Fleximers, a novel type of flexible nucleoside that have garnered attention due to their unprecedented activity against human coronaviruses, have now exhibited highly promising levels of activity against filoviruses. The Flex-nucleoside was the most potent against recombinant Ebola virus in Huh7 cells with an EC50=2muM, while the McGuigan prodrug was most active against Sudan virus-infected HeLa cells with an EC50 of 7muM. |
Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome.
Machiela MJ , Zhou W , Karlins E , Sampson JN , Freedman ND , Yang Q , Hicks B , Dagnall C , Hautman C , Jacobs KB , Abnet CC , Aldrich MC , Amos C , Amundadottir LT , Arslan AA , Beane-Freeman LE , Berndt SI , Black A , Blot WJ , Bock CH , Bracci PM , Brinton LA , Bueno-de-Mesquita HB , Burdett L , Buring JE , Butler MA , Canzian F , Carreon T , Chaffee KG , Chang IS , Chatterjee N , Chen C , Chen C , Chen K , Chung CC , Cook LS , Crous Bou M , Cullen M , Davis FG , De Vivo I , Ding T , Doherty J , Duell EJ , Epstein CG , Fan JH , Figueroa JD , Fraumeni JF , Friedenreich CM , Fuchs CS , Gallinger S , Gao YT , Gapstur SM , Garcia-Closas M , Gaudet MM , Gaziano JM , Giles GG , Gillanders EM , Giovannucci EL , Goldin L , Goldstein AM , Haiman CA , Hallmans G , Hankinson SE , Harris CC , Henriksson R , Holly EA , Hong YC , Hoover RN , Hsiung CA , Hu N , Hu W , Hunter DJ , Hutchinson A , Jenab M , Johansen C , Khaw KT , Kim HN , Kim YH , Kim YT , Klein AP , Klein R , Koh WP , Kolonel LN , Kooperberg C , Kraft P , Krogh V , Kurtz RC , LaCroix A , Lan Q , Landi MT , Marchand LL , Li D , Liang X , Liao LM , Lin D , Liu J , Lissowska J , Lu L , Magliocco AM , Malats N , Matsuo K , McNeill LH , McWilliams RR , Melin BS , Mirabello L , Moore L , Olson SH , Orlow I , Park JY , Patino-Garcia A , Peplonska B , Peters U , Petersen GM , Pooler L , Prescott J , Prokunina-Olsson L , Purdue MP , Qiao YL , Rajaraman P , Real FX , Riboli E , Risch HA , Rodriguez-Santiago B , Ruder AM , Savage SA , Schumacher F , Schwartz AG , Schwartz KL , Seow A , Wendy Setiawan V , Severi G , Shen H , Sheng X , Shin MH , Shu XO , Silverman DT , Spitz MR , Stevens VL , Stolzenberg-Solomon R , Stram D , Tang ZZ , Taylor PR , Teras LR , Tobias GS , Van Den Berg D , Visvanathan K , Wacholder S , Wang JC , Wang Z , Wentzensen N , Wheeler W , White E , Wiencke JK , Wolpin BM , Wong MP , Wu C , Wu T , Wu X , Wu YL , Wunder JS , Xia L , Yang HP , Yang PC , Yu K , Zanetti KA , Zeleniuch-Jacquotte A , Zheng W , Zhou B , Ziegler RG , Perez-Jurado LA , Caporaso NE , Rothman N , Tucker M , Dean MC , Yeager M , Chanock SJ . Nat Commun 2016 7 11843 ![]() To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases. |
Age at asthma onset and asthma self-management education among adults in the United States
Mirabelli MC , Beavers SF , Shepler SH , Chatterjee AB . J Asthma 2015 52 (9) 1-7 OBJECTIVE: Asthma self-management education improves asthma-related outcomes. We conducted this analysis to evaluate variation in the percentages of adults with active asthma reporting components of asthma self-management education by age at asthma onset. METHODS: Data from 2011 to 2012 Asthma Call-back Surveys were used to estimate percentages of adults with active asthma reporting six components of asthma self-management education. Components of asthma self-management education include having been taught to what to do during an asthma attack and receiving an asthma action plan. Differences in the percentages of adults reporting each component and the average number of components reported across categories of age at asthma onset were estimated using linear regression, adjusted for age, education, race/ethnicity, sex, smoking status, and years since asthma onset. RESULTS: Overall, an estimated 76.4% of adults with active asthma were taught what to do during an asthma attack and 28.7% reported receiving an asthma action plan. Percentages reporting each asthma self-management education component declined with increasing age at asthma onset. Compared with the referent group of adults whose asthma onset occurred at 5-14 years of age, the percentage of adults reporting being taught what to do during an asthma attack was 10% lower among those whose asthma onset occurred at 65-93 years of age (95% CI: -18.0, -2.5) and the average number of components reported decreased monotonically across categories of age at asthma onset of 35 years and older. CONCLUSIONS: Among adults with active asthma, reports of asthma self-management education decline with increasing age at asthma onset. |
Anti-retroviral lectins have modest effects on adherence of Trichomonas vaginalis to epithelial cells in vitro and on recovery of Tritrichomonas foetus in a mouse vaginal model
Chatterjee A , Ratner DM , Ryan CM , Johnson PJ , O'Keefe BR , Secor WE , Anderson DJ , Robbins PW , Samuelson J . PLoS One 2015 10 (8) e0135340 Trichomonas vaginalis causes vaginitis and increases the risk of HIV transmission by heterosexual sex, while Tritrichomonas foetus causes premature abortion in cattle. Our goals were to determine the effects, if any, of anti-retroviral lectins, which are designed to prevent heterosexual transmission of HIV, on adherence of Trichomonas to ectocervical cells and on Tritrichomonas infections in a mouse model. We show that Trichomonas Asn-linked glycans (N-glycans), like those of HIV, bind the mannose-binding lectin (MBL) that is part of the innate immune system. N-glycans of Trichomonas and Tritrichomonas bind anti-retroviral lectins (cyanovirin-N and griffithsin) and the 2G12 monoclonal antibody, each of which binds HIV N-glycans. Binding of cyanovirin-N appears to be independent of susceptibility to metronidazole, the major drug used to treat Trichomonas. Anti-retroviral lectins, MBL, and galectin-1 cause Trichomonas to self-aggregate and precipitate. The anti-retroviral lectins also increase adherence of ricin-resistant mutants, which are less adherent than parent cells, to ectocervical cell monolayers and to organotypic EpiVaginal tissue cells. Topical application of either anti-retroviral lectins or yeast N-glycans decreases by 40 to 70% the recovery of Tritrichomonas from the mouse vagina. These results, which are explained by a few simple models, suggest that the anti-retroviral lectins have a modest potential for preventing or treating human infections with Trichomonas. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 27, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure