Last data update: Jan 21, 2025. (Total: 48615 publications since 2009)
Records 1-3 (of 3 Records) |
Query Trace: Cantis DM[original query] |
---|
Minimum requirements for taxicab security cameras
Zeng S , Amandus HE , Amendola AA , Newbraugh BH , Cantis DM , Weaver D . J Transp Technol 2014 4 (3) 216-255 PROBLEM: The homicide rate of taxicab-industry is 20 times greater than that of all workers. A NIOSH study showed that cities with taxicab-security cameras experienced significant reduction in taxicab driver homicides. METHODS: Minimum technical requirements and a standard test protocol for taxicab-security cameras for effective taxicab-facial identification were determined. The study took more than 10,000 photographs of human-face charts in a simulated-taxicab with various photographic resolutions, dynamic ranges, lens-distortions, and motion-blurs in various light and cab-seat conditions. Thirteen volunteer photograph-evaluators evaluated these face photographs and voted for the minimum technical requirements for taxicab-security cameras. RESULTS: Five worst-case scenario photographic image quality thresholds were suggested: the resolution of XGA-format, highlight-dynamic-range of 1 EV, twilight-dynamic-range of 3.3 EV, lens-distortion of 30%, and shutter-speed of 1/30 second. PRACTICAL APPLICATIONS: These minimum requirements will help taxicab regulators and fleets to identify effective taxicab-security cameras, and help taxicabsecurity camera manufacturers to improve the camera facial identification capability. |
Evaluating the protective capacity of two-post ROPS for a seat-belted occupant during a farm tractor overturn
Guan J , Hsiao H , Zwiener JV , Current RS , Lutz TJ , Cantis DM , Powers JR Jr , Newbraugh BH , Spahr JS . J Agric Saf Health 2011 17 (1) 15-32 This study evaluated the effectiveness of a commercial rollover protective structure (ROPS) and size-extended ROPS in protecting a 95th percentile male operator during tractor overturns. Six rear upset tests (commercial ROPS) and ten side upset tests (commercial and size-extended ROPS) were conducted. A 95th percentile instrumented male manikin was used in all tests. Head injury criterion (HIC15), 80 g limit on resultant head acceleration, neck injury criterion (Nij), and peak axial force (extension-compression) were employed to evaluate injury potential. In all rear tests, the manikin's head impact with the ground was within the tolerance limits for head/neck injuries. Based on limited trials in the side tests, the study observed a small to moderate chance of neck injuries under the commercial and size-extended ROPS conditions; the injury risk was not statistically significant between these two test conditions. This study identified a risk of non-fatal injuries for large-size operators in side overturns, although the prevention effectiveness of commercial versus size-extended ROPS cannot be determined without further testing. These findings may have implications for future ROPS designs. |
ROPS performance during field upset and static testing
Harris JR , McKenzie Jr EA , Etherton JR , Cantis DM , Ronaghi M . J Agric Saf Health 2010 16 (1) 5-18 Agriculture remains one of the most hazardous occupations in the U.S. By conservative estimates, tractor overturns alone claim 120 lives annually. A rollover protective structure (ROPS) and a seatbelt are a highly effective engineering safety control that can prevent many of these fatalities and reduce the severity of injuries associated with tractor overturn. SAE J2194 is a consensus performance standard established for agricultural ROPS. According to this standard, satisfactory ROPS performance can be demonstrated through static testing, field upset testing, or impact testing. A previous modeling study suggested that static testing may underpredict the strain induced in a ROPS during a field upset. In the current study, field upset testing and laboratory static testing results were compared. Field upset testing included six rear and six side upset tests performed according to SAE J2194 guidelines. Additionally, static testing was performed on a ROPS of the same model. The results support findings from the modeling study. Near the lowest sections of the ROPS, the plastic strain resulting from rear upset testing exceeded the plastic strain from static testing for 18 of 24 data points. Conversely, the ROPS plastic strain from side upset testing was typically less than plastic strain from laboratory static testing. However, data indicate that the side upset test may not be very repeatable. This study suggests that the longitudinal loading energy criterion for static testing might not be a conservative predictor of rear upset ROPS response. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure