Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-10 (of 10 Records) |
Query Trace: Burtis JC[original query] |
---|
Willingness and capacity of publicly-funded vector control programs in the USA to engage in tick management
Burtis JC , Foster E , Eisen RJ , Eisen L . Parasit Vectors 2024 17 (1) 316 BACKGROUND: The vast majority of vector-borne diseases in the USA are associated with mosquitoes or ticks. Mosquito control is often conducted as part of community programs run by publicly-funded entities. By contrast, tick control focuses primarily on individual residential properties and is implemented predominantly by homeowners and the private pest control firms they contract. We surveyed publicly-funded vector control programs (VCPs), presumed to focus mainly on mosquitoes, to determine what tick-related services they currently offer, and their interest in and capacity to expand existing services or provide new ones. METHODS: We distributed a survey to VCPs in the Northeast, Upper Midwest and Pacific Coast states of the USA, where humans are at risk for bites by tick vectors (Ixodes scapularis or Ixodes pacificus) of agents causing Lyme disease and other tick-borne diseases. The data we report are based on responses from 118 VCPs engaged in vector control and with at least some activities focused on ticks. RESULTS: Despite our survey targeting geographic regions where ticks and tick-borne diseases are persistent and increasing public health concerns, only 11% (12/114) of VCPs reported they took direct action to suppress ticks questing in the environment. The most common tick-related activities conducted by the VCPs were tick bite prevention education for the public (70%; 75/107 VCPs) and tick surveillance (48%; 56/116). When asked which services they would most likely include as part of a comprehensive tick management program, tick bite prevention education (90%; 96/107), tick surveillance (89%; 95/107) and tick suppression guidance for the public (74%; 79/107) were the most common services selected. Most VCPs were also willing to consider engaging in activities to suppress ticks on public lands (68%; 73/107), but few were willing to consider suppressing ticks on privately owned land such as residential properties (15%; 16/107). Across all potential tick-related services, funding was reported as the biggest obstacle to program expansion or development, followed by personnel. CONCLUSIONS: Considering the hesitancy of VCPs to provide tick suppression services on private properties and the high risk for tick bites in peridomestic settings, suppression of ticks on residential properties by private pest control operators will likely play an important role in the tick suppression landscape in the USA for the foreseeable future. Nevertheless, VCPs can assist in this effort by providing locally relevant guidelines to homeowners and private pest control firms regarding best practices for residential tick suppression efforts and associated efficacy evaluations. Publicly-funded VCPs are also well positioned to educate the public on personal tick bite prevention measures and to collect tick surveillance data that provide information on the risk of human encounters with ticks within their jurisdictions. |
Efficacy of unregulated minimum risk tick repellent products evaluated with Ixodes scapularis nymphs in a human skin bioassay
Burtis JC , Ford SL , Parise CM , Eisen RJ , Eisen L . Parasit Vectors 2024 17 (1) 50 BACKGROUND: The majority of vector-borne disease cases in the USA are caused by pathogens spread by ticks, most commonly the blacklegged tick, Ixodes scapularis. Personal protection against tick bites, including use of repellents, is the primary defense against tick-borne diseases. Tick repellents registered by the Environmental Protection Agency (EPA) are well documented to be safe as well as effective against ticks. Another group of tick repellent products, 25(b) exempt or minimum risk products, use alternative, mostly botanically derived, active ingredients. These are considered to pose minimal risk to human health and therefore are exempt from EPA registration; efficacy testing is not mandated for these products. METHODS: We used a finger bioassay to evaluate the repellency against I. scapularis nymphs for 11 formulated 25(b) exempt products together with two positive control DEET-based EPA registered products. Repellency was assessed hourly from 0.5 to 6.5 h after product application. RESULTS: The DEET-based products showed ≥ 97% repellency for all examined timepoints. By contrast, an average of 63% of ticks were repelled in the first 1.5 h after application across the 11 25(b) exempt products, and the average fell to 3% repelled between 2.5 and 6.5 h. Ten of the 11 25(b) exempt products showed statistically similar efficacy to DEET-based products at 30 min after application (repellency of 79-97%). However, only four 25(b) exempt products maintained a level of repellency similar to DEET-based products (> 72%) at the 1.5-h mark, and none of these products were effective in repelling ticks at the timepoints from 2.5 to 6.5 h after application. CONCLUSIONS: Neither the claims on the labels nor specific active ingredients and their concentrations appeared to predict the duration of efficacy we observed for the 25(b) exempt products. These products are not registered with the EPA, so the methods used to determine the application guidelines on their labels are unclear. Consumers should be aware that both the level of efficacy and the duration of repellency may differ among unregulated 25(b) exempt repellent products labeled for use against ticks. We encourage more research on these products and the 25(b) exempt active ingredients they contain to help determine and improve their efficacy as repellents under different conditions. |
Comparison of in vitro and in vivo repellency bioassay methods for Ixodes scapularis nymphs
Burtis JC , Ford SL , Parise CM , Foster E , Eisen RJ , Eisen L . Parasit Vectors 2023 16 (1) 228 BACKGROUND: Numerous bioassay methods have been used to test the efficacy of repellents for ticks, but the comparability of results across different methods has only been evaluated in a single study. Of particular interest are comparisons between bioassays that use artificial containers (in vitro) with those conducted on a human subject (in vivo) for efficacy testing of new potential unregistered active ingredients, which most commonly use in vitro methods. METHODS: We compared four different bioassay methods and evaluated three ingredients (DEET [N,N-Diethyl-meta-toluamide], peppermint oil and rosemary oil) and a negative control (ethanol) over a 6-h period. Two of the methods tested were in vivo bioassay methods in which the active ingredient was applied to human skin (finger and forearm bioassays), and the other two methods were in vitro methods using artificial containers (jar and petri dish bioassays). All four bioassays were conducted using Ixodes scapularis nymphs. We compared the results using nymphs from two different tick colonies that were derived from I. scapularis collected in the US states of Connecticut and Rhode Island (northern origin) and Oklahoma (southern origin), expecting that ticks of different origin would display differences in host-seeking behavior. RESULTS: The results between bioassay methods did not differ significantly, even when comparing those that provide the stimulus of human skin with those that do not. We also found that tick colony source can impact the outcome of repellency bioassays due to differences in movement speed; behavioral differences were incorporated into the assay screening. DEET effectively repelled nymphs for the full 6-h duration of the study. Peppermint oil showed a similar repellent efficacy to DEET during the first hour, but it decreased sharply afterwards. Rosemary oil did not effectively repel nymphs across any of the time points. CONCLUSIONS: The repellency results did not differ significantly between the four bioassay methods tested. The results also highlight the need to consider the geographic origin of ticks used in repellency bioassays in addition to species and life stage. Finally, our results indicate a limited repellent efficacy of the two essential oils tested, which highlights the need for further studies on the duration of repellency for similar botanically derived active ingredients and for evaluation of formulated products. |
Seasonal activity patterns of host-seeking Ixodes scapularis (Acari: Ixodidae) in Minnesota, 2015-2017
Burtis JC , Bjork J , Johnson TL , Schiffman E , Neitzel D , Eisen RJ . J Med Entomol 2023 60 (4) 769-777 As the primary vector of Lyme disease spirochetes and several other medically significant pathogens, Ixodes scapularis presents a threat to public health in the United States. The incidence of Lyme disease is growing rapidly in upper midwestern states, particularly Michigan, Minnesota, and Wisconsin. The probability of a tick bite, acarological risk, is affected by the phenology of host-seeking I. scapularis. Phenology has been well-studied in northeastern states, but not in the Upper Midwest. We conducted biweekly drag sampling across 4 woodland sites in Minnesota between April and November from 2015 to 2017. The majority of ticks collected were I. scapularis (82%). Adults were active throughout our entire 8-month collection season, with sporadic activity during the summer, larger peaks in activity observed in April, and less consistent and lower peaks observed in October. Nymphs were most active from May through August, with continuing low-level activity in October, and peak activity most commonly observed in June. The observed nymphal peak corresponded with the typical peak in reported human Lyme disease and anaplasmosis cases. These findings are consistent with previous studies from the Upper Midwest and highlight a risk of human exposure to I. scapularis at least from April through November. This information may aid in communicating the seasonality of acarological risk for those living in Minnesota and other upper midwestern states as well as being relevant to the assessment of the ecoepidemiology of Lyme disease and the modeling of transmission dynamics. |
Identifying suitable habitat for Ixodes scapularis (Acari: Ixodidae) infected with Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), Babesia microti (Piroplasmida: Babesiidae), and Borrelia miyamotoi (Spirochaetales: Spirochaetaceae) to guide surveillance efforts in the eastern United States
Burtis JC , Foster E , Parise CM , Eisen RJ . J Med Entomol 2023 60 (3) 590-603 Understanding the distribution of infected ticks is informative for the estimation of risk for tickborne diseases. The blacklegged tick, Ixodes scapularis (Acari: Ixodidae), is the primary vector for 7 medically significant pathogens in United States. However, knowledge of the ranges of these pathogens in host-seeking ticks is incomplete, particularly for those occurring at low prevalence. To aid in prioritizing costly field sampling efforts, we estimated ranges of suitable habitat for Anaplasma phagocytophilum, Babesia microti, and Borrelia miyamotoi in the eastern United States based on existing county-level surveillance records. The resulting suitability maps were compared against those developed previously for Bo. burgdorferi s.s., which shares similar ecology but has been detected in a greater number of counties. The overall accuracy of the habitat suitability models was high (AUC ≥ 0.92) for all 4 pathogens. The most important predictors were related to temperature and moisture. The upper midwestern and northeastern states were predicted to be highly suitable for all 4 pathogens. Based on our models, we prioritized sampling in 431, 275, and 539 counties currently lacking pathogen records that our models classified as suitable for A. phagocytophilum, Ba. microti, and Bo. miyamotoi, respectively. As a second-tier priority, we identified 311 (A. phagocytophilum), 590 (Ba. microti), and 252 (Bo. miyamotoi) counties, based on high suitability scores for Bo. burgdorferi. Our models can be used to improve cost-effectiveness of field sampling efforts aimed at improving accuracy and completeness of pathogen distribution maps. |
Predicting distributions of blacklegged ticks (Ixodes scapularis), Lyme disease spirochetes (Borrelia burgdorferi sensu stricto) and human Lyme disease cases in the eastern United States
Burtis JC , Foster E , Schwartz AM , Kugeler KJ , Maes SE , Fleshman AC , Eisen RJ . Ticks Tick Borne Dis 2022 13 (5) 102000 Lyme disease is the most commonly reported vector-borne disease in the United States (US), with approximately 300,000 -to- 40,000 cases reported annually. The blacklegged tick, Ixodes scapularis, is the primary vector of the Lyme disease-causing spirochete, Borrelia burgdorferi sensu stricto, in high incidence regions in the upper midwestern and northeastern US. Using county-level records of the presence of I. scapularis or presence of B. burgdorferi s.s. infected host-seeking I. scapularis, we generated habitat suitability consensus maps based on an ensemble of statistical models for both acarological risk metrics. Overall accuracy of these suitability models was high (AUC = 0.76 for I. scapularis and 0.86 for B. burgdorferi s.s. infected-I. scapularis). We sought to compare which acarological risk metric best described the distribution of counties reporting high Lyme disease incidence (≥10 confirmed cases/100,000 population) by setting the models to a fixed omission rate (10%). We compared the percent of high incidence counties correctly classified by the two models. The I. scapularis consensus map correctly classified 53% of high and low incidence counties, while the B. burgdorferi s.s. infected-I. scapularis consensus map classified 83% correctly. Counties classified as suitable by the B. burgdorferi s.s. map showed a 91% overlap with high Lyme disease incidence counties with over a 38-fold difference in Lyme disease incidence between high- and low-suitability counties. A total of 288 counties were classified as highly suitable for B. burgdorferi s.s., but lacked records of infected-I. scapularis and were not classified as high incidence. These counties were considered to represent a leading edge for B. burgdorferi s.s. infection in ticks and humans. They clustered in Illinois, Indiana, Michigan, and Ohio. This information can aid in targeting tick surveillance and prevention education efforts in counties where Lyme disease risk may increase in the future. |
Effectiveness of a buffalo turbine and A1 mist sprayer for the areawide deployment of larvicide for mosquito control in an urban residential setting
Burtis JC , Bickerton MW , Indelicato N , Poggi JD , Crans SC , Harrington LC . J Med Entomol 2022 59 (3) 903-910 The control of medically important container-inhabiting mosquitoes is an ongoing challenge for mosquito control operations. Truck-mounted application equipment is a common option for rapid areawide larvicide deployment utilized by mosquito control operations. We tested the effectiveness of two truck-mounted sprayers (A1 Super Duty + Buffalo Turbine CSM3), for the deployment of water-dispersible biopesticides (VectoBac WDG:VectoLex WDG 50:50). Sixty residences within four residential neighborhoods in New Jersey were treated in 2019 and 2020. Three empty bioassay cups were placed in specific locations on each property (front yard/ back yard/ side of house), with an additional cup placed in an adjacent catch basin. This approach was replicated in two untreated control neighborhoods. Following larvicide application, cups were subjected to bioassays wherein larval mortality was tracked through adult eclosion. Overall, average larval mortality rates were 56% higher in treated cups compared against untreated controls. Mortality rates were affected by cup location, with 39% mortality in bioassay cups from back yards, 54% in those from the sides of houses, 73% in front yards, and 76% from cups in catch basins. Mortality did not differ significantly between the four treated neighborhoods, nor by the type of sprayer used. Our research shows that truck-mounted sprayers can be an effective method for larvicide deployment in residential neighborhoods, but effectiveness may depend upon the location of the target treatment area in relation to residences and other geographic obstacles. |
The community-wide effectiveness of municipal larval control programs for West Nile virus risk reduction in Connecticut, United States
McMillan JR , Harden CA , Burtis JC , Breban MI , Shepard JJ , Petruff TA , Misencik MJ , Bransfield AB , Poggi JD , Harrington LC , Andreadis TG , Armstrong PM . Pest Manag Sci 2021 77 (11) 5186-5201 BACKGROUND: Mosquito larval control through the use of insecticides is the most common strategy for suppressing West Nile virus (WNV) vector populations in Connecticut (CT), United States. To evaluate the ability of larval control to reduce entomological risk metrics associated with WNV, we performed WNV surveillance and assessments of municipal larvicide application programs in Milford and Stratford, CT in 2019 and 2020. Each town treated catch basins and non-basin habitats (Milford only) with biopesticide products during both WNV transmission seasons. Adult mosquitoes were collected weekly with gravid and CO(2) -baited light traps and tested for WNV; larvae and pupae were sampled weekly from basins within 500 m of trapping sites, and Culex pipiens larval mortality was determined with lab bioassays of catch basin water samples. RESULTS: Declines in 4th instar larvae and pupae were observed in catch basins up to 2-weeks post-treatment, and we detected a positive relationship between adult female Cx. pipiens collections in gravid traps and pupal abundance in basins. We also detected a significant difference in total light trap collections between the two towns. Despite these findings, Cx. pipiens adult collections and WNV mosquito infection prevalence in gravid traps were similar between towns. CONCLUSION: Larvicide applications reduced pupal abundance and the prevalence of host-seeking adults with no detectable impact on entomological risk metrics for WNV. Further research is needed to better determine the level of mosquito larval control required to reduce WNV transmission risk. This article is protected by copyright. All rights reserved. |
Evaluation of a Methoprene Aerial Application for the Control of Culiseta melanura (Diptera: Culicidae) in Wetland Larval Habitats
Burtis JC , Poggi JD , Duval TB , Bidlack E , Shepard JJ , Matton P , Rossetti R , Harrington LC . J Med Entomol 2021 58 (6) 2330-2337 Eastern equine encephalitis virus (EEEV) is an arbovirus endemic to the eastern United States. Human cases are rare but can be serious. The primary enzootic vector is Culiseta melanura (Coquillett) (Diptera: Culicidae), an ornithophagic mosquito. We conducted an aerial application of a granular methoprene formulation in Hockomock Swamp (Massachusetts), which represents a focus of EEEV transmission. Water collected from inside and outside Cs. melanura crypts was evaluated in bioassays of early fourth instar Cs. melanura larvae using treated and untreated water. Adult eclosion rates were 36% significantly lower in treated compared with untreated water (P < 0.05). Eclosion rates for water collected from inside crypts were significantly higher (62%) than rates from outside crypts (30%) (P < 0.05), indicating higher efficacy outside crypts. We tested whether reduced methoprene efficacy inside the crypts was due to reduced chemical penetration into this habitat. Chemical water analyses confirmed that methoprene concentrations were lower inside the crypts (0.1 ± 0.05 ppb) compared to water from outside crypts (1.79 ± 0.41 ppb). The susceptibility of Cs. melanura to methoprene was also determined to allow for comparison against concentrations observed in water collected from the field (LC-95: 1.95 ± 0.5 ppb). Overall, methoprene-treated water prevented mosquito development for up to 4 wk, but with a reduction in efficacy between 4- and 6-wk post-application. Our results suggest that aerial methoprene applications can effectively treat open water in wetlands but may not provide efficacious control of Cs. melanura due to an inability to penetrate larval habitats. |
Susceptibility of Ixodes scapularis (Acari: Ixodidae) to Permethrin Under a Long-Term 4-Poster Deer Treatment Area on Shelter Island, NY
Burtis JC , Poggi JD , Payne B , Campbell SR , Harrington LC . J Med Entomol 2021 58 (4) 1966-1969 Pesticide resistance in medically significant disease vectors can negatively impact the efficacy of control efforts. Resistance research on ticks has focused primarily on species of veterinary significance that experience relatively high degrees of control pressure. Resistance in tick vectors of medical significance has received little attention, in part because area-wide pesticide applications are not used to control these generalist tick species. One of the few effective methods currently used for area-wide control of medically important ticks, including Ixodes scapularis Say (Acari: Ixodidae), is deployment of 4-poster devices. Deer self-apply a topical acaricide (permethrin) while feeding on corn from the devices. A 4-poster program using permethrin has been deployed on Shelter Island, NY to control I. scapularis populations since 2008. We collected engorged female ticks from deer in this management area and a location in the Mid-Hudson River Valley, NY without area-wide tick control. Larvae were reared from egg masses and their susceptibility to permethrin was tested. Larvae originating from a long-term laboratory colony were used as a susceptible baseline for comparison. Compared against the laboratory colony, resistance ratios at LC-50 for Shelter Island and Hudson Valley I. scapularis were 1.87 and 1.51, respectively. The susceptibilities of the field populations to permethrin were significantly lower than that of the colony ticks. We provide the first data using the larval packet test to establish baseline susceptibility for I. scapularis to permethrin along with information relevant to understanding resistance emergence in tick populations under sustained control pressure from 4-poster devices. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure