Last data update: Nov 04, 2024. (Total: 48056 publications since 2009)
Records 1-26 (of 26 Records) |
Query Trace: Burroughs M[original query] |
---|
Sentinel Surveillance reveals phylogenetic diversity and detection of linear plasmids harboring vanA and optrA among enterococci collected in the United States
Kent AG , Spicer LM , Campbell D , Breaker E , McAllister GA , Ewing TO , Longo C , Balbuena R , Burroughs M , Burgin A , Padilla J , Johnson JK , Halpin AL , McKay SL , Rasheed JK , Elkins CA , Karlsson M , Lutgring JD , Gargis AS . Antimicrob Agents Chemother 2024 e0059124 Enterococcus faecalis and Enterococcus faecium are frequent causes of healthcare-associated infections. Antimicrobial-resistant enterococci pose a serious public health threat, particularly vancomycin-resistant enterococci (VRE), for which treatment options are limited. The Centers for Disease Control and Prevention's Division of Healthcare Quality Promotion Sentinel Surveillance system conducted surveillance from 2018 to 2019 to evaluate antimicrobial susceptibility profiles and molecular epidemiology of 205 E. faecalis and 180 E. faecium clinical isolates collected from nine geographically diverse sites in the United States. Whole genome sequencing revealed diverse genetic lineages, with no single sequence type accounting for more than 15% of E. faecalis or E. faecium. Phylogenetic analysis distinguished E. faecium from 19 E. lactis (previously known as E. faecium clade B). Resistance to vancomycin was 78.3% among E. faecium, 7.8% among E. faecalis, and did not occur among E. lactis isolates. Resistance to daptomycin and linezolid was rare: E. faecium (5.6%, 0.6%, respectively), E. faecalis (2%, 2%), and E. lactis (5.3%, 0%). All VRE harbored the vanA gene. Three of the seven isolates that were not susceptible to linezolid harbored optrA, one chromosomally located and two on linear plasmids that shared a conserved backbone with other multidrug-resistant conjugative linear plasmids. One of these isolates contained optrA and vanA co-localized on the linear plasmid. By screening all enterococci, 20% of E. faecium were predicted to harbor linear plasmids, whereas none were predicted among E. faecalis or E. lactis. Continued surveillance is needed to assess the future emergence and spread of antimicrobial resistance by linear plasmids and other mechanisms.IMPORTANCEThis work confirms prior reports of E. faecium showing higher levels of resistance to more antibiotics than E. faecalis and identifies that diverse sequence types are contributing to enterococcal infections in the United States. All VRE harbored the vanA gene. We present the first report of the linezolid resistance gene optrA on linear plasmids in the United States, one of which co-carried a vanA cassette. Additional studies integrating epidemiological, antimicrobial susceptibility, and genomic methods to characterize mechanisms of resistance, including the role of linear plasmids, will be critical to understanding the changing landscape of enterococci in the United States. |
Complete genome sequences of four representative Corynebacterium belfantii strains
Peng Y , Fueston H , Irfan M , Hammond J , Morales D , Ju H , Bentz ML , Heuser J , Burroughs M , Tondella ML , Weigand MR . Microbiol Resour Announc 2024 e0075524 This report describes the complete genome sequence assemblies from four representative isolates of the human pathogen Corynebacterium belfantii. These data provide necessary references to aid accurate sequence-based species discrimination among closely related Corynebacterium spp. pathogens. |
The frequency and function of nucleoprotein-specific CD8(+) T cells are critical for heterosubtypic immunity against influenza virus infection
Amoah S , Cao W , Sayedahmed EE , Wang Y , Kumar A , Mishina M , Eddins DJ , Wang WC , Burroughs M , Sheth M , Lee J , Shieh WJ , Ray SD , Bohannon CD , Ranjan P , Sharma SD , Hoehner J , Arthur RA , Gangappa S , Wakamatsu N , Johnston HR , Pohl J , Mittal SK , Sambhara S . J Virol 2024 e0071124 Cytotoxic T lymphocytes (CTLs) mediate host defense against viral and intracellular bacterial infections and tumors. However, the magnitude of CTL response and their function needed to confer heterosubtypic immunity against influenza virus infection are unknown. We addressed the role of CD8(+) T cells in the absence of any cross-reactive antibody responses to influenza viral proteins using an adenoviral vector expressing a 9mer amino acid sequence recognized by CD8(+) T cells. Our results indicate that both CD8(+) T cell frequency and function are crucial for heterosubtypic immunity. Low morbidity, lower viral lung titers, low to minimal lung pathology, and better survival upon heterosubtypic virus challenge correlated with the increased frequency of NP-specific CTLs. NP-CD8(+) T cells induced by differential infection doses displayed distinct RNA transcriptome profiles and functional properties. CD8(+) T cells induced by a high dose of influenza virus secreted significantly higher levels of IFN-γ and exhibited higher levels of cytotoxic function. The mice that received NP-CD8(+) T cells from the high-dose virus recipients through adoptive transfer had lower viral titers following viral challenge than those induced by the low dose of virus, suggesting differential cellular programming by antigen dose. Enhanced NP-CD8(+) T-cell functions induced by a higher dose of influenza virus strongly correlated with the increased expression of cellular and metabolic genes, indicating a shift to a more glycolytic metabolic phenotype. These findings have implications for developing effective T cell vaccines against infectious diseases and cancer. IMPORTANCE: Cytotoxic T lymphocytes (CTLs) are an important component of the adaptive immune system that clears virus-infected cells or tumor cells. Hence, developing next-generation vaccines that induce or recall CTL responses against cancer and infectious diseases is crucial. However, it is not clear if the frequency, function, or both are essential in conferring protection, as in the case of influenza. In this study, we demonstrate that both CTL frequency and function are crucial for providing heterosubtypic immunity to influenza by utilizing an Ad-viral vector expressing a CD8 epitope only to rule out the role of antibodies, single-cell RNA-seq analysis, as well as adoptive transfer experiments. Our findings have implications for developing T cell vaccines against infectious diseases and cancer. |
Carbapenem-resistant Acinetobacter baumannii complex in the United States - an epidemiological and molecular description of isolates collected through the Emerging Infections Program, 2019
Bulens SN , Campbell D , McKay SL , Vlachos N , Burgin A , Burroughs M , Padila J , Grass JE , Jacob JT , Smith G , Muleta DB , Maloney M , Macierowski B , Wilson LE , Vaeth E , Lynfield R , O'Malley S , Snippes Vagnone PM , Dale J , Janelle SJ , Czaja CA , Johnson H , Phipps EC , Flores KG , Dumyati G , Tsay R , Beldavs ZG , Maureen Cassidy P , Hall A , Walters MS , Guh AY , Magill SS , Lutgring JD . Am J Infect Control 2024 BACKGROUND: Understanding the epidemiology of carbapenem-resistant A. baumannii complex (CRAB) and the patients impacted is an important step towards informing better infection prevention and control practices and improving public health response. METHODS: Active, population-based surveillance was conducted for CRAB in 9 U.S. sites from January 1-December 31, 2019. Medical records were reviewed, isolates were collected and characterized including antimicrobial susceptibility testing and whole genome sequencing. RESULTS: Among 136 incident cases in 2019, 66 isolates were collected and characterized; 56.5% were from cases who were male, 54.5% were from persons of Black or African American race with non-Hispanic ethnicity, and the median age was 63.5 years. Most isolates, 77.2%, were isolated from urine, and 50.0% were collected in the outpatient setting; 72.7% of isolates harbored an acquired carbapenemase gene (aCP), predominantly bla(OXA-23) or bla(OXA-24/40); however, an isolate with bla(NDM) was identified. The antimicrobial agent with the most in vitro activity was cefiderocol (96.9% of isolates were susceptible). CONCLUSIONS: Our surveillance found that CRAB isolates in the U.S. commonly harbor an aCP, have an antimicrobial susceptibility profile that is defined as difficult-to-treat resistance, and epidemiologically are similar regardless of the presence of an aCP. |
SARS-CoV-2 shedding and evolution in patients who were immunocompromised during the omicron period: a multicentre, prospective analysis
Raglow Z , Surie D , Chappell JD , Zhu Y , Martin ET , Kwon JH , Frosch AE , Mohamed A , Gilbert J , Bendall EE , Bahr A , Halasa N , Talbot HK , Grijalva CG , Baughman A , Womack KN , Johnson C , Swan SA , Koumans E , McMorrow ML , Harcourt JL , Atherton LJ , Burroughs A , Thornburg NJ , Self WH , Lauring AS . Lancet Microbe 2024 BACKGROUND: Prolonged SARS-CoV-2 infections in people who are immunocompromised might predict or source the emergence of highly mutated variants. The types of immunosuppression placing patients at highest risk for prolonged infection have not been systematically investigated. We aimed to assess risk factors for prolonged SARS-CoV-2 infection and associated intrahost evolution. METHODS: In this multicentre, prospective analysis, participants were enrolled at five US medical centres. Eligible patients were aged 18 years or older, were SARS-CoV-2-positive in the previous 14 days, and had a moderately or severely immunocompromising condition or treatment. Nasal specimens were tested by real-time RT-PCR every 2-4 weeks until negative in consecutive specimens. Positive specimens underwent viral culture and whole genome sequencing. A Cox proportional hazards model was used to assess factors associated with duration of infection. FINDINGS: From April 11, 2022, to Oct 1, 2022, 156 patients began the enrolment process, of whom 150 were enrolled and included in the analyses. Participants had B-cell malignancy or anti-B-cell therapy (n=18), solid organ transplantation or haematopoietic stem-cell transplantation (HSCT; n=59), AIDS (n=5), non-B-cell malignancy (n=23), and autoimmune or autoinflammatory conditions (n=45). 38 (25%) participants were real-time RT-PCR-positive and 12 (8%) were culture-positive 21 days or longer after initial SARS-CoV-2 detection or illness onset. Compared with the group with autoimmune or autoinflammatory conditions, patients with B-cell dysfunction (adjusted hazard ratio 0·32 [95% CI 0·15-0·64]), solid organ transplantation or HSCT (0·60 [0·38-0·94]), and AIDS (0·28 [0·08-1·00]) had longer duration of infection, defined as time to last positive real-time RT-PCR test. There was no significant difference in the non-B-cell malignancy group (0·58 [0·31-1·09]). Consensus de novo spike mutations were identified in five individuals who were real-time RT-PCR-positive longer than 56 days; 14 (61%) of 23 were in the receptor-binding domain. Mutations shared by multiple individuals were rare (<5%) in global circulation. INTERPRETATION: In this cohort, prolonged replication-competent omicron SARS-CoV-2 infections were uncommon. Within-host evolutionary rates were similar across patients, but individuals with infections lasting longer than 56 days accumulated spike mutations, which were distinct from those seen globally. Populations at high risk should be targeted for repeated testing and treatment and monitored for the emergence of antiviral resistance. FUNDING: US Centers for Disease Control and Prevention. |
Effectiveness of 2 and 3 mRNA COVID-19 Vaccines Doses against Omicron and Delta-Related Outpatient Illness among Adults, October 2021 - February 2022 (preprint)
Kim SS , Chung JR , Talbot HK , Grijalva CG , Wernli KJ , Martin ET , Monto AS , Belongia EA , McLean HQ , Gaglani M , Mamawala M , Nowalk MP , Geffel KM , Tartof SY , Florea A , Lee JS , Tenforde MW , Patel MM , Flannery B , Bentz ML , Burgin A , Burroughs M , Davis ML , Howard D , Lacek K , Madden JC , Nobles S , Padilla J , Sheth M , Arroliga A , Beeram M , Dunnigan K , Ettlinger J , Graves A , Hoffman E , Jatla M , McKillop A , Murthy K , Mutnal M , Priest E , Raiyani C , Rao A , Requenez L , Settele N , Smith M , Stone K , Thomas J , Volz M , Walker K , Zayed M , Annan E , Daley P , Kniss K , Merced-Morales A , Ayala E , Amundsen B , Aragones M , Calderon R , Hong V , Jimenez G , Kim J , Ku J , Lewin B , McDaniel A , Reyes A , Shaw S , Takhar H , Torres A , Burganowski R , Kiniry E , Moser KA , Nguyen M , Park S , Wellwood S , Wickersham B , Alvarado-Batres J , Benz S , Berger H , Bissonnette A , Blake J , Boese K , Botten E , Boyer J , Braun M , Breu B , Burbey G , Cravillion C , Delgadillo C , Donnerbauer A , Dziedzic T , Eddy J , Edgren H , Ermeling A , Ewert K , Fehrenbach C , Fernandez R , Frome W , Guzinski S , Heeren L , Herda D , Hertel M , Heuer G , Higdon E , Ivacic L , Jepsen L , Kaiser S , Karl J , Keffer B , King J , Koepel TK , Kohl S , Kohn S , Kohnhorst D , Kronholm E , Le T , Lemieux A , Marcis C , Maronde M , McCready I , McGreevey K , Meece J , Mehta N , Miesbauer D , Moon V , Moran J , Nikolai C , Olson B , Olstadt J , Ott L , Pan N , Pike C , Polacek D , Presson M , Price N , Rayburn C , Reardon C , Rotar M , Rottscheit C , Salzwedel J , Saucedo J , Scheffen K , Schug C , Seyfert K , Shrestha R , Slenczka A , Stefanski E , Strupp M , Tichenor M , Watkins L , Zachow A , Zimmerman B , Bauer S , Beney K , Cheng CK , Faraj N , Getz A , Grissom M , Groesbeck M , Harrison S , Henson K , Jermanus K , Johnson E , Kaniclides A , Kimberly A , Lamerato LE , Lauring A , Lehmann-Wandell R , McSpadden EJ , Nabors L , Truscon R , Balasubramani GK , Bear T , Bobeck J , Bowser E , Clarke K , Clarke LG , Dauer K , Deluca C , Dierks B , Haynes L , Hickey R , Johnson M , Jonsson A , Luosang N , McKown L , Peterson A , Phaturos D , Rectenwald A , Sax TM , Stiegler M , Susick M , Suyama J , Taylor L , Walters S , Weissman A , Williams JV , Blair M , Carter J , Chappell J , Copen E , Denney M , Graes K , Halasa N , Lindsell C , Liu Z , Longmire S , McHenry R , Short L , Tan HN , Vargas D , Wrenn J , Wyatt D , Zhu Y . medRxiv 2022 10 Background: We estimated SARS-CoV-2 Delta and Omicron-specific effectiveness of 2 and 3 mRNA COVID-19 vaccine doses in adults against symptomatic illness in US outpatient settings. Method(s): Between October 1, 2021, and February 12, 2022, research staff consented and enrolled eligible participants who had fever, cough, or loss of taste or smell and sought outpatient medical care or clinical SARS-CoV-2 testing within 10 days of illness onset. Using the test-negative design, we compared the odds of receiving 2 or 3 mRNA COVID-19 vaccine doses among SARS-CoV-2 cases versus controls using logistic regression. Regression models were adjusted for study site, age, onset week, and prior SARS-CoV-2 infection. Vaccine effectiveness (VE) was calculated as (1 - adjusted odds ratio) x 100%. Result(s): Among 3847 participants included for analysis, 574 (32%) of 1775 tested positive for SARS-CoV-2 during the Delta predominant period and 1006 (56%) of 1794 participants tested positive during the Omicron predominant period. When Delta predominated, VE against symptomatic illness in outpatient settings was 63% (95% CI: 51% to 72%) among mRNA 2-dose recipients and 96% (95% CI: 93% to 98%) for 3-dose recipients. When Omicron predominated, VE was 21% (95% CI: -6% to 41%) among 2-dose recipients and 62% (95% CI: 48% to 72%) among 3-dose recipients. Conclusion(s): In this adult population, 3 mRNA COVID-19 vaccine doses provided substantial protection against symptomatic illness in outpatient settings when the Omicron variant became the predominant cause of COVID-19 in the U.S. These findings support the recommendation for a 3rd mRNA COVID-19 vaccine dose. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Genomic deletions and rearrangements in monkeypox virus from the 2022 outbreak, USA (preprint)
Gigante CM , Plumb M , Ruprecht A , Zhao H , Wicker V , Wilkins K , Matheny A , Khan T , Davidson W , Sheth M , Burgin A , Burroughs M , Padilla J , Lee JS , Batra D , Hetrick EE , Howard DT , Garfin J , Tate L , Hubsmith SJ , Mendoza RM , Stanek D , Gillani S , Lee M , Mangla A , Blythe D , SierraPatev S , Carpenter-Azevedo K , Huard RC , Gallagher G , Hall J , Ash S , Kovar L , Seabolt MH , Weigand MR , Damon I , Satheshkumar PS , McCollum AM , Hutson CL , Wang X , Li Y . bioRxiv 2022 17 Genomic surveillance of monkeypox virus (MPXV) during the 2022 outbreak has been mainly focused on single nucleotide polymorphism (SNP) changes. DNA viruses, including MPXV, have a lower SNP mutation rate than RNA viruses due to higher fidelity replication machinery. We identified a large genomic rearrangement in a MPXV sequence from a 2022 case in the state of Minnesota (MN), USA, from an abnormal, uneven MPXV read mapping coverage profile in whole-genome sequencing (WGS) data. We further screened WGS data of 206 U.S. MPXV samples and found seven (3.4 percent) sequenced genomes contained similar abnormal read coverage profiles that suggested putative large deletions or genomic rearrangements. Here, we present three MPXV genomes containing deletions ranging from 2.3 to 15 kb and four genomes containing more complex rearrangements. Five genomic changes were each only seen in one sample, but two sequences from linked cases shared an identical 2.3 kb deletion in the 3' terminal region. All samples were positive using VAC1 and Clade II (formerly West African)-specific MPXV diagnostic tests; however, large deletions and genomic rearrangements like the ones reported here have the potential to result in viruses in which the target of a PCR diagnostic test is deleted. The emergence of genomic rearrangements during the outbreak may have public health implications and highlight the importance of continued genomic surveillance. Copyright The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Selective whole genome amplification as a tool to enrich specimens with low Treponema pallidum genomic DNA copies for whole genome sequencing (preprint)
Thurlow CM , Joseph SJ , Ganova-Raeva L , Katz SS , Pereira L , Chen C , Debra A , Vilfort K , Workowski K , Cohen SE , Reno H , Sun Y , Burroughs M , Sheth M , Chi KH , Danavall D , Philip SS , Cao W , Kersh EN , Pillay A . bioRxiv 2021 10 Downstream next generation sequencing (NGS) of the syphilis spirochete Treponema pallidum subspecies pallidum (T. pallidum) is hindered by low bacterial loads and the overwhelming presence of background metagenomic DNA in clinical specimens. In this study, we investigated selective whole genome amplification (SWGA) utilizing multiple displacement amplification (MDA) in conjunction with custom oligonucleotides with an increased specificity for the T. pallidum genome, and the capture and removal of CpG-methylated host DNA using the NEBNext Microbiome DNA Enrichment Kit followed by MDA with the REPLI-g Single Cell Kit as enrichment methods to improve the yields of T. pallidum DNA in isolates and lesion specimens from syphilis patients. Sequencing was performed using the Illumina MiSeq v2 500 cycle or NovaSeq 6000 SP platform. These two enrichment methods led to 93-98% genome coverage at 5 reads/site in 5 clinical specimens from the United States and rabbit propagated isolates, containing >14 T. pallidum genomic copies/ul of sample for SWGA and >129 genomic copies/ul for CpG methylation capture with MDA. Variant analysis using sequencing data derived from SWGA-enriched specimens, showed that all 5 clinical strains had the A2058G mutation associated with azithromycin resistance. SWGA is a robust method that allows direct whole genome sequencing (WGS) of specimens containing very low numbers of T. pallidum, which have been challenging until now. Copyright The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Differential neutralization and inhibition of SARS-CoV-2 variants by antibodies elicited by COVID-19 mRNA vaccines (preprint)
Wang L , Kainulainen MH , Jiang N , Di H , Bonenfant G , Mills L , Currier M , Shrivastava-Ranjan P , Calderon BM , Sheth M , Hossain J , Lin X , Lester S , Pusch E , Jones J , Cui D , Chatterjee P , Jenks HM , Morantz E , Larson G , Hatta M , Harcourt J , Tamin A , Li Y , Tao Y , Zhao K , Burroughs A , Wong T , Tong S , Barnes JR , Tenforde MW , Self WH , Shapiro NI , Exline MC , Files DC , Gibbs KW , Hager DN , Patel M , Laufer Halpin AS , Lee JS , Xie X , Shi PY , Davis CT , Spiropoulou CF , Thornburg NJ , Oberste MS , Dugan V , Wentworth DE , Zhou B , Batra D , Beck A , Caravas J , Cintron-Moret R , Cook PW , Gerhart J , Gulvik C , Hassell N , Howard D , Knipe K , Kondor RJ , Kovacs N , Lacek K , Mann BR , McMullan LK , Moser K , Paden CR , Martin BR , Schmerer M , Shepard S , Stanton R , Stark T , Sula E , Tymeckia K , Unoarumhi Y . bioRxiv 2021 30 The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of many new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccines. To ascertain and rank the risk of VOCs and VOIs, we analyzed their ability to escape from vaccine-induced antibodies. The variants showed differential reductions in neutralization and replication titers by post-vaccination sera. Although the Omicron variant showed the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retained moderate neutralizing activity against that variant. Therefore, vaccination remains the most effective strategy to combat the COVID-19 pandemic. |
Erratum: Vol. 71, No. 6.
Lambrou AS , Shirk P , Steele MK , Paul P , Paden CR , Cadwell B , Reese HE , Aoki Y , Hassell N , Caravas J , Kovacs NA , Gerhart JG , Ng HJ , Zheng XY , Beck A , Chau R , Cintron R , Cook PW , Gulvik CA , Howard D , Jang Y , Knipe K , Lacek KA , Moser KA , Paskey AC , Rambo-Martin BL , Nagilla RR , Rethchless AC , Schmerer MW , Seby S , Shephard SS , Stanton RA , Stark TJ , Uehara A , Unoarumhi Y , Bentz ML , Burhgin A , Burroughs M , Davis ML , Keller MW , Keong LM , Le SS , Lee JS , Madden Jr JC , Nobles S , Owouor DC , Padilla J , Sheth M , Wilson MM , Talarico S , Chen JC , Oberste MS , Batra D , McMullan LK , Halpin AL , Galloway SE , MacCannell DR , Kondor R , Barnes J , MacNeil A , Silk BJ , Dugan VG , Scobie HM , Wentworth DE . MMWR Morb Mortal Wkly Rep 2022 71 (14) 528 The report “Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants — United States, June 2021–January 2022” contained several errors. |
Effectiveness of two and three mRNA COVID-19 vaccine doses against Omicron- and Delta-Related outpatient illness among adults, October 2021-February 2022.
Kim SS , Chung JR , Talbot HK , Grijalva CG , Wernli KJ , Kiniry E , Martin ET , Monto AS , Belongia EA , McLean HQ , Gaglani M , Mamawala M , Nowalk MP , Moehling Geffel K , Tartof SY , Florea A , Lee JS , Tenforde MW , Patel MM , Flannery B , Bentz ML , Burgin A , Burroughs M , Davis ML , Howard D , Lacek K , Madden JC , Nobles S , Padilla J , Sheth M . Influenza Other Respir Viruses 2022 16 (6) 975-985 Background: We estimated SARS-CoV-2 Delta- and Omicron-specific effectiveness of two and three mRNA COVID-19 vaccine doses in adults against symptomatic illness in US outpatient settings. Methods: Between October 1, 2021, and February 12, 2022, research staff consented and enrolled eligible participants who had fever, cough, or loss of taste or smell and sought outpatient medical care or clinical SARS-CoV-2 testing within 10 days of illness onset. Using the test-negative design, we compared the odds of receiving two or three mRNA COVID-19 vaccine doses among SARS-CoV-2 cases versus controls using logistic regression. Regression models were adjusted for study site, age, onset week, and prior SARS-CoV-2 infection. Vaccine effectiveness (VE) was calculated as (1 − adjusted odds ratio) × 100%. Results: Among 3847 participants included for analysis, 574 (32%) of 1775 tested positive for SARS-CoV-2 during the Delta predominant period and 1006 (56%) of 1794 participants tested positive during the Omicron predominant period. When Delta predominated, VE against symptomatic illness in outpatient settings was 63% (95% CI: 51% to 72%) among mRNA two-dose recipients and 96% (95% CI: 93% to 98%) for three-dose recipients. When Omicron predominated, VE was 21% (95% CI: −6% to 41%) among two-dose recipients and 62% (95% CI: 48% to 72%) among three-dose recipients. Conclusions: In this adult population, three mRNA COVID-19 vaccine doses provided substantial protection against symptomatic illness in outpatient settings when the Omicron variant became the predominant cause of COVID-19 in the United States. These findings support the recommendation for a third mRNA COVID-19 vaccine dose. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Influenza and Other Respiratory Viruses published by John Wiley & Sons Ltd. |
Differential neutralization and inhibition of SARS-CoV-2 variants by antibodies elicited by COVID-19 mRNA vaccines.
Wang L , Kainulainen MH , Jiang N , Di H , Bonenfant G , Mills L , Currier M , Shrivastava-Ranjan P , Calderon BM , Sheth M , Mann BR , Hossain J , Lin X , Lester S , Pusch EA , Jones J , Cui D , Chatterjee P , Jenks MH , Morantz EK , Larson GP , Hatta M , Harcourt JL , Tamin A , Li Y , Tao Y , Zhao K , Lacek K , Burroughs A , Wang W , Wilson M , Wong T , Park SH , Tong S , Barnes JR , Tenforde MW , Self WH , Shapiro NI , Exline MC , Files DC , Gibbs KW , Hager DN , Patel M , Halpin AL , McMullan LK , Lee JS , Xia H , Xie X , Shi PY , Davis CT , Spiropoulou CF , Thornburg NJ , Oberste MS , Dugan VG , Wentworth DE , Zhou B . Nat Commun 2022 13 (1) 4350 The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccine-mediated protection from disease. To ascertain and rank the risk of VOCs and VOIs, we analyze the ability of 14 variants (614G, Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, Kappa, Lambda, Mu, and Omicron) to escape from mRNA vaccine-induced antibodies. The variants show differential reductions in neutralization and replication by post-vaccination sera. Although the Omicron variant (BA.1, BA.1.1, and BA.2) shows the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retain moderate neutralizing activity against that variant. Therefore, vaccination remains an effective strategy during the COVID-19 pandemic. |
Selective Whole-Genome Amplification as a Tool to Enrich Specimens with Low Treponema pallidum Genomic DNA Copies for Whole-Genome Sequencing.
Thurlow CM , Joseph SJ , Ganova-Raeva L , Katz SS , Pereira L , Chen C , Debra A , Vilfort K , Workowski K , Cohen SE , Reno H , Sun Y , Burroughs M , Sheth M , Chi KH , Danavall D , Philip SS , Cao W , Kersh EN , Pillay A . mSphere 2022 7 (3) e0000922 Downstream next-generation sequencing (NGS) of the syphilis spirochete Treponema pallidum subspecies pallidum (T. pallidum) is hindered by low bacterial loads and the overwhelming presence of background metagenomic DNA in clinical specimens. In this study, we investigated selective whole-genome amplification (SWGA) utilizing multiple displacement amplification (MDA) in conjunction with custom oligonucleotides with an increased specificity for the T. pallidum genome and the capture and removal of 5'-C-phosphate-G-3' (CpG) methylated host DNA using the NEBNext Microbiome DNA enrichment kit followed by MDA with the REPLI-g single cell kit as enrichment methods to improve the yields of T. pallidum DNA in isolates and lesion specimens from syphilis patients. Sequencing was performed using the Illumina MiSeq v2 500 cycle or NovaSeq 6000 SP platform. These two enrichment methods led to 93 to 98% genome coverage at 5 reads/site in 5 clinical specimens from the United States and rabbit-propagated isolates, containing >14 T. pallidum genomic copies/μL of sample for SWGA and >129 genomic copies/μL for CpG methylation capture with MDA. Variant analysis using sequencing data derived from SWGA-enriched specimens showed that all 5 clinical strains had the A2058G mutation associated with azithromycin resistance. SWGA is a robust method that allows direct whole-genome sequencing (WGS) of specimens containing very low numbers of T. pallidum, which has been challenging until now. IMPORTANCE Syphilis is a sexually transmitted, disseminated acute and chronic infection caused by the bacterial pathogen Treponema pallidum subspecies pallidum. Primary syphilis typically presents as single or multiple mucocutaneous lesions and, if left untreated, can progress through multiple stages with various clinical manifestations. Molecular studies often rely on direct amplification of DNA sequences from clinical specimens; however, this can be impacted by inadequate samples due to disease progression or timing of patients seeking clinical care. While genotyping has provided important data on circulating strains over the past 2 decades, WGS data are needed to better understand strain diversity, perform evolutionary tracing, and monitor antimicrobial resistance markers. The significance of our research is the development of an SWGA DNA enrichment method that expands the range of clinical specimens that can be directly sequenced to include samples with low numbers of T. pallidum. |
Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants - United States, June 2021-January 2022.
Lambrou AS , Shirk P , Steele MK , Paul P , Paden CR , Cadwell B , Reese HE , Aoki Y , Hassell N , Caravas J , Kovacs NA , Gerhart JG , Ng HJ , Zheng XY , Beck A , Chau R , Cintron R , Cook PW , Gulvik CA , Howard D , Jang Y , Knipe K , Lacek KA , Moser KA , Paskey AC , Rambo-Martin BL , Nagilla RR , Rethchless AC , Schmerer MW , Seby S , Shephard SS , Stanton RA , Stark TJ , Uehara A , Unoarumhi Y , Bentz ML , Burhgin A , Burroughs M , Davis ML , Keller MW , Keong LM , Le SS , Lee JS , Madden Jr JC , Nobles S , Owouor DC , Padilla J , Sheth M , Wilson MM , Talarico S , Chen JC , Oberste MS , Batra D , McMullan LK , Halpin AL , Galloway SE , MacCannell DR , Kondor R , Barnes J , MacNeil A , Silk BJ , Dugan VG , Scobie HM , Wentworth DE . MMWR Morb Mortal Wkly Rep 2022 71 (6) 206-211 Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.(†) The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice. |
Draft Chromosome Sequences of a Clinical Isolate of the Free-Living Ameba Naegleria fowleri.
Ali IKM , Kelley A , Joseph SJ , Park S , Roy S , Jackson J , Cope JR , Rowe LA , Burroughs M , Sheth M , Batra D , Loparev V . Microbiol Resour Announc 2021 10 (15) We present the chromosome sequences of a Naegleria fowleri isolate from a human primary amebic meningoencephalitis (PAM) case. The genome sequences were assembled from Illumina HiSeq and PacBio sequencing data and verified with the optical mapping data. This led to the identification of 37 contigs representing 37 chromosomes in N. fowleri. |
Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas , eleven species to the genus Kaistella , and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens.
Nicholson AC , Gulvik CA , Whitney AM , Humrighouse BW , Bell ME , Holmes B , Steigerwalt AG , Villarma A , Sheth M , Batra D , Rowe LA , Burroughs M , Pryor JC , Bernardet JF , Hugo C , Kämpfer P , Newman JD , McQuiston JR . Int J Syst Evol Microbiol 2020 70 (8) 4432-4450 The genus Chryseobacterium in the family Weeksellaceae is known to be polyphyletic. Amino acid identity (AAI) values were calculated from whole-genome sequences of species of the genus Chryseobacterium, and their distribution was found to be multi-modal. These naturally-occurring non-continuities were leveraged to standardise genus assignment of these species. We speculate that this multi-modal distribution is a consequence of loss of biodiversity during major extinction events, leading to the concept that a bacterial genus corresponds to a set of species that diversified since the Permian extinction. Transfer of nine species (Chryseobacterium arachidiradicis, Chryseobacterium bovis , Chryseobacterium caeni , Chryseobacterium hispanicum , Chryseobacterium hominis , Chryseobacterium hungaricum, Chryseobacterium molle , Chryseobacterium pallidum and Chryseobacterium zeae) to the genus Epilithonimonas and eleven (Chryseobacterium anthropi, Chryseobacterium antarcticum, Chryseobacterium carnis, Chryseobacterium chaponense, Chryseobacterium haifense, Chryseobacterium jeonii, Chryseobacterium montanum, Chryseobacterium palustre, Chryseobacterium solincola, Chryseobacterium treverense and Chryseobacterium yonginense) to the genus Kaistella is proposed. Two novel species are described: Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. Evidence is presented to support the assignment of Planobacterium taklimakanense to a genus apart from Chryseobacterium, to which Planobacterium salipaludis comb nov. also belongs. The novel genus Halpernia is proposed, to contain the type species Halpernia frigidisoli comb. nov., along with Halpernia humi comb. nov., and Halpernia marina comb. nov. |
A randomized controlled trial of antibody response to 2018-19 cell-based vs. egg-based quadrivalent inactivated influenza vaccine in children
Moehling KK , Zimmerman RK , Nowalk MP , Jeng Lin C , Martin JM , Alcorn JF , Susick M , Burroughs A , Holiday C , Flannery B , Levine MZ . Vaccine 2020 38 (33) 5171-5177 BACKGROUND: Current influenza vaccine effectiveness (VE) improvement efforts focus on minimizing egg adaptation mutations during manufacture. This study compared immune response of two FDA-approved quadrivalent inactivated influenza vaccines in an unblinded randomized controlled trial. METHODS: Participants were 144 community dwelling, healthy children/adolescents aged 4-20 years, randomized 1:1 in blocks of 4 to a vaccine grown in cell culture (ccIIV4 [Flucelvax(R)]; n = 85); or in egg medium (IIV4 [Fluzone (R)]; n = 83). Blood was drawn at day 0 prevaccination and at day 28 (19-35 days) post vaccination. Hemagglutination inhibition (HI) assays against A/H1N1 and both B strains and microneutralization (MN) assays against egg-based and cell-based A/H3N2 strains were conducted. The primary outcome measure was seroconversion (day 28/day 0 titer ratio >/= 4 with day 28 titer >/= 40). Secondary outcomes were elevated titers (day 28 HI titer >/= 1:110), geometric mean titers (GMTs) and mean fold rise (MFR) in titers. Outcomes were compared for 74 ccIIV4 recipients and 70 IIV4 recipients, and for those vaccinated and unvaccinated the previous year. Only the HI and MN laboratory analysis team was blinded to group assignment. RESULTS: In this racially diverse (81% non-white) group of children with a median age of 14 years, baseline demographics did not differ between vaccine groups. At day 0, half or more in each vaccine group had elevated HI or MN titers. Low seroconversion rates (14%-35%) were found; they did not differ between groups. Among 2018-19 ccIIV4 recipients, those unvaccinated in the previous season showed significantly higher MFR against A/H1N1 and A/H3N2 cell-grown virus than the previously vaccinated. Similar results were found for MFR against B/Victoria among 2018-2019 IIV4 recipients. CONCLUSION: In mostly older children with high baseline titers, no differences in seroconversion or other measures of antibody titers were found between ccIIV4 and IIV4 recipients against egg- and cell-grown influenza vaccine viruses. CLINICAL TRIALS NO: NCT03614975. |
Vaccine Oka varicella meningitis in two adolescents
Harrington WE , Mato S , Burroughs L , Carpenter PA , Gershon A , Schmid DS , Englund JA . Pediatrics 2019 144 (6) The live-attenuated varicella vaccine, a routine immunization in the United States since 1995, is both safe and effective. Like wild-type varicella-zoster virus, however, vaccine Oka (vOka) varicella can establish latency and reactivate as herpes zoster, rarely leading to serious disease, particularly among immunocompromised hosts. Previous cases of reactivated vOka resulting in meningitis have been described in young children who received a single dose of varicella vaccine; less is known about vOka reactivation in older children after the 2-dose vaccine series. We present 2 adolescents with reactivated vOka meningitis, 1 immunocompetent and 1 immunocompromised, both of whom received 2 doses of varicella vaccine many years before as children. Pediatricians should be aware of the potential of vOka varicella to reactivate and cause clinically significant central nervous system disease in vaccinated children and adolescents. |
Conserved Patterns of Symmetric Inversion in the Genome Evolution of Bordetella Respiratory Pathogens.
Weigand MR , Peng Y , Batra D , Burroughs M , Davis JK , Knipe K , Loparev VN , Johnson T , Juieng P , Rowe LA , Sheth M , Tang K , Unoarumhi Y , Williams MM , Tondella ML . mSystems 2019 4 (6) Whooping cough (pertussis), primarily caused by Bordetella pertussis, has resurged in the United States, and circulating strains exhibit considerable chromosome structural fluidity in the form of rearrangement and deletion. The genus Bordetella includes additional pathogenic species infecting various animals, some even causing pertussis-like respiratory disease in humans; however, investigation of their genome evolution has been limited. We studied chromosome structure in complete genome sequences from 167 Bordetella species isolates, as well as 469 B. pertussis isolates, to gain a generalized understanding of rearrangement patterns among these related pathogens. Observed changes in gene order primarily resulted from large inversions and were only detected in species with genomes harboring multicopy insertion sequence (IS) elements, most notably B. holmesii and B. parapertussis While genomes of B. pertussis contain >240 copies of IS481, IS elements appear less numerous in other species and yield less chromosome structural diversity through rearrangement. These data were further used to predict all possible rearrangements between IS element copies present in Bordetella genomes, revealing that only a subset is observed among circulating strains. Therefore, while it appears that rearrangement occurs less frequently in other species than in B. pertussis, these clinically relevant respiratory pathogens likely experience similar mutation of gene order. The resulting chromosome structural fluidity presents both challenges and opportunity for the study of Bordetella respiratory pathogens.IMPORTANCE Bordetella pertussis is the primary agent of whooping cough (pertussis). The Bordetella genus includes additional pathogens of animals and humans, including some that cause pertussis-like respiratory illness. The chromosome of B. pertussis has previously been shown to exhibit considerable structural rearrangement, but insufficient data have prevented comparable investigation in related species. In this study, we analyze chromosome structure variation in several Bordetella species to gain a generalized understanding of rearrangement patterns in this genus. Just as in B. pertussis, we observed inversions in other species that likely result from common mutational processes. We used these data to further predict additional, unobserved inversions, suggesting that specific genome structures may be preferred in each species. |
Screening and genomic characterization of filamentous hemagglutinin-deficient Bordetella pertussis.
Weigand MR , Pawloski LC , Peng Y , Ju H , Burroughs M , Cassiday PK , Davis JK , DuVall M , Johnson T , Juieng P , Knipe K , Loparev VN , Mathis MH , Rowe LA , Sheth M , Williams MM , Tondella ML . Infect Immun 2018 86 (4) Despite high vaccine coverage, pertussis cases in the United States (US) have increased over the last decade. Growing evidence suggests that disease resurgence results, in part, from genetic divergence of circulating strain populations away from vaccine references. The US exclusively employs acellular vaccines and current Bordetella pertussis isolates are predominantly deficient in at least one immunogen, pertactin (Prn). First detected in the US retrospectively in a 1994 isolate, the rapid spread of Prn deficiency is likely vaccine driven, raising concerns about whether other acellular vaccine immunogens experience similar pressures as further antigenic changes could potentially threaten vaccine efficacy. We developed an electrochemiluminescent antibody capture assay to monitor production of the acellular vaccine immunogen filamentous hemagglutinin (Fha). Screening 722 US surveillance isolates collected from 2010-2016 identified two that were both Prn- and Fha-deficient. Three additional Fha-deficient laboratory strains were also identified from a historic collection of 65 isolates dating back to 1935. Whole-genome sequencing of deficient isolates revealed putative, underlying genetic changes. Only four isolates harbored mutation to known genes involved in Fha production, highlighting the complexity of its regulation. The chromosomes of two Fha-deficient isolates included unexpected structural variation that did not appear to influence Fha production. Furthermore, insertion sequence disruption of fhaB was also detected in a previously identified pertussis toxin-deficient isolate that still produced normal levels of Fha. These results demonstrate the genetic potential for additional vaccine immunogen deficiency and underscore the importance of continued surveillance of circulating B. pertussis evolution in response to vaccine pressure. |
Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies
Kamal RP , Blanchfield K , Belser JA , Music N , Tzeng WP , Holiday C , Burroughs A , Sun X , Maines TR , Levine MZ , York IA . J Virol 2017 91 (20) Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutinin inhibition (HI) and micro-neutralization (MN) assays, H7 viruses and vaccines induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate pre-pandemic vaccines. We have previously shown that purified recombinant H7 hemagglutinin (HA) appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. Here, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and NA from 3 different H7 viruses [A/Shanghai/2/2013 (H7N9), A/Netherlands/219/2003 (H7N7) and A/New York/107/2003 (H7N2)], or with human A(H1N1)pdm09 [A/California/07/2009-like] or A(H3N2) [A/Perth16/2009] viruses. Mice produced equivalent titers of antibodies to all viruses as measured by ELISA. However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for pre-pandemic vaccines.IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of pre-pandemic vaccines. For seasonal influenza viruses, protection is correlated with antibody titers measured by hemagglutination inhibition (HI) and virus microneutralization (MN) assays. Since H7 vaccines typically induce low HI and MN titers, they have been considered to be poorly immunogenic. We show that in mice H7 whole inactivated virus (WIV) vaccines were as immunogenic as seasonal WIVs, as they induced similar levels of overall serum antibodies. However, a larger fraction of the antibodies induced by H7 WIV was non-neutralizing in vitro. Nevertheless, the H7 WIV completely protected mice against homologous viral challenge, and antibodies directed against the HA-head were the major contributor toward immune protection. Vaccines against H7 avian influenza viruses may be more effective than HI and virus neutralization assays suggest, and such vaccines may need other methods for evaluation. |
The History of Bordetella pertussis Genome Evolution Includes Structural Rearrangement.
Weigand MR , Peng Y , Loparev V , Batra D , Bowden KE , Burroughs M , Cassiday PK , Davis JK , Johnson T , Juieng P , Knipe K , Mathis MH , Pruitt AM , Rowe L , Sheth M , Tondella ML , Williams MM . J Bacteriol 2017 199 (8) Despite high pertussis vaccine coverage, reported cases of whooping cough (pertussis) have increased over the last decade in the United States and other developed countries. Although Bordetella pertussis is well known for its limited gene sequence variation, recent advances in long-read sequencing technology have begun to reveal genome structural heterogeneity among otherwise indistinguishable isolates, even within geographically or temporally defined epidemics. We have compared rearrangements among complete genome assemblies from 257 B. pertussis isolates to examine potential evolution of chromosomal structure in a pathogen with minimal gene nucleotide sequence diversity. Discrete changes in gene order were identified that differentiated genomes from vaccine reference strains and clinical isolates of various genotypes, frequently along phylogenetic boundaries defined by single nucleotide polymorphisms. Observed rearrangements were primarily large inversions centered on the replication origin or terminus and flanked by IS481, a mobile genetic element with >240 copies per genome and previously suspected to mediate rearrangements and deletions by homologous recombination. These data illustrate that structural genome evolution in B. pertussis is not limited to reduction but also includes rearrangement. Therefore, although genomes of clinical isolates are structurally diverse, specific changes in gene order are conserved, perhaps due to positive selection, providing novel information for investigation of disease resurgence and molecular epidemiology. IMPORTANCE: Whooping cough, primarily caused by Bordetella pertussis, has resurged in the United States even though coverage with pertussis-containing vaccines remains high. The rise in reported cases has included increased disease rates among all vaccinated age groups, provoking questions about the pathogen's evolution. The chromosome of B. pertussis includes a high number of repetitive, mobile genetic elements that obstruct genome analysis. However, these mobile elements facilitate large rearrangements that alter the order and orientation of essential protein-coding genes which otherwise exhibit little nucleotide sequence diversity. By comparing complete genome assemblies from 257 isolates, we show that specific rearrangements have been conserved throughout recent evolutionary history, perhaps by eliciting changes in gene expression, which may also provide useful information for molecular epidemiology. |
Complete Genome Sequences of Bordetella pertussis Vaccine Reference Strains 134 and 10536.
Weigand MR , Peng Y , Loparev V , Batra D , Burroughs M , Johnson T , Juieng P , Rowe L , Tondella ML , Williams MM . Genome Announc 2016 4 (5) Vaccine formulations and vaccination programs against whooping cough (pertussis) vary worldwide. Here, we report the complete genome sequences of two divergent Bordetella pertussis reference strains used in the production of pertussis vaccines. |
The mitochondrial genome of the lone star tick (Amblyomma americanum).
Williams-Newkirk AJ , Burroughs M , Changayil SS , Dasch GA . Ticks Tick Borne Dis 2015 6 (6) 793-801 Amblyomma americanum is an abundant tick in the southeastern, midwestern, and northeastern United States. It is a vector of multiple diseases, but limited genomic resources are available for it. We sequenced the complete mitochondrial genome of a single female A. americanum collected in Georgia using the Illumina platform. The consensus sequence was 14,709bp long, and the mean coverage across the assembly was >12,000x. All expected tick genomic features were present, including two "Tick-Box" motifs, and in the expected order for the Metastriata. Heteroplasmy rates were low compared to the most closely related tick for which data are available, Amblyomma cajennense. The phylogeny derived from the concatenated protein coding and rRNA genes from the 33 available tick mitochondrial genomes was consistent with those previously proposed for the Acari. This is the first complete mitochondrial sequence for A. americanum, which provides a useful reference for future studies of A. americanum population genetics and tick phylogeny. |
In vitro selection of mutants of Neisseria gonorrhoeae with elevated MIC values and increased resistance to cephalosporins
Johnson SR , Grad Y , Ganakammal SR , Burroughs M , Frace M , Lipsitch M , Weil R , Trees D . Antimicrob Agents Chemother 2014 58 (11) 6986-9 Strains of Neisseria gonorrhoeae with mosaic penA genes bearing novel point mutations in penA have been isolated from ceftriaxone treatment failures. Such isolates exhibit significantly higher MIC values to third generation cephalosporins. Here we report the in vitro isolation two mutants with elevated MICs to cephalosporins. The first possesses a point mutation in the transpeptidase region of the mosaic penA gene, and the second contains an insertion mutation in pilQ. |
Draft Genome Sequence of Bacillus cereus Strain BcFL2013, a Clinical Isolate Similar to G9241.
Gee JE , Marston CK , Sammons SA , Burroughs MA , Hoffmaster AR . Genome Announc 2014 2 (3) Bacillus cereus strains, such as G9241, causing anthrax-like illnesses have recently been discovered. We report the genome sequence of a clinical strain, B. cereus BcFL2013, which is similar to G9241, recovered from a patient in Florida. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 04, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure